
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

SASE: Implementation of a Compressed Text Search Engine

Srinidhi Varadarajan and Tzi-cker Chiueh
State University of New York

SASE: Implementation of a
Compressed Text Search Engine

Srinidhi Varadarajan Tzi-cker Chiueh

Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

(srinidhi, chiueh)@cs.sunysb.edu

http://www.ecsl.sunysb.edu/RFCSearch.html

Abstract

Keyword based search engines are the basic building
block of text retrieval systems. Higher level systems
like content sensitive search engines and knowledge-
based systems still rely on keyword search as the
underlying text retrieval mechanism. With the
explosive growth in content, Internet and Intranet
information repositories require efficient
mechanisms to store as well as index data. In this
paper we discuss the implementation of the Shrink
and Search Engine (SASE) framework which unites
text compression and indexing to maximize keyword
search performance while reducing storage cost.
SASE features the novel capability of being able to
directly search through compressed text without
explicit decompression. The implementation
includes a search server architecture, which can be
accessed from a Java front-end to perform keyword
search on the Internet.

The performance results show that the compression
efficiency of SASE is within 7-17% of GZIP one of
the best lossless compression schemes. The sum of
the compressed file size and the inverted indices is
only between 55-76% of the original database while
the search performance is comparable to a fully
inverted index. The framework allows a flexible
trade-off between search performance and storage
requirements for the search indices.

1. Introduction
Efficient search engines are the basic building block
of information retrieval. Content sensitive engines
like Lycos and Yahoo still rely on keyword search as
their underlying search mechanism. Furthermore,
with growth in corporate intranet information
repositories, efficient mechanisms are needed for
information storage and retrieval.

In this paper we propose a scheme to maximize
keyword search performance while reducing storage
cost. The basic idea behind the proposed framework
called the Shrink and Search Engine (SASE), is to
use the commonality between dictionary coding and
inverted indexing to unite compression and text
retrieval into a common framework. The result is a
search engine that is efficient both in terms of raw
speed as well as storage requirement, and has the
capability of searching directly through compressed
text.

This paper is organized as follows. Section 2
describes the basic idea behind SASE. In section 3
we discuss the implementation issues and our
Internet SASE Server architecture. Section 4 reports
the results of a performance analysis of our system.
In section 0, we present related work in the area.
Section 6 concludes the paper with a report on the
major results and future work in the area

2. Basic Algorithm
The common approach to fast indexing uses a
structure called the inverted index. An inverted
index records the location of each word in the
database. When a user enters a query word, the
inverted index is consulted to get occurrence list of
the word. Typically the inverted index is maintained
as a dictionary with a linked list of occurrence
pointers associated with each word. The dictionary is
organized as a hash table for faster keyword search.

A significant characteristic of textual data is the high
degree of inherent redundancy in it. Text
compression reduces source redundancy by
substituting repetitive patterns with shorter
numerical identifiers. Text compression can be done
by variable bit length statistical schemes like
Huffmann coding or dictionary based schemes like
LZW, which substitute identical character strings
with dictionary identifiers representing the pattern.
Our observation here is, that both inverted indexing
and dictionary based text compression require a
dictionary. Hence one can reuse the dictionary from
the inverted index for dictionary coding uniting

compression and pattern matching into a common
framework.

Dictionary based compression can be done at several
levels of token granularity. In our united
compression/pattern matching framework, we use a
word as the basic dictionary element. A word is any
pattern punctuated by white-space characters. The
advantage of this approach is that it integrates the
requirements of word based pattern matching and
compression. The drawback is that the compression
efficiency is not as high as that obtained from
dictionary schemes like Lempel-Ziv which use
arbitrary string tokens.

