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Abstract

Web caches can not only reduce network tra�c and
downloading latency, but can also a�ect the distri-
bution of web tra�c over the network through cost-
aware caching. This paper introduces GreedyDual-
Size, which incorporates locality with cost and size
concerns in a simple and non-parameterized fashion
for high performance. Trace-driven simulations show
that with the appropriate cost de�nition, GreedyDual-
Size outperforms existing web cache replacement al-
gorithms in many aspects, including hit ratios, la-
tency reduction and network cost reduction. In ad-
dition, GreedyDual-Size can potentially improve the
performance of main-memory caching of Web docu-
ments.

1 Introduction

As the World Wide Web has grown in popularity in
recent years, the percentage of network tra�c due
to HTTP requests has steadily increased. Recent re-
ports show that Web tra�c has constituted 40% of
the network tra�c in 1996, compared to only 19%
in 1994. Since the majority of Web documents re-
quested are static documents (i.e. home pages, audio
and video �les), caching at various network points
provides a natural way to reduce web tra�c. A com-
mon form of web caching is caching at HTTP proxies,
which are intermediateries between browser processes
and web servers on the Internet (for example, one can
choose a proxy by setting the network preference in
the Netscape Navigator1).

There are many bene�ts of proxy caching. It
reduces network tra�c, average latency of fetching
Web documents, and the load on busy Web servers.
Since documents are stored at the proxy cache, many
HTTP requests can be satis�ed directly from the
cache instead of generating tra�c to and from the

1Navigator is a trademark of Netscape Inc.

Web server. Numerous studies [WASAF96] have
shown that the hit ratio for Web proxy caches can
be as high as over 50%. This means that if proxy
caching is utilized extensively, the network tra�c can
be reduced signi�cantly.

Key to the e�ectiveness of proxy caches is a doc-
ument replacement algorithm that can yield high hit
ratio. Unfortunately, techniques developed for �le
caching and virtual memory page replacement do not
necessarily transfer to Web caching.

There are three primary di�erences between Web
caching and conventional paging problems. First,
web caching is variable-size caching: due to the re-
striction in HTTP protocols that support whole �le
transfers only, a cache hit only happens if the entire
�le is cached, and web documents vary dramatically
in size depending on the information they carry (text,
image, video, etc.). Second, web pages take di�erent
amounts of time to download, even if they are of the
same size. A proxy that wishes to reduce the aver-
age latency of web accesses may want to adjust its
replacement strategy based on the download latency.
Third, access streams seen by the proxy cache are the
union of web access streams from tens to thousands
of users, instead of coming from a few programmed
sources as in the case of virtual memory paging.

Proxy caches are in a unique position to a�ect
web tra�c on the Internet. Since the replacement
algorithm decides which documents are cached and
which documents are replaced, it a�ects which fu-
ture requests will be cache hits. Thus, if the insti-
tution employing the proxy must pay more on some
network links than others, the replacement algorithm
can favor expensive documents (i.e. those travelling
through the expensive links) over cheap documents.
If it is known that certain network paths are heav-
ily congested, the caching algorithm can retain more
documents which must travel on congested paths.
The proxy cache can reduce its contribution to the
network router load by preferentially caching docu-
ments that travel more hops. Web cache replace-
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ment algorithms can incorporate these considerations
by associating an appropriate network cost with ev-
ery document, and minimizing the total cost incurred
over a particular access stream.

Today, most proxy systems use some form of the
Least-Recently-Used replacement algorithm. Though
some proxy systems also consider the time-to-live
�elds of the documents and replace expired docu-
ments �rst, studies have found that time-to-live �elds
rarely correspond exactly to the actual life time of
the document and it is better to keep expired-but-
recently-used documents in the cache and validate
them by querying the server [LC97]. The advantage
of LRU is its simplicity; the disadvantage is that it
does not take into account �le sizes or latency and
might not give the best hit ratio.

