
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Search Broker

Udi Manber and Peter A. Bigot
The University of Arizona

The Search Broker
http://sb.CS.Arizona.EDU/sb/

Udi Manber Peter A. Bigot

Department of Computer Science
The University of Arizona
Tucson, AZ 85721-0077
fudi,pabg@CS.Arizona.EDU

Abstract

The current search facilities on the web are amazingly
powerful, but they are still lacking. Taking the whole uni-
verse as one flat data space and searching it with key-
words has inherent limitations of scale. The challenge
is to provide users with ways to focus their search bet-
ter without making it too difficult or too inefficient. We
introduce a method of conducting search on the web that
is based on a two-level search idea. It strikes a balance
between flat global search and specialized databases, and
gives users convenient access to vast amounts of infor-
mation.

1 Introduction

Large scale web search started in two directions, both of
which proved very successful. The first is “spider”-based
collection of as much of the web as possible, combined
with powerful search engines that provide access to all
this data. Lycos, WebCrawler, Altavista, and several oth-
ers are examples of this model. The second is based on
manual collection and classification with browsing and
search facilities. Yahoo is, of course, the most successful
provider of this model. This is not the place for a detailed
analysis of these two approaches; let us just mention their
most obvious weaknesses: The spider-based approach’s
main problem (and often main strength as well) is that it
is indiscriminatory. It tries to cover everything. It is not
uncommon to obtain thousands of hits, most of which are
“garbage,” and then have to sift through many of them.
It’s also impossible to expect to have all the world’s in-
formation in one flat database. All spider-based engines
take only a small fraction of most large sites. (E.g., you
cannot expect them to collect all 16GB of Medline, and
as a result they will not give you all pertinent medical in-
formation.) Yahoo’s approach guarantees more quality,

but browsing is often very time consuming, and of course,
coverage is limited.

These weaknesses are most glaring when one looks for
answers to specific reference questions, such as:

� how much fat is there in a pepperoni pizza?

� how do you say search in Latin?

� how do you delete a directory in UNIX?

� give me a list of hotels in Phoenix.

These are hard questions to answer based on keywords
alone and flat search. Using the spider-based services,
one will have to think of the right keywords, and if they
are too common, a lot of hits will have to be followed with
no guarantee of quality of information. Yahoo will prob-
ably be more suitable for these questions, not by trying to
answer them directly, but by trying to find the right cat-
egories (e.g., dictionaries, although Yahoo doesn’t know
about a Latin one), then following them to hopefully the
right places that maintain relevant information. But in
any case, it could be quite time consuming (e.g., try to
find the list of Phoenix hotels).

The approach we present here is based on the idea of
a two-level search. Instead of always searching the
same all-encompassing database, imagine having spe-
cific databases for specific topics. The search will con-
sist of two phases: In the first phase, the search is after
the right database, and in the second phase the relevant
information is searched for within this database. This is
not a new approach, of course. It is similar, in a sense,
to using the library subject card catalog to find the right
shelf, or using Yahoo to find the right category. The nov-
elty of our tool is that we combine the two phases into one
regular search in a way that makes the process very easy

and very powerful for users. The resulting tool provides
search features that are not available in any one place on
the web.

Consider again the three questions listed above. The first
one has to do with nutrition, the second with Latin, the
third with UNIX, and the fourth with hotels. These are
the most important characteristics of these questions. The
person who asks the question can usually pinpoint its sub-
ject; not precisely, maybe, but usually close. For exam-
ple, the questions above could be answered more pre-
cisely if they were in the following forms:

� Subject: nutrition; Query: pizza

� Subject: latin; Query: search

� Subject: unix; Query: delete directory

� Subject: hotels; Query: Phoenix

Knowing the right subject may be tricky. Some users may
input calories instead of nutrition, or accommodations in-
stead of hotels. We only ask that some information about
the subject be included in the query. We also replace the
rather complex syntax above with a very simple query, as
we will show shortly.

