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Abstract

Dynamic Web pages can seriously reduce the per-
formance of Web servers. One technique for im-
proving performance is to cache dynamic Web pages.
We have developed the DynamicWeb cache which
is particularly well-suited for dynamic pages. Our
cache has improved performance signi�cantly at sev-
eral commercial Web sites. This paper analyzes the
design and performance of the DynamicWeb cache.
It also presents a model for analyzing overall system
performance in the presence of caching. Our cache
can satisfy several hundred requests per second. On
systems which invoke server programs via CGI, the
DynamicWeb cache results in near-optimal perfor-
mance, where optimal performance is that which
would be achieved by a hypothetical cache which
consumed no CPU cycles. On a system we tested
which invoked server programs via ICAPI which has
signi�cantly less overhead than CGI, the Dynam-
icWeb cache resulted in near-optimal performance
for many cases and 58% of optimal performance in
the worst case. The DynamicWeb cache achieved
a hit rate of around 80% when it was deployed to
support the o�cial Internet Web site for the 1996
Atlanta Olympic games.

1 Introduction

Web servers provide two types of data: static
data from �les stored at a server and dynamic data
which are constructed by programs that execute at
the time a request is made. The presence of dy-
namic data often slows downWeb sites considerably.
High-performance Web servers can typically deliver
several hundred static �les per second. By contrast,
the rate at which dynamic pages are delivered is
often one or two order of magnitudes slower [10].

One technique for reducing the overhead of dy-
namic page creation is to cache dynamic pages at
the server the �rst time they are created. That way,
subsequent requests for the same dynamic page can
access the page from the cache instead of repeatedly
invoking a program to generate the same page.

A considerable amount of work has been done in
the area of proxy caching. Proxy caches store data
at sites that are remote from the server which orig-
inally provided the data. Proxy caches reduce net-
work tra�c and latency for obtaining Web data be-
cause clients can obtain the data from a local proxy
cache instead of having to request the data directly
from the site providing the data. Although our
cache, known as the DynamicWeb cache, can func-
tion as a proxy cache, the aspects we shall focus on
in this paper are fundamentally di�erent from those
of proxy caches. The primary purpose of the Dy-
namicWeb cache is to reduce CPU load on a server
which generates dynamic pages and not to reduce
network tra�c. DynamicWeb is directly managed
by the application generating dynamic pages. Al-
though it is not a requirement, DynamicWeb would
typically reside on the set of processors which are
managing the Web site [3].

Dynamic pages present many complications
which is why many proxy servers do not cache them.
Dynamic pages often change a lot more frequently
than static pages. Therefore, an e�ective method
for invalidating or updating obsolete dynamic pages
from caches is essential. Some dynamic pages mod-
ify state at the server each time they are invoked
and should never be cached.

For many of the applications that use the Dy-
namicWeb cache, it is essential for pages stored in
the cache to be current at all times. Determin-
ing when dynamic data should be cached and when
cached data has become obsolete is too di�cult for
the Web server to determine automatically. Dynam-



icWeb thus provides API's for Web application pro-
grams to explicitly add and delete things from the
cache. While this approach complicates the appli-
cation program somewhat, the performance gains
realized by applications deploying our cache have
been signi�cant. DynamicWeb has been deployed
at numerous IBM and customer Web sites serving
a high percentage of dynamic Web pages. We be-
lieve that its importance will continue to grow as
dynamic content on the Web increases.

1.1 Previous Work

Liu [11] presents a number of techniques for im-
proving Web server performance on dynamic pages
including caching and the use of cliettes, which
are long-running processes that can hold state and
maintain open connections to databases that a Web
server can communicate with. Caching is only
briey described. Our paper analyzes caching in
considerably more detail than Liu's paper. A num-
ber of papers have been published on proxy caching
[1, 4, 6, 7, 12, 13, 15, 24]. None of these papers
focus on improving performance at servers generat-
ing a high percentage of dynamic pages. Gwertz-
man and Seltzer [8] examine methods for keeping
proxy caches updated in situations where the origi-
nal data are changing. A number of papers have also
been published on cache replacement algorithms for
World Wide Web caches [2, 18, 22, 23].