Text compression is performed in SASE by
substituting words with their numerical
representation called lexical codes. To improve the
utilization efficiency of the available lexical code
space, we use a technique similar to Huffmann
coding at the byte level. The set of words in a
database is partitioned into three groups viz.
common words, uncommon words and literals.
Common words occur more frequently than
uncommon words, which in turn occur more
frequently than literals. The classification is done on
the basis of the compression benefit factor (CBF) of
a word, which is defined as the product of the length
of the word and its occurrence count. This
partitioning is done off-line since the target
applications for this scheme are mainly read-only
databases. In the common word dictionary, words
are represented by a 1 byte code. The uncommon
word and literal dictionaries use a 2 byte code. Our
experiments show that common words occur more

than 50% of the time and greatly benefit from their
smaller representation.

2.1 Compression and Decompression
In order to compress a text database, the database is
first scanned to determine the list of unique words
sorted by their compression benefit factors. The first
256 words are put in the common word dictionary
and the next 64K words are put in the uncommon
word dictionary. The second pass is done during the
compression phase where each word in the database
is converted to its dictionary id. In this pass literals
are identified and literal dictionaries are created on
demand. This scheme allows us to share the common
and uncommon word lists across multiple similar
databases. Compression on such databases would
need only one pass.

The compressed representation of a text file consists
of the following four files:

1. *.cw : A file of common-word dictionary IDs,
each of which is represented as a 1-byte
codeword indexing into the common word
dictionary. There are some exceptions. Ten of
the 256 1-byte codewords are used as special
flags to indicate that the next word is a literal
whose 2 byte code is in the literal file. Some
other codes are used to optimize capitalization
and for run-length-encoded tokens, as explained
in Section 3.1

2. *.ucw: A file of uncommon-word dictionary IDs,
each of which is represented as a 2-byte
codeword indexing to the uncommon word
dictionary.

Text: There was an ugly aardvark in the room

There
was
an
in
the

1
2
3
4
5

Common Words /
Dictionary Ids

ugly
room

1
2

Uncommon Words /
Dictionary Ids

aardvark 1

Literals/
Dictionary Ids

Text.cw
(1 byte)

1 5423932

Text.ucw
(2 bytes)

1 2

Text.lit
(2 bytes)

1 2

Text.bit
(1 bit)

0 00100 0 1

Figure 1: The compressed text representation of an example string. The literal word “aardvark” is
represented by a reserved code 239 in the common word file

3. *.lit : A file of literals, each of which is
represented by a 2-byte codeword indexing to
the literal dictionary.

4. *.bit : A bitmap file in which each bit represents
a word in the text database and indicates
whether it is a common word/literal or an
uncommon word.

Fig. 1 shows the compressed representation of the
string “There was an ugly aardvark in the room”.
The words there, was, an, in and the are assumed to
be common words and are assigned the dictionary
ids 1, 2, 3, 4 and 5 in the common word dictionary.
Similarly ugly and room are uncommon words and
are assigned the ids 1 and 2 in the uncommon word
dictionary, whereas the word aardvark is a literal
and is assigned the code 1 in the literal dictionary 1.
In the compressed representation of the string, the
bitmap file is used to direct the decompression
engine to go to either the compressed common word
file or the uncommon word file. To get the next code
from the literal file we indicate that the next word is
a common word and then use a special code in the
common word file to further direct the
decompression engine to get the next word from the
literal file. Codes 239 to 249 are reserved in the
common word file to direct decompression to literal
dictionaries 1 to 10.

While this scheme is roughly modeled on the lines of
Huffmann coding, it has two distinct advantages
over Huffmann coding. First the code space is used
more efficiently since individual dictionary ids do
not have to satisfy the unique prefix property.
Secondly codes of different length for different
dictionaries are maintained in independent files. A
bitmap file consisting of 0s and 1’s is used to direct
the decompression scheme. A 0 indicates that the
next word is in the common word file whereas a 1
indicates that the next word is in the uncommon
word file. A reserved code in the common word file
may further indirect the decompression to read the
next code from the literal files. This scheme can be
considered an instance of Huffmann coding with a 1
bit prefix.