Our approach works as follows. We collected over 400
different search providers that we judged to have rea-
sonable general appeal. (This is an on-going process,
of course; we expect a fully-operational system to have
thousands of servers.) Each such search server covers a
certain subject or category (such as nutrition, latin, unix,
or hotels). Each such category is identified by one or two
words, and it is also associated with a list of aliases that
people may think about when searching for that subject.
So nutrition can be associated with calories, and hotels
with motels, lodging, and accommodations. The collec-
tion of search engines and the assignment of the words
and aliases that identify them are done manually by a li-
brarian. It can also be customized by end-users (we’ll dis-
cuss that aspect later on). This is a part that we intention-
ally do not wish to automate. The role of editors, review-
ers, interpreters, and librarians has been rather limited in
the web, mainly because of its scale. Finding paradigms
that will allow significant librarian input while support-
ing the scale of the web is increasingly important. The
two-level approach is promising because the number of
subjects does not grow too fast (as compared to the num-
ber of web pages or even the number of web sites).

A user query is made of two parts corresponding to the
two phases of the search. In the current implementation

both parts are combined into one simple box. To answer
the questions above you type:

� nutrition pizza

� latin search

� unix delete directory

� hotel Phoenix

and you get direct results from the appropriate search ser-
vices. Given a query like hotel phoenix, the Search Bro-
ker performs the following steps:

1. It searches its own database for subjects and aliases
and finds the search engine corresponding to hotel.
With aliases, all subjects allow both plural and sin-
gular names (hotels works as well as hotel). In the
current implementation, the subject must be the first
word in the query, mainly because we want users to
identify the subject and think about it. We could eas-
ily select any word in the query that matches a sub-
ject and try it (or all of them).

2. After identifying the particular search engine, the
rest of the query is reformatted to the form expected
by that search engine. This step can sometimes be
quite complicated, and we discuss it in detail later.

3. An HTTP (Hypertext Transfer Protocol [Fielding])
request is sent to the search engine with the appro-
priate fields that match the query.

4. The results of the query are sent back to the user.

This simple-minded approach turns out to be extremely
powerful. The proliferation of search software, often
for free, made it easy to provide search capabilities on
many web sites. (We are proud to be partially responsible
for that with our glimpse, glimpseHTTP, WebGlimpse,
and Harvest systems.) Within the last year thousands of
search servers have been added. Most of them deal with
very limited specific information (e.g., they search the
content of one site), but many provide professional con-
tent in areas of general interest. The trend to connect ex-
isting databases to the web will continue. There are al-
ready so many high quality search facilities that people
cannot keep track of them through bookmarks and fa-
vorite lists.

The list of currently available subjects is included in the
home page of the Search Broker, and there are also facil-
ities to search the Search Broker’s own database. Let’s

see some examples of queries to demonstrate the power
of the approach:

stocks ibm gives the current value of IBM’s stock plus
links to corporate information and news.

patent object oriented gives abstracts of all patents (from
1971 to present) with these keywords.

howto buy a car gives practical advice about buying
used and new cars.

fly sfo jfk gives all scheduled flights between San Fran-
cisco and New York JFK.

english-polish wonderful tells you that cudowny, zadzi-
wiajacy, and godny podziwu match the adjective
“wonderful”.

nba-salaries michael gives the salary of Michael Curry
(and all other Michaels playing in the NBA).

car-price 1992 Chevrolet, Camero gives the blue book
value for this model (the comma (,) is used as a de-
limiter).

email bill gates gives email addresses for that name (yes,
it includes the one you are thinking of).

travel fiji gives a lot of useful information about travel in
Fiji.

expert computer algorithm gives a list of experts who put
“computer algorithms” in their areas of specialty.

convert 8 liters to pints tells you that there are 16.9 pints
in 8 liters.

The Search Broker approach is not a magic bullet, and
we do not expect it to replace any of the existing search
mechanisms. But we believe that it complements them
very well. If one is not sure what one is looking for,
browsing works best, and Yahoo presents the right ap-
proach. If one is looking for unusual words or names
or wants everything known about something, then the
spider-based engines cannot be beat. But queries often
fall somewhere in between, and the Search Broker can
help save time and focus the results. In a sense, it presents
a very large live encyclopedia.

The first version of the Search Broker has been op-
erational since October 1996. It was released on
the web in July 1997. It can be found at http://

sb.cs.arizona.edu/sb/.

The rest of the paper is organized as follows. The next
section presents the user interface, always an important

part of any tool. Then we discuss technical details of
how we create and maintain the database of search en-
gines, handle queries, and return results to the user. After
that we present a different and maybe even more impor-
tant use of the Search Broker—as a customizable desktop
tool. Related work and conclusions follow.