2 Cache Design

Our cache architecture is very general and allows
an application to manage as many caches as it de-
sires. The application program can choose whatever
algorithm it pleases for dividing data among several
caches. In addition, the same cache can be used by
multiple applications.

Our cache architecture centers around a cache
manager which is a long-running daemon process
managing storage for one or more caches (Figure 1).
Application programs communicate with the cache
manager in order to add or delete items from a
cache. It is possible to run multiple cache managers
concurrently on the same processor by con�guring
each cache manager to listen for requests on a dif-
ferent port number. A single application can access
multiple cache managers. Similarly, multiple appli-
cations can access the same cache.

The application program would typically be in-
voked by a Web server via the Common Gateway
Interface (CGI) [21] or a faster mechanism such as
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Figure 1: Applications 1 and 2 both have access
to the caches managed by the cache manager. The
cache manager and both applications are all on the
same processor.

the Netscape Server Application Programming In-
terface (NSAPI) [16], the Microsoft Internet Appli-
cation Programming Interface (ISAPI) [14], IBM's
Internet Connection Application Programming In-
terface (ICAPI), or Open Market's FastCGI [17].
However, the application does not have to be Web-
related. DynamicWeb can be used by other sorts of
applications which need to cache data for improved
performance. The current set of cache API's are
compatible with any POSIX-compliant C or C++
program. Furthermore, the cache is not part of the
Web server and can be used in conjunction with any
Web server.

The cache manager can exist on a di�erent node
from the application accessing the cache (Figure 2).
This is particularly useful in systems where multiple
nodes are needed to handle the tra�c at a Web site.
A single cache manager running on a dedicated node
can handle requests from multiple Web servers. If a
single cache is shared among multiple Web servers,
the costs for caching objects is reduced because the
object only has to be added to a single cache. In
addition, cache updates are simpler, and there are
no cache coherency problems.

The cache manager can be con�gured to store
objects in �le systems, within memory bu�ers, or
partly within memory and partly within the �le sys-
tem. For small caches, performance is optimized
by storing objects in memory. For large caches,
some objects have to be stored on disk. The cache
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Figure 2: The cache manager and the applications
accessing the caches can run on di�erent nodes. In
this situation, the cache manager and application
communicate over Internet sockets.

manager is multithreaded in order to allow multi-
ple requests to be satis�ed concurrently. This fea-
ture is essential in keeping the throughput of the
cache manager high when requests become blocked
because of disk I/O. The cache manager achieves
high throughputs via locking primitives which allow
concurrent access to many of the cache manager's
data structures. When the cache manager and an
application reside on di�erent nodes, they communi-
cate via Internet sockets. When the cache manager
and an application reside on the same node, they
communicate via Unix Domain sockets, which are
generally more e�cient than Internet sockets.

The overhead for setting up a connection between
an application program and a cache can be signif-
icant, particularly if the cache resides on a di�er-
ent node than the application program. The cache
API's allow long-running connections to be used for
communicationbetween a cache manager and an ap-
plication program. That way, the overhead for es-
tablishing a connection need only be incurred once
for several cache transactions.

3 Cache Performance

The DynamicWeb cache has been deployed at nu-
merous Web sites by IBM customers. While it has
proved to be di�cult to obtain reliable performance
numbers from our customers, we have extensively
measured the performance of the cache on experi-
mental systems at the T. J. Watson Research Cen-
ter. Section 3.1 presents performance measurements
taken from such a system. Section 3.2 presents a
method for predicting overall system performance

from the performance measurements presented in
Section 3.1. Section 3.3 presents cache hit rates
which were observed when DynamicWeb was used
at a high-volume Web site accessed by people in
many di�erent countries.