The number of unique words found in normal
databases (stories, newspaper articles etc.) is quite
small. However, technical databases tend to have a
very large vocabulary, particularly when they contain
computer program code or ASCII art. To
accommodate these words, SASE reserves code space
in the common word file to support up to 10 literal
word dictionaries of 64K words each for a total of

704K words. More codes may be reserved to support
larger databases at a small penalty in compression
ratio due to the increased number of reserved tokens.

2.2 Indexing and Searching
In a full inverted index structure, each dictionary
entry consists of a linked list, which records the
positions of all instances of the word. When the user
enters a keyword, the linked list is followed to obtain
all the occurrences of a keyword. While this scheme
has very fast search times, the space complexity of
generic full inverted indexing schemes is quite large.
The size of the inverted index has been reported to
range between 50%-300% of the size of the original
database[FALO85].

SASE solves this problem by using an indexed
approach. The text database is partitioned into
blocks by partitioning the bitmap file into equal
sized chunks. The pointers in the linked list are
block identifiers. Note the partitioning is in terms of
bits in the bitmap file, for example a 4KB block size
contains 4K*8 = 32K words. The first occurrence of
a keyword in each block is recorded irrespective of
the number of occurrences of the keyword in the
block. In order to reach the other occurrences, a
linear search is performed on the block. This scheme
allows a flexible trade-off between speed and storage
requirement. With a smaller block size, it takes less
time to search through it, whereas the space
requirement increases since there are more block
pointers. Conversely, a larger block size requires less
block pointers whereas the time required for
searching is larger.

In the indexed approach taken by SASE, we need to
perform a linear search in a block to find other
instances of a keyword. A naïve implementation
would decompress the compressed text and perform
string comparisons between the query word and the
decompressed text. Since SASE applies dictionary
coding in its compression scheme, it is possible to
search directly through the compressed text
without explicit decompression. The query keyword
is first converted into its dictionary id and directly
compared against the dictionary id’s in the
compressed text. When an instance of the keyword is
found, the location in the compressed files is
marked. Future searches can begin from this
location. Search within a block is terminated when
the number of instances of the keyword found
matches the count field associated with a block,
which maintains the total number of occurrences of

the keyword. This scheme is much faster than any
string comparison based indexing scheme since we
only need to perform fixed length numeric
comparisons as opposed to variable length string
comparisons.

Boolean queries can be performed by AND/OR
operations on the linked lists associated with the
query keywords. The resultant list formed by the
applying the Boolean expression on the linked lists is
then searched.

The block size of the inverted index plays a critical
role in the performance of SASE. An optimization
that can be performed here is to use different block
sizes for different words. SASE implements a fully
indexed dynamic index cache to reuse results from
previous searches. A separate dictionary is used
which caches every occurrence of the most
frequently/most recently accessed words. When a
keyword is searched, the search results are posted to
the index cache. Since SASE supports next
occurrence type of queries, it is possible to have
incompletely filled entries in the index cache. These
incompletely filled entries are filled when a user
query accesses all occurrences of a keyword. The
index cache is consulted to see if it can satisfy a
request before beginning a search using the inverted
index.

2.3 Approximate Search
For approximate searching, the set of uncommon
words and literals are statically organized in a
Vantage Point (VP) [YIAN92][CHIU94] tree. The
user specifies the desired maximum number of errors
between the query word and his results. We can then
traverse the VP tree to get a set of words that fall
within the allowable error range.

The set of allowable branches is determined by
comparing the query word against the interior nodes
of the tree. The remaining branches are pruned since
we know that none of their leaf nodes can contribute
to the query. Although this scheme performs
considerably better than a linear search through the
dictionary, the number of comparisons is still high.
An interesting observation here is that word lengths
are finite and discrete. Hence, we can build multiple
VP trees, one for each length. When the user enters a
query, the set of allowable VP trees is determined
from the length of the query word and the desired
maximum number of errors. These VP trees are then
searched to get the set of allowable words.

Experiments on this scheme show that we need to
compare against 4-8% of the words in the dictionary
to get the set of allowable words. After the allowable
set of words has been determined, we search the
database for each word in the set.