Many Web caching algorithms have been pro-
posed to address the size and latency concerns. We
are aware of at least nine algorithms, from the sim-
ple to the very elaborate, proposed and evaluated in
separate papers, some of which give conicting con-
clusions. This naturally leads to a state of confusion
over which algorithm should be used. In addition,
none of the existing algorithms address the network
cost concerns.

In this paper, we introduce a new algorithm,
called GreedyDual-Size, which combines locality, size
and latency/cost concerns e�ectively to achieve the
best overall performance. GreedyDual-Size is a varia-
tion on a simple and elegant algorithm called Greedy-
Dual [You91b], which handles uniform-size variable-
cost cache replacement. Using trace-driven simula-
tion, we show that GreedyDual-Size with appropri-
ate cost de�nitions out-performs the various \cham-
pion" web caching algorithms in existing studies on
a number of performance issues, including hit ratios,
latency reduction, and network cost reduction.

2 Existing Results

The size and cost concerns make web caching a much
more complicated problem than traditional caching.
Below we �rst summarize the existing theoretical re-
sults, then take a look at a variety of web caching
algorithms proposed so far.

2.1 Existing Theoretical Results

There are a number of results on the optimal o�ine
replacement algorithms and online competitive algo-
rithms on simpli�ed versions of the Web caching prob-
lem.

The variable document sizes in web caching make
it much more complicated to determine an optimal of-

ine replacement algorithm. If one is given a sequence
of requests to uniform size blocks of memory, it is
well known that the simple rule of evicting the block
whose next request is farthest in the future will yield
the optimal performance [Bel66]. In the variable-size
case, no such o�ine algorithm is known. In fact, it is
known that determining the optimal performance is
NP-hard [Ho97], although there is an algorithm which
can approximate the optimal to within a logarithmic
factor [Ir97]. The approximation factor is logarithmic
in the maximum number of bytes that can �t in the
cache, which we will call k.

For the cost consideration, there have been several
algorithms developed for the uniform-size variable-
cost paging problem. GreedyDual [You91b], is actu-
ally a range of algorithms which include a generaliza-
tion of LRU and a generalization of FIFO. The name
GreedyDual comes from the technique used to prove
that this entire range of algorithms is optimal accord-
ing to its competitive ratio. The competitive ratio is
essentially the maximum ratio of the algorithms cost
to the optimal o�ine algorithm's cost over all possible
request sequences. (For an introduction to competi-

tive analysis, see [ST85]).
We have generalized the result in [You91b] to show

that our algorithm GreedyDual-Size, which handles
documents of di�ering sizes and di�ering cost (de-
scribed in Section 4), also has an optimal competi-
tive ratio. Interestingly, it is also known that LRU
has an optimal competitive ratio when the page size
can vary and the cost of fetching a document is the
same for all documents or proportional to the size of
a document [FKIP96].

2.2 Existing Document Replacement

Algorithms

We describe nine cache replacement algorithms pro-
posed in recent studies, which attempt to minimize
various cost metrics, such as miss ratio, byte miss ra-
tio, average latency, and total cost. Below we give
a brief description of all of them. In describing the
various algorithms, it is convenient to view each re-
quest for a document as being satis�ed in the follow-
ing way: the algorithm brings the newly requested
document into the cache and then evicts documents
until the capacity of the cache is no longer exceeded.
Algorithms are then distinguished by how they choose
which documents to evict. This view allows for the
possibility that the requested document itself may be
evicted upon its arrival into the cache, which means
it replaces no other document in the cache.

� Least-Recently-Used (LRU) evicts the doc-
ument which was requested the least recently.
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� Least-Frequently-Used (LFU) evicts the
document which is accessed least frequently.

� Size [WASAF96] evicts the largest document.

� LRU-Threshold [ASAWF95] is the same as
LRU, except documents larger than a certain
threshold size are never cached;

� Log(Size)+LRU [ASAWF95] evicts the
document who has the largest log(size) and is
the least recently used document among all doc-
uments with the same log(size).