3.1 Performance Measurements from
an Actual System

The system used for generating performance data
in this section is shown in Figure 3. Both the cache
manager and Web server were on the same node
which is an IBM RS/6000 Model 590 workstation
running AIX version 4.1.4.0. This machine contains
a 66 Mhz POWER2 processor and comprises one
node of an SP2 distributed-memory multiprocessor.
The Web server was the IBM Internet Connection
Secure Server (ICS) version 4.2.1. Three types of
experiments were run:

1. Experiments in which requests were made to
the cache manager directly from a driver pro-
gram running on the same node without involv-
ing the Web server. The purpose of these ex-
periments was to measure cache performance
independently from Web server performance.

2. Experiments in which requests were made to
the Web server from remote nodes running the
WebStone [19] benchmark without involving
the cache. The purpose of these experiments
was to measure Web server performance inde-
pendently of cache performance. WebStone is a
widely used benchmark from Silicon Graphics,
Inc. which measures the number of requests per
second which a Web server can handle by simu-
lating one or more clients and seeing how many
requests per second can be satis�ed during the
duration of the test.

3. Experiments in which server programs which
accessed the cache were invoked by requests
made to the Web server from remote nodes run-
ning WebStone.

The con�guration which we used is representa-
tive of a high-performance Web site but not opti-
mal. Slightly better performance could probably
be achieved by using a faster processor. There are
also minor optimizations one can make to the Web
server, such as turning o� logging, which we did-
n't make. Such optimizations might have improved
performance slightly. However, our goals were to
use a consistent set of test conditions so that we
could accurately compare the results from di�er-
ent experiments and to obtain good performance
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Figure 3: The system used for generating perfor-
mance data.

but not necessarily the highest throughput numbers
possible. Consistent test conditions are crucial, and
attempts to compare di�erent Web servers by look-
ing at published performance on benchmarks such
as WebStone and SPECweb96 [20] are often mis-
leading because the test conditions will likely di�er.
Performance is a�ected by the hardware on which
the Web server runs, software (e.g. the operating
system, the TCP/IP software), and how the Web
server is con�gured (e.g. whether or not logging is
turned on).

As an example of the sensitivity of performance
to di�erent test conditions, the Web server and
all of the nodes running WebStone (Figure 3) are
part of an SP2. The nodes of our SP2 are con-
nected by two networks: an Ethernet and a high-
performance switch. The switch has higher band-
width than the Ethernet. In our case, however, both
the switch and the Ethernet had su�cient band-
width to run our tests without becoming a bottle-
neck. One would suspect that throughput would
be the same regardless of which network was used.
However, we observed slightly better performance
when the clients running WebStone communicated
with the Web server over the switch instead of the
Ethernet. This is because the software drivers for
the switch are more e�cient than the software dri-
vers for the Ethernet, a fact which is unlikely to be
known by most SP2 programmers. The WebStone
performance numbers presented in this paper were
generated using the Ethernet because the switch was
frequently down on our system.

Figure 4 compares the throughput of the cache
when driven by the driver program to the through-
put of the Web server when driven by WebStone
running on remote nodes. In both Figures 4 and
5, the cache and Web server were tested indepen-
dently of each other and did not interact at all. 80%
of the requests to the cache manager were read re-
quests and the remaining 20% were write requests.
The cache driver program which made requests to
the cache and collected performance statistics ran
on the same node as the cache and took up some
CPU cycles. The cache driver program would not
be needed in a real system where cache requests are
made by application programs. Without the cache
driver program overhead, the maximum through-
put would be around 500 requests per second. The
cache can sustain about 11% more read requests per
second than write requests.
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Figure 4: The throughput in requests per second
which can be sustained by the cache and the Web
server on a single processor. The cache driver pro-
gram maintained a a single open connection for all
requests. Eighty percent of requests to the cache
were read requests and 20% were write requests. All
requests to the Web server were for static HTML
�les.