2 The User Interface

We have experimented with several user interfaces. Our
primary interface follows the minimalist approach. It is
just one generic search box with a Submit and Reset but-
tons as shown in Figure 1.

Figure 1: The minimalist user query box

The convention is that the first word is the subject and the
rest is the actual query. If the subject requires more than
just one word, the words are joined with hyphens; for ex-
ample, book-kids, tv-guide, or programming-languages.
Sometimes the second part is not needed; for example, tv
is also an alias for tv-guide, but book is a different subject
covering all books rather than just books for kids.

The main problem is how to let users know which sub-
jects exist and what they cover. This is achieved in two
ways. First, the list of subjects (divided into several “su-
per” subjects, such as computers, entertainment, and sci-
ence) is provided below the search form on the Search
Broker home page. Second, we provide an extensive help
system to search for subjects. For each subject we main-
tain a list of related subjects, again decided manually.
If the query contains only one word, then this word is
searched for in the list of subjects and information about
it and all its related subjects is given. For example, typing
diabetes will bring the content shown in Figure 2.

If there is no subject matching the first word, the user
is presented with the options of forwarding the query
to another search engine (using a Search Broker sub-
ject like lycos), or revising the query and resubmitting
it. Future enhancements may include proposing alterna-
tive subjects based on words close to what the user en-
tered (spelling corrections), or by using a more exten-
sive topical-relation database. It is also possible to em-
ploy natural language processing techniques to try to au-
tomatically infer the subject from the query. We have
not tried that yet. Another possibility is the use of pull-

Figure 2: The results of diabetes

down menus to show the existing subjects so that users
do not have to guess them. 400 subjects in one pull-down
menu is out of the question, but they could be divided into
several categories. From initial experiments, this option
does not look attractive to us.

Another feature is an option to search all related subjects
with one search. For example, if this option is selected,
then the query dictionary bravo (or word bravo) will also
search the thesaurus, jargon, phrase, and quotation sub-
jects at the same time.

We place a Search Broker form at the start of the re-
sults pages returned from the remote server, so users can
make additional queries without having to move to a dif-
ferent page. The initial user interface required the user
to have the subject word at the beginning of all queries.
By watching how people used the Search Broker, it be-
came clear that users automatically invoked another pat-
tern, where they used the subject in an initial query, but
left it off in subsequent ones, assuming searches would
continue with the same first-level restriction. To support
this usage, we modified the query form on result pages so
that the subject would remain the same, and users enter
only the second level of the query, unless the user specif-
ically indicated that she wanted a new two-level search.

3 The Search Broker’s Database Facilities

The database for the Search Broker contains all the in-
formation required to locate an engine that can service a
user’s query, to rearrange and submit the query in the for-
mat expected by the engine, and to provide brief descrip-
tions and examples for each search. This information in-
cludes:

� The method and action of the query form (e.g., GET
and http://search.yahoo.com/bin/search);

� A list of form inputs, including their types (text, hid-
den, checkbox), initial states, and valid states where
appropriate (radio and select types);

� A subject name and all its aliases, and a list of related
subjects;

� Instructions on how to assign field values from the
user’s input (query templates; cf. section 4);

� Examples, documentation, and a reference the user
can follow back to the original search engine for
more refined searching or additional information
about the site.

The current database occupies only about 300K with
more than 400 subjects.

The accuracy of much of this information is crucial for
correct processing of a user’s query. For a tool like the
Search Broker to be successful, its database must be con-
stantly verified and updated, adding new search engines
and removing or modifying entries for ones that have dis-
appeared or changed. We developed a tool which auto-
mates much of the tedious portions of database creation
and maintenance. Given a URL of a search page, our tool
automatically retrieves the HTML search form, translates
the action and input fields into a concise format from
which the important parts of the original form can be re-
constructed, and outputs a database entry template. The
librarian then assigns a subject name and aliases, writes
a description of the search engine’s capabilities, selects
which of the form fields to use and sets default values for
the rest, and provides query translation patterns. The en-
try is then ready to add to the database.

In our experience, the “administrative” parts of a subject
can typically be added to the database in 20-30 seconds,
and therefore do not present a significant burden. The
main job of the librarian is to find the right search facil-
ities, give them the most appropriate names and aliases,
test them for quality and generality, and write good short
descriptions and examples for them. This is in line with
the traditional responsibilities and expertise of librarians,
which in our opinion the web sorely misses. The Search
Broker’s design allows librarians to make significant con-
tributions in organizing the web’s search facilities.