3. Implementation
The ITCI compression/search engine has been
implemented in C running on a UNIX platform. It is
consists of a (i) compression and decompression
engine and (ii) a search engine. In our current
implementation of SASE, we have built a
communication subsystem around the search engine
to allow searches from the World Wide Web using a
Java front-end. In this section we discuss
implementation details of the various sub-systems
within SASE.

3.1 Compression Engine
Before we begin compression, we need to collect
statistics to determine the word breakup into
common words; uncommon words and literals based
on the compression benefit factor. Once these
statistics are collected, the compression engine
builds up a hash table of common words and
uncommon words. Literal hash tables are created on
demand whenever they are encountered in the text.
In this phase we also build an inverted index for
uncommon words. Literal inverted indices are
created on demand.

After the indices have been built, a parser parses the
input token stream to extract words from it. Words
are defined as a stream of alphanumeric characters
delimited by white space tokens. Several
optimizations are performed in this phase.

1. In a stream of natural text, a space character
follows each word. It would be wasteful to store
a token to represent the space. SASE assumes
implicitly that each word is followed by a space.
Absence of space is encoded with a reserved
common word DELETE_SPACE flag, which
precedes a token not followed by a space. This
allows for better compression under the common
case that each word is followed by a space

2. In a text database both normal and capitalized

versions of a word can occur. Typically each
sentence begins with a word whose first
character is capitalized. Multiple versions of the
same word take up additional dictionary space.
For instance version, Version and VERSION

would appear as three independent tokens. To
prevent this, we precede capitalized words with
a reserved common word code indicating the
type of capitalization; i.e. either the first letter or
the entire word is capitalized.

3. In typical usage, a sentence is ended by a period

after the last word in the sentence with no
intermediate space between the period and the
word. If we follow the above optimizations, at
the end of a typical sentence we would end with
a DELETE_SPACE code, followed by a code for
the last word and a code for the period
character. To optimize this case, we special case
periods into normal periods and end of sentence
periods. Tokens followed by an end of sentence
period do not have a space between them by
default. This saves us the byte required for the
DELETE_SPACE code. This optimization is
also used for commas and semicolons.

4. Many documents have repeating sequences of

white space or punctuation characters for
typesetting purposes or ASCII art. These tokens
take up a lot of space in a dictionary since there
are independent tokens for sequences of each
length, for example the following sequences -----
- and --------- used in ASCII tables represent two
tokens in the inverted index. In most cases,
these tokens are never searched. To optimize
this, we perform Run length encoding (RLE) on
space tokens and punctuation characters.

Contrary to the 1 byte representation used in the
common word file, a run length encoded token
uses up 3 bytes in the common word file. The
first is a reserved byte indicating that the next
two bytes have to be treated as a run length
encoding. The second byte contains the run
length character and the third byte contains the
length of the run. Since we use a 3 byte
compressed representation, only runs greater
than 3 bytes are run length encoded.

The compression engine gets tokens from the parser.
If the token is not a reserved code, it searches the
hash tables to determine if it is a common word,
uncommon word or literal and gets the equivalent
numerical representation. This numerical
representation is then written to the appropriate file
and the inverted index is updated to indicate this
occurrence of the keyword. This proceeds till the
input text database has been scanned and
compressed.

An added feature of the compression engine is its
ability to maintain document boundaries in a multi
document database. This allows us to reconstruct the
original documents from a multi-document
compressed database.

3.2 Search Engine
The basic operation of the search engine is quite
simple. When the user enters a keyword for

Web/SASE Server

Search
Servers
(child)

Search Query

Search Result

Stateless SASE
Super Server

(Parent)

Cache Update

Web Cl ient

Java SASE Client
maintains server

metadata

Figure 2 : Execution of a typical search query from then Web. The Java client sends in its query
to the SASE super server, which forks a copy of itself to perform the search. The child process
returns the result to the client along with server metadata. The child also performs a cache
update on the super server.

searching we execute a hash based search function
on it. If the keyword is found, the hash table returns
the classification (common word, uncommon word
or literal) and its numerical representation. Once we
have the numerical code, we can index into the
inverted index to get the linked list of pointers to
occurrences of the keyword.