In the experiments summarized in Figure 4, a sin-
gle connection was opened between the cache driver
program and the cache manager and maintained for
the duration of the test. A naive interface between
the Web server and the cache manager would make
a new connection to the cache manager for each re-
quest. The �rst two bars of Figure 5 show the e�ect
of establishing a new connection for each request.
The cache manager can sustain close to 430 requests
per second when a single open connection is main-
tained for all requests and about 190 requests per



second when a new connection is made for each re-
quest. Since the driver program and cache manager
were on the same node, Unix domain sockets were
used. If they had been on di�erent nodes, Internet
sockets would have been needed, and the perfor-
mance would likely have been worse.
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Figure 5: The throughput in requests per second
which can be sustained by the cache and the Web
server on a single processor under di�erent condi-
tions. The Cache1 bar graph represents the perfor-
mance of the cache when a single long lived con-
nection is maintained for all requests made by the
driver program. The Cache2 bar graph represents
the performance of the cache when a new Unix do-
main socket is opened for each request. The three
bar graphs to the right represent the performance
of the Web server.

Figure 5 also shows the performance of the Web
server for di�erent types of accesses. In both Fig-
ures 5 and 6, request sizes were less than 1000 bytes.
We saw little variability in performance as a func-
tion of request size until request sizes exceeded 1000
bytes (Figure 4). For objects not exceeding 1000
bytes, the Web server can deliver around 270 sta-
tic �les per second. The number of dynamic pages
created by very simple programs which can be re-
turned by the ICAPI interface is higher, around 330
per second. The Common Gateway Interface (CGI)
is very slow, however. Fewer than 20 dynamic pages
per second can be returned by CGI, even if the pro-
grams creating the dynamic pages are very simple.
The overhead of CGI is largely due to forking o� a
new process each time a CGI program is invoked.

ICAPI uses a programming model in which the
server is multithreaded. Server programs are com-
piled as shared libraries which are dynamically
loaded by the Web server and execute as a thread
within the Web server's process. There is thus no
overhead for forking o� a new process when a server
program is invoked through ICAPI. The ICAPI in-
terface is fast. One of the disadvantages to ICAPI,
however, is that the server program becomes part of
the Web server. It is now much easier for a server
program to crash the Web server than if CGI is used.
Another problem is that ICAPI programs must be
thread-safe. It is not always a straightforward task
to convert a legacy CGI program to a thread-safe
ICAPI program. Furthermore, debugging ICAPI
programs can be quite challenging.

Server API's such as FastCGI use a slightly di�er-
ent programming model. Server programs are long-
running processes which the Web server communi-
cates with. Since the server programs are not part of
the Web server's process, it is less likely for a server
program to crash the Web server compared with the
multithreaded approach. FastCGI programs do not
have to be thread-safe. One disadvantage is that
the FastCGI interface may be slightly slower than
the ICAPI one because interprocess communication
is required.

Using an interface such as ICAPI, it would be
possible to implement our cache manager as part
of the Web server which is dynamically loaded as a
shared library at the time the Web server is started
up. There would be no need for a separate cache
manager daemon process. Cache accesses would be
faster because the Web server would not have to
communicate with a separate process. This kind of
implementation is not possible with interfaces such
as CGI or FastCGI.

We chose not to implement our cache manager in
this fashion because we wanted our cache manager
to be compatible with as wide a range of interfaces
as possible and not just ICAPI. Another advantage
of our design is that it allows the cache to be ac-
cessed remotely from many Web servers while the
optimized ICAPI approach just described does not.

Figure 6 shows the performance of the Web server
when server programs which access the cache are in-
voked via the ICAPI interface. The �rst bar shows
the throughput when all requests to the cache man-
ager are commented out of the server program. The
purpose of this bar is to illustrate the overhead of
the server program without the e�ect of any cache
accesses. Slightly over 290 requests/second can be
sustained under these circumstances. A comparison
of this bar with the fourth bar in Figure 5 reveals



that most of the overhead results from the ICAPI
interface and not the actual work done by the server
program.
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Figure 6: The throughput in requests per second for
the cache interfaced to the Web server. The Driver
Program bar graph is the throughput which can be
sustained by the Web server running the cache dri-
ver program through the ICAPI interface with the
calls to the cache manager commented out. The
Cache 2 bar graph is the throughput for the same
system with the cache manager calls. Each cache
request from the Web server opens a new connec-
tion to the cache manager. The Cache 1 bar graph
is an estimate of the throughput of the entire sys-
tem if the Web server were to maintain long-lived
open connections to the cache manager.