The same program can also be used for routine mainte-
nance, by querying the entire database on its own. It will
go out and verify that each server listed is still there, and
that the search form it uses has not changed. If something
has changed—the form has moved, or has new fields—
the differences are noted for the librarian to review before
changing the database.

We are currently extending this program to allow for per-
sonal customized use so that people can easily be their
own librarians and maintain their own Search Brokers.
More on than in the Customization section.

4 Translating Queries

The problem of reformatting queries between different
databases is an old problem in the database area. For-
tunately, the web makes it simpler, because queries typ-
ically use few fields and they typically allow search of
the whole database by (non attributed) keywords. HTML

forms are often very simple. We built a pattern-matching
based scheme to translate the Search Broker queries to
different HTML forms.

The Search Broker’s database query template consists
of a list of form inputs, an extended regular expression
against which the user’s query is matched, and an op-
tional block of Perl code used to post-process the assign-
ments and set dynamic defaults. The majority of forms
have only one field that is filled by the user’s query; for
example, a text input for keywords. Such a query is de-
fined in the database very simply:

keywords = (.*)

Currently, about 90% of the subjects use this simple tem-
plate. Parentheses are used to group regular expressions
into a single value that is assigned to an input field. One
can have many different fields. For example, some forms
require separate fields for city and state. The query tem-
plate we use in this case is:

city state = (.*),\s*(.*)

which translates “Tucson, AZ” into “city=Tucson
state=AZ” and sends these fields to the search engine.

Sometimes the search form contains several required
fields, a few of which are not essential to many queries.
For example, in the flight schedule form, there are fields
for departure time, departure day, departure month, fa-
vorite airline, etc. We picked only the departure and
arrival cities as the two necessary fields and use the
database query post-processing feature to assign defaults
(e.g., two weeks from now, all airlines) to the rest of the
fields. We believe that the ability to send a super-simple
query

fly sfo jfk

outweighs the weakness of not including all the details.
Of course, those extra fields can be used directly on the
original form which the user can obtain from our help
system. In a few cases we used several subjects for the
same form with different defaults; for example, cd-by-
artist and cd-by-title.

Each database entry can have multiple query templates.
The templates are matched against the user’s input in
their database entry order, and the first one that matches
the input is chosen. This allows us to support a variety of
input formats, rather than force the user to guess which
one we can recognize. For example, a server that pro-
vides a list of famous people born on a certain date might

accept only one format of the date (e.g., in HTTP format:
mon=06&day=25&year=1953), but templates
could be provided to recognize and reformat all of the fol-
lowing:

famous-births 6/25/53

famous-births 25 June 1953

famous-births June 25th, 1953

The number of recognized formats is limited primarily by
the imagination and energy of the librarian.

Because HTML forms often restrict field values through
the use of radio or select input types, some search engines
are very finicky about the format of queries they accept
(for example, requiring the leading zero in the month in-
put example above, something a user would not normally
provide). This combination of extended regular expres-
sion pattern matching and arbitrary post-processing code
has proven to be a very powerful solution to the problem
of reformatting queries to meet these requirements.

5 Formatting Responses

After user input has been converted into an HTTP GET
or POST request, the Search Broker contacts the remote
server and retrieves the response. In the common case,
we simply append the body of the response to an intro-
duction that includes a description of and reference to the
source search engine, and a form for additional queries.
To avoid any appearance of claiming the content of re-
sponses as our own, we generally do not modify the re-
trieved material—inline graphics, scripts, and advertise-
ments are left in their original place.

There are two cases where we must modify the returned
material. The first is due to the latitude of HTML, which
allows closing tags to be omitted, with an implicit close at
the end of the document or entity. When we return results
from multiple servers in response to a user’s “search all
related servers” request, we must append closing tags to
the end of each response so that font changes, table lay-
out, and other formatting directives do not affect the sub-
sequent responses.