� Hyper-G [WASAF96] is a re�nement of LFU
with last access time and size considerations;

� Pitkow/Recker [WASAF96] removes the
least-recently-used document, except if all doc-
uments are accessed today, in which case the
largest one is removed;

� Lowest-Latency-First [WA97] tries to mini-
mize average latency by removing the document
with the lowest download latency �rst;

� Hybrid, introduced in [WA97], is aimed at re-
ducing the total latency. A function is com-
puted for each document which is designed to
capture the utility of retaining a given docu-
ment in the cache. The document with the
smallest function value is then evicted. The
function for a document p located at server s
depends on the following parameters: cs, the
time to connect with server s, bs the bandwidth
to server s, np the number of times p has been
requested since it was brought into the cache,
and zp, the size (in bytes) of document p. The
function is de�ned as:�

cs +
Wb

bs

�
(np)

Wn

zp

where Wb and Wn are constants. Estimates for
cs and bs are based on the the times to fetch
documents from server s in the recent past.

� Lowest Relative Value (LRV), introduced in
[LRV97], includes the cost and size of a doc-
ument in the calculation of a value that esti-
mates the utility of keeping a document in the
cache. The algorithm evicts the document with
the lowest value. The calculation of the value
is based on extensive empirical analysis of trace
data. For a given i, let Pi denote the proba-
bility that a document is requested i+ 1 times
given that it is requested i times. Pi is esti-
mated in an online manner by taking the ratio

Di+1=Di, whereDi is the total number of docu-
ments seen so far which have been requested at
least i times in the trace. Pi(s) is the same as
Pi except the value is determined by restricting
the count only to pages of size s. Furthermore,
let 1�D(t) be the probability that a page is re-
quested again as a function of the time (in sec-
onds) since its last request t; D(t) is estimated
as

D(t) = :035 log(t+ 1) + :45
�
1� e

�t

2e6

�
:

Then for a particular document d of size s and
cost c, if the last request to d is the i'th request
to it, and the last request was made t seconds
ago, d's value in LRV is calculated as:

V (i; t; s) =

�
P1(s)(1�D(t)) � c=s if i = 1
Pi(1�D(t)) � c=s otherwise

Among all documents, LRV evict the one with
the lowest value. Thus, LRV takes into account
locality, cost and size of a document.

Existing studies using actual Web proxy traces
narrowed down the choice for proxy replace-
ment algorithms to LRU, SIZE, Hybrid and
LRV. Results in [WASAF96, ASAWF95] show that
SIZE performs better than LFU, LRU-threshold,
Log(size)+LRU, Hyper-G and Pitkow/Recker. Re-
sults in [WASAF96] also show that SIZE outperforms
LRU in most situations. However, a di�erent study
[LRV97] shows that LRU outperforms SIZE in terms
of byte hit rate. Comparing LFU and LRU, our
experiments show that though LFU can outperform
LRU slightly when the cache size is very small, in
most cases LFU performs worse than LRU. In terms
of minimizing latency, [WA97] show that Hybrid
performs better than Lowest-Latency-First. Finally,
[LRV97] shows that LRV outperforms both LRU and
SIZE in terms of hit ratio and byte hit ratio. One
disadvantage of both Hybrid and LRV is their heavy
parameterization, which leaves one uncertain about
their performance across access streams.

However, the studies o�er no conclusion on which
algorithm a proxy should use. Essentially, the prob-
lem is �nding an algorithm that can combine the ob-
served access pattern with the cost and size consid-
erations.

2.2.1 Implementation Concerns

The above \champion" algorithms vary in time and
space complexity. In the cases when there are a large
number of documents in the cache, this can have a
dramatic e�ect on the time required to determine
which document to evict.
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� LRU can be implement easily with O(1) over-
head per cached �le and O(1) time per access;

� Size can be implemented by maintaining a pri-
ority queue on the documents in memory based
on their size. Since the size of a document does
not change, handling a hit requires O(1) time
and handling an eviction requires O(log k) time,
where k is the number of cached documents.