The second bar shows the performance of the
Web server when each server program returns an
item of 1000 bytes or less from the cache. Each
request opens up a new connection with the cache
manager. About 120 requests/second can be sus-
tained. The observed performance is almost exactly
what one would calculate by combining the aver-
age request time of the cache (represented by the
reciprocal of the second bar in Figure 5) and the
Web server driver program (represented by the rec-
iprocal of the �rst bar in Figure 6) both measured
independently of each other.

Performance can be improved by maintaining
persistent open connections between the cache man-
ager and Web server. That way, new connections
don't have to be opened for each request. The per-
formance one would expect to see under these cir-

cumstances is shown in the third bar of Figure 6. It
is obtained by combining the average request time of
the cache (represented by the reciprocal of the �rst
bar in Figure 5) and the Web server driver program
(represented by the reciprocal of the �rst bar in Fig-
ure 6) both measured independently of each other.
The reciprocal of this quantity is the throughput of
the entire system which is 175 requests/second.

3.2 An Analysis of System Performance

The throughput achieved by any system is lim-
ited by the overhead of the server program which
communicates with the cache. If server programs
are invoked via CGI, this overhead is generally over
20 timesmore than the CPU time for the cache man-
ager to perform a single transaction. The result is
that the cache manager consumes only a small frac-
tion of the CPU time. Using a faster cache than the
DynamicWeb cache would have little if any impact
on overall system performance. In other words, the
DynamicWeb cache results in near-optimal perfor-
mance.

When faster interfaces for invoking server pro-
grams are used, the CPU time consumed by the
DynamicWeb cache becomes more signi�cant. This
section presents a mathematicalmodel of the overall
performance of a system similar to the one we tested
in the previous section in which server programs
are invoked through ICAPI, which consumes much
less CPU time than CGI. The model demonstrates
that DynamicWeb achieves near-optimal system
throughput in many cases. In the worst case, Dy-
namicWeb still manages to achieve 58% of the opti-
mal system throughput.

Consider a system containing a single processor
running both a Web server and one or more cache
managers. Let us assume that the performance of
the system is limited by the processor's CPU. De-
�ne

h = cache hit rate expressed as the proportion of
requests which can be satis�ed from the cache.

s = average CPU time to generate a dynamic page
by invoking a server program (i.e. CPU time for a
cache miss).

c = average CPU time to satisfy a request from the
cache (i.e. CPU time for a cache hit). c = c0 + c00

where c0 is the average CPU time taken up by a pro-
gram invoked by the Web server for communicating
with a cache manager and c00 is the average CPU
time taken up by a cache manager for satisfying a



request.

pdyn = proportion of requests for dynamic pages

f = average CPU time to satisfy a request for a
static �le.

Then the average CPU time to satisfy a request on
the system is:

T = (h � c+ (1� h) � s) � pdyn + f � (1� pdyn) (1)

System performance is often expressed as through-
put which is the number of requests which can be
satis�ed per unit time. Throughput is the recipro-
cal of the average time to satisfy a request. The
throughput of the system is given by:

Ttp =
1

( h
ctp

+ 1�h
stp

) � pdyn +
1�pdyn
ftp

(2)

where Ttp = 1=T; ctp = 1=c; stp = 1=s; and ftp =
1=f:

The number of requests per second which can be
serviced from our cache manager, ctp; is around 175
per second in the best case on the system we tested.
Most of the overhead in such a situation results from
c0 because invoking server programs is costly, even
using interfaces such as NSAPI and ICAPI.