Modification is also used when a server is known to
provide far more information than we want. An ex-
ample of this is the flag subject. There is no search
form interface to this information; the URL points to a
long list of links to GIF-format images of flags. The
Search Broker database entry provides a response post-
processing feature, through which the retrieved material
is split into sections based on some pattern (for example,

end of line, start of HREF), and only the sections which
match the user’s query are returned. Although the cur-
rent database format does not allow for arbitrary response
post-processing as it does for query input reformatting,
it can easily be extended to support well-defined actions
such as filtering by pattern matching, or cutting out par-
ticular regions of a response.

6 Customization

So far we discussed the idea of the Search Broker in the
context of one central server. But the same method can
be applied to personal use, and it can lead to very pow-
erful customizable search facilities on anyone’s desktop.
The current database, which includes over 400 subjects
each with instructions, source, and examples of its use,
together with the whole Search Broker software occupy
less than half a megabyte. They make use of CGI scripts
and assume an HTTP server, but there is no reason they
cannot be used on any desktop through direct interac-
tion with the browsers (e.g., on UNIX through Remote
Control of UNIX Netscape, or on Windows through Ac-
tiveX).

Imagine having a search box somewhere on your desktop
to which you can assign your own names to whichever
subjects you choose, which sends your simple queries
(e.g., fly sfo jfk) directly to the appropriate place, and
presents the results automatically on your (favorite)
browser. On the one hand, it can be thought of as a
more convenient personal “hot list” of search facilities.
You don’t have to store (and know about) all the differ-
ent search facilities; you don’t have to load the selected
search engine’s own interface; you don’t have to figure
out how to fill out the selected form; all you need to do
is use your own aliases (or try the standard ones). But it
can be even more.

You could customize subjects such as “my-directions”
which will give road directions to any address from your
home. You could search local information. For exam-
ple, you could have a subject called bookmarks which
searches in your own bookmark list using aliases you give
to the different pages or any word in their title or URL;
you could have a subject called history which searches
in the list of all URLs you’ve ever seen; you could have
a subject called file which acts as a “Find File” applica-
tion, searching for a file name on your local disk; you
could have a birthday category searching your own lists of
birthdays, a calendar searching your schedule, and so on.
You could link some of these subjects so that a search for
a person’s name will be first conducted on your address
book, then on your whole file system, then on your orga-

nization’s database, then on the whole web. All of these
searches could also be done at the same time, giving you
the results in the right order. This can become your own
personal oracle.

We are currently building a new Java-based version of
the Search Broker to allow users to easily set up search
scripts, whereever and whichever search engine they
want to use.

7 Related Work

The seed of the Search Broker grew out of the Harvest
project [Bowman et al.], where we attempted something
similar, but ended up concentrating on the actual collec-
tion of data rather than the selection of servers. Harvest
is an integrated system to collect, extract, organize, in-
dex, search, cache, and replicate information across the
Internet. It is used by hundreds of sites to build “bro-
kers” (our reuse of this term here is coincidental and un-
related) which serve collections of information gathered
from many sources. Harvest has a special broker called
the Harvest Server Registry (HSR), which maintains in-
formation about all brokers. The original intent was that
there would be enough Harvest brokers to be used for
most purposes, and that the HSR will lead people (by
queries) to the right broker. That never happened, and
Harvest never extended this idea to facilitate easy selec-
tion of servers.

The closest existing search facilities to the Search Broker
are the lists of search engines, such as The Internet Sleuth
and C/Net Search.com. We believe that our approach is
an improvement, and has the potential, especially with
personal customization, to be a significant step forward.
The Search Broker is easier to use, and it does not re-
quire downloading or browsing large pages with forms.
IBM InfoMarket also provides source selection through
pull-down menus, limited to several publications that of-
fer pay-per-view.

There has been a lot of work in the Information Retrieval
area to support natural language queries (e.g., [Salton]).
The search engine attempts to “understand” the essence
of the query, to figure out which words are more im-
portant and which could be substituted more effectively,
and how to assign different weights based not only on
the query but also on the database. The success of these
methods has been mixed. They can lead to unusual find-
ings or embarrassing misses. In the context of the web,
where the information is as diverse as possible and as un-
structured as possible, it is very difficult to infer structure
and patterns. We believe that our approach of handling

the selection of search servers and assignment of subjects
to them by hand is both feasible and desirable.

There has been a lot of research in the database commu-
nity related to source selection and interaction between
separate databases. Wiederhold [Wiederhold] introduced
the general notion of mediators. Levy et al. [Levy1,
Levy2] developed tools (e.g., the Information Mani-
fold) to allow complex queries across different databases.
Their most pressing problem is how to negotiate with
complex database schemas, a problem we don’t have
(yet).