Since the inverted index is usually quite large, it is
maintained on disk. When a keyword is found in the
hash table, the corresponding inverted index entry is
retrieved from disk. We have a block marker file
associated with each compressed database, which
marks the positions of the file pointers to the
common word uncommon word and literal files at
the start of each block.

To locate the first instance of a keyword, we go
through the linked list to obtain the pointer to the
block containing the keyword. Based on the
information from the block marker file, we
reposition the file pointers to the start of a block and
perform a linear search to locate the keyword.

Typical queries ask for the first occurrence of a
keyword, the next occurrence and so on based on the
results obtained. A naive way to implement this
would be to continue searching within the block till
the occurrence number required by the user is found.
For e.g. if user requests the third occurrence of
aardvark, we search the block until we hit the third
occurrence, ignoring the first two occurrences. While
this solution works, it is hardly optimal.

 In order to handle next occurrence kind of queries,
we need maintain positional metadata on the
previous location where the keyword was found. If
we need to find the next occurrence of the keyword,
we use this to reposition our start of search location.
This solution allows us to perform incremental
searching within a block with minimal time
overhead.

After an instance of the keyword is found, we know
the locations within the common word, uncommon
word and literal files. We then backtrack on the
common word, uncommon word and literal files till
we can decompress a block of text (200 words in our
case) around the occurrence and return it to the user.
The backtracking algorithm is complicated by the
fact that tokens in the common word file cannot be
interpreted in the reverse order since there may be
run length encoded tokens. Another complication is
that we need to look out for document boundaries

during the backtrack phase. In our scheme,
backtracking is performed by using a lookback buffer
for the common word file. This ensures that the
numerical codes are interpreted correctly. The
lookback buffer is not needed for the uncommon
word and literal word files since these codes can be
interpreted correctly in both directions.

3.3 Search Server Architecture
In our current implementation of the search engine,
we have incorporated a communication sub-system,
which allows queries to the search engine from the
World Wide Web using a Java front-end.
Communication is done using sockets opened
between the Java client and the search server. For
each query from a client, the server forks a copy of
itself to perform the actual search and return the
results. The server itself does a “busy wait” waiting
for connections. The advantage of this scheme is that
we use the semantics of the fork call to transfer the
cache to the child process without performing a data
copy. Most current UNIX systems implement the
copy-on-write protocol. This reduces the overhead of
the fork call. While this scheme allows a search
child to see the same cache as the server, we need a
mechanism to update the cache on the server when
the child finds a new occurrence of a keyword. This
is done by opening a named pipe between the server
and its children. The children send back cache
updates on the pipe and the server integrates it into
its cache where it can be seen by future children. The
update operation is sent as a block. Since the block is
smaller than 4KB, UNIX named pipe semantics
guarantee the atomicity of the update. This ensures
that multiple simultaneous cache updates do not
confuse the server.
As mentioned earlier in this section, we need to
maintain file position metadata after each keyword
search to optimize next occurrence queries. . We use
a novel scheme to maintain this metadata. In the
SASE server architecture, the Java clients who send
in this information with each next occurrence query
maintain this metadata. The major implication of
this scheme is that the server is now stateless, since
each client knows its version of the server state.

In our Web communication model, the Java clients
open a TCP socket to the server and send in their
query and the server metadata. To prevent the clients
from using up all the server connections, the socket
is closed once the search engine returns its results.
The small lifetime of sockets combined with the
stateless nature of the server allows us to shut down

the server and bring it up again without any
noticeable difference to the clients. This is an
attractive feature for administrative purposes. The
downside of this scheme is that if the search database
is updated, then the metadata on all the clients has to
be updated as well. Since the clients close the socket
once they get a response, we have no way of
intimating them of changes in the server since we
don’t know who the clients are. This is solved by in
a novel way. The compression engine generates a set
of checksums when it compresses a database. These
checksums are sent to the clients when they first
query the server and the clients then send in this
checksum to the server with each message. If the
database on the server changes in between queries
from a client, the checksum at the server would
change as well. On the next query from a client, the
checksum maintained by the client would not match
the checksum at the server. The server then sends a
flush message to the client, forcing the client to flush
its old metadata. With this scheme built into a
stateless server, SASE can handle very large inter
query times without any server overhead.