The number of dynamic pages per second which
can be generated by a server program, stp; varies
considerably depending on the application. Val-
ues for stp as low as 1 per second are not uncom-
mon. The overhead of the Common Gateway In-
terface (CGI) is enough to limit stp to a maximum
of around 20 per second for any server program us-
ing this interface. In order to get higher values of
stp; an interface such as NSAPI, ISAPI, ICAPI, or
FastCGI must be used instead.

The rate at which static �les can be served, ftp;
is typically several hundred per second on a high-
performance system. On the system we tested, ftp
was around 270 per second. The proportion of re-
quests for dynamic pages, pdyn; is typically less than
.5, even for Web sites where all hypertext links are
dynamic. This is because many dynamic pages at
such Web sites include one or more static image �les.

Figures 7 shows the system throughput Ttp which
can be achieved by a system similar to ours when
all of the requests are for dynamic pages. The pa-
rameter values used by this and all other graphs
in this section were obtained from the system we
tested and include ctp = 175 requests per second
and ftp = 270 requests per second. Two curves are

shown for nonzero hit rates, one representing opti-
mal Ttp values which would be achieved by a hy-
pothetical system where the cache manager didn't
consume any CPU cycles and another representing
Ttp values which would be achieved by a cache sim-
ilar to ours.
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Figure 7: The throughput in connections per second
(Tcp) achieved by a system similar to ours when all
requests are for dynamic pages. The curves with
legends ending in opt represent hypothetical optimal
systems in which the cache manager consumes no
CPU cycles.

Figures 8 and 9 are analogous to Figure 7 when
the proportion of dynamic pages are .5 and .2 re-
spectively. Even Figure 9 represents a very high
percentage of dynamic pages. Web sites for which
almost all hypertext links are dynamic could have
pdyn close to .2 because of static image �les em-
bedded within dynamic pages. The o�cial Internet
Web site for the 1996 Atlanta Olympic Games (Sec-
tion 3.3) is such as an example.

These graphs show that DynamicWeb often re-
sults in near optimal system throughput, particu-
larly when the cost for generating dynamic pages is
high (i.e. stp is low). This is precisely the situation
when caching is essential for improved performance.
In the worst case, DynamicWeb manages to achieve
58% of the optimal system performance.

Another important quantity is the speedup, which
is the throughput of the system with caching divided
by the throughput of the system without caching:

S =

pdyn
stp

+
1�pdyn
ftp

( h
ctp

+ 1�h
stp

) � pdyn +
1�pdyn
ftp

(3)

Figure 10 shows the speedup S which can be
achieved by a system similar to ours when all of
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Figure 8: The throughput in connections per second
(Tcp) achieved by a system similar to ours when 50%
of requests are for dynamic pages.
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Figure 9: The throughput in connections per second
(Tcp) achieved by a system similar to ours when 20%
of requests are for dynamic pages.

the requests are for dynamic pages. Figures 11 and
12 are analogous to Figure 10 when the proportion
of dynamic pages are .5 and .2 respectively. For hit
rates below one, DynamicWeb achieves near opti-
mal speedup when the cost for generating dynamic
pages is high (i.e. stp is low). Furthermore, for
any hit rate below 1, there is a maximum speedup
which can be achieved regardless of how low stp is.
This behavior is an example of Amdahl's Law [9].
The maximum speedup which can be achieved for a
given hit rate is independent of the proportion of dy-
namic pages, pdyn: However, for identical values of
stp; the speedup achieved for a high value of pdyn is
greater than the speedup achieved for a lower value
of pdyn although this di�erence approaches 0 as stp
approaches 0.
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Figure 10: The speedup S achieved by a system
similar to ours when all requests are for dynamic
pages. The curves with legends ending in opt rep-
resent hypothetical optimal systems in which the
cache manager consumes no CPU cycles.
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Figure 11: The speedup S achieved by a system
similar to ours when 50% of requests are for dynamic
pages.
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Figure 12: The speedup S achieved by a system
similar to ours when 20% of requests are for dynamic
pages.