The idea of a MetaCrawler to combine results from
several sources was introduced by Selberg and Et-
zioni [Selberg]. We currently just concatenate results if
they are obtained from several sources. Incorporating
this technology would certainly help.

There has also been research in the expert systems area
in source selection. For example, the Reference Expert
from the University of Houston [Bailey] was developed
to help users select the right reference material in the
library for their questions, and QPEA (Query Planning
Environment Assistant) [Huffman] is being developed at
Price Waterhouse to help specialists select and combine
data sources.

8 Conclusions

The Search Broker offers a balance of focused search,
ease of use, and generality. It opens the door to a more
significant involvement of experts in the organization of
search. It explores the middle ground between com-
pletely automated search systems on the one hand and
manual collection of information on the other. The web
searching problem is too big a problem to be solved by
one tool or even one model. The Search Broker presents
a slightly different model than the existing ones, and for
some users and some purposes it gives excellent results
with much less effort than other approaches. We strongly
believe that the Search Broker model can capture an im-
portant niche and encourage people to make available
more specialized search facilities, which will benefit ev-
eryone.

9 Acknowledgements

This work was supported in part by NSF grant CCR-
9301129, and by the Advanced Research Projects
Agency under contract number DABT63-93-C-0052.

The information contained in this paper does not neces-
sarily reflect the position or the policy of the U.S. Gov-
ernment or other sponsors of this research. No official en-
dorsement should be inferred.

References

[Bowman et al.] C. Mic Bowman, Pe-
ter B. Danzig, Darren R. Hardy, Udi
Manber, and Michael F. Schwartz,
<URL:ftp://ftp.cs.colorado.edu/

pub/cs/techreports/schwartz/

Harvest.Conf.ps.Z>. The Harvest Informa-
tion Discovery and Access System, Computer
Networks and ISDN Systems 28 (1995) pp. 119-
125. (An early version appeared in the Proceedings
of the Second International World Wide Web Con-
ference, pp. 763-771, Chicago, Illinois, October
1994.)

[Salton] Gerard Salton, Automatic Text Processing, Ad-
dison Wesley, Reading, Mass, 1989.

[Wiederhold] G. Wiederhold, “Mediators in the Archi-
tecture of Future Information Systems,” IEEE Com-
puter, 25 (1992), pp. 38-49.

[Levy1] Alon Y. Levy, Anand Rajaraman
and Joann J. Ordille, <URL:http:/

/www.research.att.com/~levy/

vldb96-im.ps.Z>. Querying Heterogeneous
Information Sources Using Source Descriptions,
Proceedings of the 22nd International Conference
on Very Large Databases, VLDB-96, Bombay,
India, September, 1996

[Levy2] A.Y. Levy and J.J. Ordille, <URL:http:/

/cm.bell-labs.com/cm/cs/doc/95/

11-01.ps.gz>. An Experiment in Integrating
Internet Information Sources, AAAI Fall Sympo-
sium on AI Applications in Knowledge Navigation
and Retrieval, Cambridge, MA (November 1995).

[Selberg] Erik Selberg, and Oren Etzioni,<URL:http:/
/www.cs.washington.edu/research/

projects/softbots/papers/metacrawler/

www4/html/Overview.html>. Multi-Service
Search and Comparison Using the MetaCrawler,
Proceedings of the 4th International World Wide
Web Conference, 1995.

[Bailey] Charles W. Bailey Jr. and Robin N. Downes,
<URL:http://educom.edu/stories.101/

Intelligent-Reference.txt>. Intelligent
Reference Information System (IRIS), in 101 Suc-
cess Stories of Information Technology in Higher

Education: The Joe Wyatt Challenge, edited by
Judith Boettcher, McGraw-Hill, New York, 1993.

[Huffman] Scott B. Huffman and David Steier, ”A Navi-
gation Assistant for Data Source Selection and Inte-
gration,” in Working Notes of AAAI-95 Fall Sympo-
sium Series on AI Applications in Knowledge Nav-
igation and Retrieval, pp. 72-77, Cambridge, MA,
1995.

[Fielding] Fielding, et al. Hypertext Transfer Protocol
– HTTP/1.1. Network Working Group Request for
Comments 2068.