4. Performance Results
In this section we report the results of a performance
evaluation of the SASE prototype and an analysis of
the results. To evaluate our compression efficiency,

we compare SASE against GZIP one of the best
lossless compression utilities. We also present the
search performance numbers of SASE.

To ensure a representative text database, we chose
1three large text databases each representing of a
certain vocabulary. The first database consists of 7
MB of stories from Project Gutenberg. This
represents everyday literary English usage. The
second database contains the Internet RFC
documents. This 70MB database represents technical
vocabulary from a particular field, in this case
networking. The third database consists of 300MB of
USENET news articles from several different
newsgroups from different newsdomains like alt, rec,
misc and comp. This database contains vocabulary
from a wide variety of domains.

4.1 Compression Performance
Table 1 compares the compression ratios of SASE
and GZIP. Compression ratio is defined as:

Size FileOriginal

Size FileCompressed
 - 1 RationCompressio =

1 Availability of large text databases poses a problem
in itself

Database Original Size SASE Size Gzip Size Comp. Ratio
(SASE)

Comp. Ratio
(Gzip)

Stories 6,944,363 3,125,644 2,625,350 54.99% 62.19%
RFC 68,940,062 28,610,430 18,272,426 58.49% 73.48%
News 314,572,800 166,411,289 110,463,639 47.09% 64.88%

Table 1: Comparison of compression ratios under SASE and GZIP. All file sizes are in bytes.

Database Original Size SASE Size Glimpse
Size

Comp. Ratio
(SASE)

Comp. Ratio
(Glimpse)

Stories 6,944,363 3,125,644 5,340,213 54.99% 23.10%
RFC 68,940,062 28,610,430 48,365,620 58.49% 29.84%

Table 2: Comparison of compression ratios under SASE and Glimpse. All file sizes are in bytes.

Database Total Time Linear search
(iii)

Repositioning
(iv)

Decompression
(v)

Stories 27.8 ms 26.1 ms 220 us 1.4 ms
RFC 39.1 ms 36.8 ms 280 us 1.8ms
News 41.2 ms 38.8 ms 240us 1.7ms

Table 3: Timing breakdown of the various steps involved in a search. Block size is 8KB

The differences range between 7 and 17%. Although
both SASE and GZIP are based on dictionary coding,
GZIP can choose arbitrary length strings as
candidate tokens for compression. Since SASE is
limited to choosing strings demarcated by white
spaces as tokens it suffers a performance penalty in
compression. This performance gain in GZIP is
more marked in the News and RFC databases, which
have a more dynamic vocabulary.

4.2 Search performance
Execution of a search query under SASE involves (i)
finding the numerical representation of the query
keyword (ii) locating the first block containing the
keyword (iii) performing a linear search to get the
exact location of the keyword (iv) reposition of file
pointers to begin decompression and (v)
decompressing and transmitting the result back to
the client. Steps (i) and (ii) are trivial and take much
less time compared to the linear search required to
locate the keyword within a block. Table 3 shows the
timing breakdown of the various steps involved in a
search.

As we mentioned in Section 2.2, by varying the
block size, SASE allows a trade off between search
time and index space overhead Figure 3 shows the
effect of varying the block size on the RFC database.
The index space overhead consists of the space taken
up by the inverted indices for the uncommon word
and literal dictionaries. The query search times were
measured by searching for 10,000 random keywords
and the runs were repeated for block sizes between
2KB and 32KB. Search times vary between 13ms to

120ms which compares favorably with a fully
inverted index scheme.