3.2.1 Remote Shared Caches

In some cases, it is desirable to run the cache man-
ager on a separate node from the Web server. An
example of this situation would be a multiproces-
sor Web server where multiple processors each run-
ning one or more Web servers are needed to ser-
vice a high-volume Web site [5]. A cache manager
running on a single processor has the throughput
to satisfy requests from several remote Web server
nodes. One advantage to using a single cache man-
ager in this situation is that cached data only needs
to be placed in one cache. The overhead for caching
new objects or updating old objects in the cache
is reduced. Another advantage is that there is no
need to maintain coherence among multiple caches
distributed among di�erent processors.

We need a modi�ed version of Equation 2 to cal-
culate the throughput of each Web server in this sit-
uation. Recall that c0 is the average CPU time taken
up by a program invoked by the Web server for com-
municating with a cache manager. Let c0tp = 1=c0:
When CGI is used, c0tp is around 20 per second.
Most of the overhead results from forking o� a new
process for each server program which is invoked.
When ICAPI is used, c0tp is around 300 per second,
and the overhead resulting in c0 is mostly due to the
ICAPI interface, not the work done by the server
programs. The throughput each Web server can
achieve is

T 0

tp =
1

( h
c0
tp

+ 1�h
stp

) � pdyn +
1�pdyn
ftp

(4)

The right hand side of this equation is the same as
that for Equation 2 except for the fact that ctp has
been replaced by c0tp:

In a well-designed cache such as ours, cache

misses use up few CPU cycles. The vast major-
ity of cache manager cycles are consumed by cache
hits. The throughput of cache hits for a Web server
running at 100% capacity is given by

Hn = T 0

tp � pdyn � h =
pdyn � h

( h
c0
tp

+ 1�h
stp

) � pdyn +
1�pdyn
ftp

(5)
The number of nodes running Web servers that a

single node running a DynamicWeb cache manager
can service without becoming a bottleneck when all
Web server nodes are running at 100% capacity is

N =
c00tp

Hn

=
c00tp � ((

h
c0
tp

+ 1�h
stp

) � pdyn +
1�pdyn
ftp

)

pdyn � h
(6)

where c00tp = 1=c00 (recall that c00 is the average CPU
time taken by a cache manager for satisfying a re-
quest). For our system, c00tp is close to 500 requests
per second.

Figure 13 shows the number of nodes running
Web servers that a single node running a Dynam-
icWeb cache manager can service without becom-
ing a bottleneck when Web server programs are in-
voked via CGI. It is assumed that the proportion of
all Web requests for dynamic pages is .2, the Web
server has performance similar to the performance
of ICS 4.2.1, and the nodes in the system have per-
formance similar to that of the IBM RS/6000 Model
590. It is also assumed that Web server nodes are
completely dedicated to serving Web pages and are
running at 100% capacity. If Web server nodes are
performing other functions in addition to serving
Web pages or are running at less than 100% capac-
ity, the number of Web server nodes which can be
supported by a single cache node increases. Fig-
ure 14 shows the analogous graph when Web server
programs are invoked via ICAPI. Since ICAPI is
much more e�cient than CGI, Web server nodes
can handle more requests per unit time and thus
make more requests on the cache manager. The net
result is that the cache node can support fewer Web
server nodes before becoming a bottleneck.

3.3 Cache Hit Rates at a High-Volume
Web Site

DynamicWeb was used to support the o�cial
Internet Web site for the 1996 Atlanta Olympic
Games. This Web site received a high volume of
requests from people all over the world. In order
to handle the huge volume of requests which were
received, several processors were utilized to provide
results to the public. Each processor contained a
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Figure 14: This graph is analogous to the one in
Figure 13 when Web server programs are invoked
via ICAPI.

Web server, IBM's DB2 database, and a cache man-
ager which managed several caches. Almost all of
the Web pages providing Olympics results were dy-
namically generated by accessing DB2. The pro-
portion of Web server requests for dynamic pages
was around .2. The remaining requests were mostly
for image �les embedded within the dynamic pages.
Caching reduced server load considerably; the aver-
age CPU time to satisfy requests from a cache was
about two orders of magnitude less than the aver-
age CPU time to satisfy requests by creating a new
dynamic page.

Each cache manager managed 37 caches. Thirty-
four caches were for speci�c sports such as bad-
minton, baseball, and basketball. The remaining
three caches were for medal standings, athletes,
and schedules. Partitioning pages among multiple
caches facilitated updates. When new results for a
particular sport such as basketball were received by
the system, each cache manager would invalidate all
pages from the basketball cache without disturbing
any other caches.

In order to optimize performance, cache perfor-
mance monitoring was turned o� for most of the
Olympics. Table 1 shows the hit rates which were
achieved by one of the servers when performance
monitoring was enabled for a period of 2 days, 7
hours, and 40 minutes starting at 12:25 PM on July
30. The average number of read requests per second
received by the cache manager during this period
was just above 1.

The average cache hit rate for this period was
.81. Hit rates for individual caches ranged from
a high of .99 for the medal standings cache to a
low of .28 for the athletes cache. Low hit rates
in a cache were usually caused by frequent updates
which made cached pages obsolete. Whenever the
system was noti�ed of changes which might make
any pages in a cache obsolete, all pages in the
cache were invalidated. A system which invalidated
cached Web pages at a smaller level of granularity
should have been able to achieve a better overall hit
rate than .81. Since the Atlanta Olympics, we have
made considerable progress in improving hit rates
by minimizing the number of cached pages which
need to be invalidated after a database update.

In all cases, the servers contained enough mem-
ory to store the contents of all caches with room
to spare. Cache replacement policies were not an
issue because there was no need to delete an ob-
ject which was known to be current from a cache.
Objects were only deleted if they were suspected of
being obsolete.



Cache Read Hits Hit Request
Name Requests Rate Proportion

Athletics 34216 25385 .74 .165
Medals 17334 17116 .99 .084
Badminton 13479 12739 .95 .065
Table Tennis 12111 11176 .92 .058
Athletes 12009 3415 .28 .058

All 37 Caches 207117 167859 .81 1.000

Table 1: Cache hit rates for the �ve most frequently accessed caches and all 37 caches combined. The
rightmost column is the proportion of total read requests directed to a particular cache. The Athletics
cache includes track and �eld sports. The Medals cache had the highest hit rate of all 37 caches while the
Athletes cache had the lowest hit rate of all 37 caches.

4 Conclusion

This paper has analyzed the design and perfor-
mance of the DynamicWeb cache for dynamic Web
pages. DynamicWeb is better suited to dynamic
Web pages than most proxy caches because it allows
the application program to explicitly cache, invali-
date, and update objects. The application program
can ensure that the cache is up to date. Dynam-
icWeb has signi�cantly improved the performance of
several commercial Web sites providing a high per-
centage of dynamic content. It is compatible with
all commonly used Web servers and all commonly
used interfaces for invoking server programs.

On an IBM RS/6000Model 590 workstation with
a 66 Mhz POWER2 processor, DynamicWeb could
satisfy close to 500 requests/second when it had ex-
clusive use of the CPU. On systems which invoke
server programs via CGI, the DynamicWeb cache
results in near-optimal performance, where optimal
performance is that which would be achieved by a
hypothetical cache which consumed no CPU cycles.
On a system we tested in which Web servers in-
voked server programs via ICAPI which has signif-
icantly less overhead than CGI, the DynamicWeb
cache resulted in near-optimal performance in many
cases and 58% of optimal performance in the worst
case. The DynamicWeb cache achieved a hit rate of
around 80% when it was deployed to support the of-
�cial Internet Web site for the 1996 Atlanta Olympic
games.
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