5. Related Work
In [MOFF95][WITT94] [ZOBE95], Moffat and
Zobel describe a word based lossless compression
scheme which uses a fully inverted search index. The
database is divided into files and compressed using
Huffmann coding. Given a keyword, the inverted
index is searched to get the linked list of
occurrences. The portions of the file containing the
keyword are then decompressed and sent to the user.
Since this scheme uses a fully inverted index, the
space taken up by the inverted index is much larger
than SASE. Decompression speed is also slower than
SASE due to the bit level manipulation that is
required for decompressing Huffmann coded files.
Variants of this scheme partition the database into
blocks and compress the blocks using gzip. These
schemes maintain inverted index pointers to blocks
rather than every occurrence of a keyword. While
these schemes have very good compression ratios,
they need to decompress a block before searching
through it. This operation increases their search time
to several orders of magnitude greater than SASE.

The two step indexed approach taken by SASE is
very similar to Glimpse [MANB94a][MANB94b].
Table 2 compares the compression efficiency of
SASE and Glimpse (version 4.0) on both natural
language text and technical documents. The
difference in compression efficiency ranges between
28-31%. At the setting for the fastest search
performance, the glimpse inverted index is 10%

0

5

10

15

20

25

0 10 20 30 40

Block Size (KB)

S
ea

rc
h

O
ve

rh
ea

d
(%

 o
f o

rig
in

al

fil
e

si
ze

)

0

20

40

60

80

100

120

140

0 10 20 30 40

Block Size (KB)

S
ea

rc
h

T
im

e
(m

s)

Figure 3: Effect of varying block size on the search overhead and query response time for the RFC
database. Block size is varied betwen 2KB and 32KB.

larger than SASE for comparable search times.
SASE also optimizes the two level approach with an
index cache of dynamic block size which allows to
use a large block size for space savings while
retaining the speed advantages of a smaller block
size. On the other hand, glimpse does better job in
the choice of keywords to index. The approximate
pattern matching algorithm in glimpse (agrep) is
also more powerful than the simple keyword search
mechanism of SASE. Since our VP tree based,
approximate keyword match framework takes the
string comparison function as a black box; agrep
could be used to search the inverted index to provide
similar pattern patching capability in SASE.

There are also several theoretical studies
[AMIR96][FARA95] which discuss algorithms for
searching through Lev-Zempel files. However, these
schemes have not been implemented for us to make a
fair comparison.

6. Conclusions
In this paper, we described a text search engine
called SASE, which operates in the compressed
domain. It provides an exact search mechanism
using an inverted index and an approximate search
mechanism using a vantage point tree. Secondly it
allows a flexible trade-off between search time and
storage space required to maintain the search
indices. The results of our experiments show that the
compression efficiency is within 7-17% of GZIP,
which is one of the best lossless compression
utilities. The sum of the compressed file size and the
inverted indices is only between 55-76% of the
original database, while the search performance is
comparable to a fully inverted index.

We are currently working on the implementation of
the approximate search mechanism using a vantage
point tree. Another area of work is to use SASE as
the underlying file system for NNTP servers. This
gives NNTP servers the capability to perform
keyword searches through USENET archives. When
this system is up, it would yield important results on
the choice of a cache replacement policy for the
SASE dynamic index cache. While incremental
additions to the compressed database are permitted
in an inverted index based search system, the
database is assumed to be mainly read-only. We are
working on an indexing mechanism that would
effectively remove the read-only restriction and
allow the user to make real time changes to the
database without having to recalculate the inverted

indices. This scheme can be used for document
management servers within companies and for
maintaining the web page index database in Internet
search engines like Lycos and AltaVista.

References

[AMIR96] Amir, A., Benson, G., Farach, M.; “Let
sleeping files lie: pattern matching in Z-compressed
files”, Journal of Computer and System Sciences
(April 1996) vol.52, no.2, p. 299-307.

[BLUMER87] Blumer A., Blumer J.; “On-Line
Construction of a Complete Inverted File”,
Technical Report, Dept. of Mathematics and
Computer Science., University of Denver, CO

[BLUMER84] Blumer A., Blumer J.,
Ehrenfeuchter A., Haussler D., McConnell R.;
“Building a Complete Inverted File for a Set of Text
Files in Linear Time”, Proceedings of the Sixteenth
Annual ACM Symposium on the Theory of
Computing.

[CHIU94] Chiueh T.; “Content-based image
indexing”
Proceedings of VLDB ’94 pp. 582-593, Santiago
Chile, September 1994

[EVEN78] Even S., Rodeh M.; “Economical
Encoding of Commas Between Strings”,
Communications of the ACM 21:4, 315-317

[FARA95] Farach, M., Thorup, M.; “String
matching in Lempel-Ziv compressed strings”,
Proceedings of Symposium of Theory of Computing,
pp. 703-712. Las Vegas, Nevada, USA.

[FALO85] Faloutsos, C.; “Acccess methods for
text”,
ACM Computing Surveys, 17(March 1985), pp. 49-
74.

[FRAENKEL83] Fraenkel A.S., Mor M.; “Is Text
Compression by Prefixes and Suffixes Practical”,
The Computer Journal 26:4, pp. 336-344

[KNUTH85] Knuth D.E.; “Dynamic Huffman
Coding”,
Journal of Algorithms 6, pp. 163-180.

[KNUTH77] Knuth D.E. Morris J.H., Pratt V.R.;
“Fast Pattern Matching in Strings”,
SIAM Journal on Computing 6:2, pp. 323-349.

[LEMPEL77] Jacob Ziv, Abraham Lempel; “A
Universal Algorithm for Sequential Data
Compression”, IEEE Transactions on Information
Theory, Vol. IT-23, No.3, May 1977.

[MANB94a] Manber, U.; “A text compression
scheme that allows fast searching directly
in the compressed file”, Combinatorial Pattern
Matching. 5th Annual Symposium, CPM 94.
Proceedings, pp. 113-24. Asilomar, CA, USA, 5-8
June 1994.

[MANB94b] Manber, U., Sun Wu; “GLIMPSE: a
tool to search through entire file systems”,
Proceedings of the Winter 1994 USENIX
Conference, p. 23-32. San Francisco, CA, USA, 17-
21 Jan. 1994.

[MCINTYRE85] McIntyre D.R., Pechura M.A.;
“Data Compression using Static Huffman Code-
Decode Tables”, Journal of the ACM 28:6,612-616.

[MOFF95] Moffat, A., Zobel, J.; “Information
retrieval systems for large document collections”,
Text Retrieval Conference (TREC-3), pp. 85-93.
Gaithersburg, MD, USA, 2-4 Nov. 1994.

[PIKE81] Pike J.; "Text Compression using a 4-bit
Coding Scheme'',
The Computer Journal 24:4, 324-330.

[STORER87] Storer J.A., Tsang S.K.; “Data
Compression Experiments Using Static and
Dynamic Dictionaries”, Technical Report CS-84-
118, CS Dept., Brandeis University Waltham,
MA

[WAGNER73] Wagner R.A.; “Common Phrases
and Minimum-Space Text Storage”,
Communications of the ACM 16:3, 148-152.

[WITT94] Witten, I., Moffat, A., Bell, T.;
“Managing Gigabytes”,
Van Nostrand Reinhold, 1994.

[YANNAKOUDAKIS82] Yannakoudakis E.J.,
Goyal P., Huggil J.A.; “The Generation and Use of
Text Fragments for Data Compression”, Information
Processing and Management 18:1, pp. 15-21.

[YIAN92] P. Yianilos; “Data structures and
algorithms for nearest neighbor search in general

metric spaces”, Proceedings of the Third Annual
ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 311-321, Orlando, Fla., 1992.

[ZOBE95] Zobel, J., Moffat, A.; “Adding
compression to a full-text retrieval system”,
Software - Practice and Experience (Aug. 1995)
vol.25, no.8, pp. 891-903.