� Hybrid is also implemented using a priority
queue, thus requiring O(log k) time to �nd a
replacement. Furthermore, it requires an array
keeping track of the average latency and band-
width for every Web server. It is used in esti-
mating the downloading latency of a web page.
This requires extra storage. In addition, since
the estimate is updated every time a connec-
tion to the server is made, a faithful implemen-
tation requires updating many pages' latency
estimation. We found this prohibitively time-
consuming, and we omit the step in the imple-
mentation. We �nd that omitting the step does
not a�ect our results signi�cantly.

� LRV requires O(1) storage per cached �le plus
some bookkeeping information. If the Cost in
LRV is proportional to Size, the authors of the
algorithm suggests an e�cient method that can
�nd the replacement in O(1) time, though the
constants can be large. If Cost is arbitrary, then
O(k) time is needed to �nd a replacement. We
also found that the cost of calculating D(t) are
very high, since it uses log and exp.

Another concern about both Hybrid and LRV is
that they employ constants which might have to be
tuned to the patterns in the request stream. For Hy-
brid, we use the values which were used in [WA97]
in our simulations. We did not experiment with tun-
ing those constants to improve the performance of
Hybrid.

Though LRV can incorporate arbitrary network
costs associated with documents, the O(k) compu-
tational complexity of �nding a replacement can be
prohibitively expensive. The problem is that D(t)
has to be recalculated for every document every time
some document has to be replaced. The overhead
makes LRV impractical for proxy caches that wish to
take network costs into consideration.

3 Web Proxy Traces

As the conclusions from a trace-driven study in-
evitably depend on the traces, we tried to gather as

many traces as possible. We were successful in ob-
taining the following traces of HTTP requests going
through Web proxies:

� Digital Equipment Corporation Web Proxy
server traces [DEC96](Aug-Sep 1996), servicing
about 17,000 workstations, for a period of 25
days, containing a total of about 24,000,000 ac-
cesses;

� University of Virginia proxy server and client
traces [WASAF96] (Feb-Oct 1995), containing
four sets of traces, each servicing from 25 to 61
workstations, containing from 13,127 to 227,210
accesses;

� Boston University client traces [CBC95](Nov
1994 - May 1995), containing two sets of traces,
one servicing 5 workstations (17,008 accesses),
the other 32 workstations (118,105 accesses);

We are in the process of obtaining more traces from
other sources.

We present the results of fourteen traces. They
include all of Virginia Tech and Boston University
traces, and eight subsets of the DEC traces. The
subsets are Web accesses made by users 0-512, and
users 1024-2048, in each week, for the three and a
half weeks period from Aug. 29 to Sep. 22, 1996.
The use of the subsets is partly due to our current
simulator's limitation (it cannot simulate more than
two million requests at a time), and partly due to
our observation that a caching proxy server built out
of a high-end workstation can only service about 512
users at a time.

We perform some necessary pre-processing over
the traces. For the DEC traces, we simulated only
those requests whose replies are cacheable as speci�ed
in HTTP 1.1 [HT97] (i.e. GET or HEAD requests
with status 200, 203, 206, 300, or 301, and not a
\cgi bin" request). In addition, we do not include
those requests that are queries (i.e. \?" appears in
the URL), though such requests are a small fraction
of total cacheable requests (around 3% to 5%). For
Virginia Tech traces, we simulated only the \GET"
requests with reply status 200 and a known reply size.
Thus, our numbers di�er from what are reported in
[WASAF96]. The Virginia Tech traces unfortunately
do not come with latency information. For Boston
University traces, we simulated only those requests
that are not serviced out of browser caches.

3.1 Locality in Web Accesses

In the search for an e�ective replacement algorithm,
we analyzed the traces to understand the access pat-
terns of Web requests seen by the proxies. The strik-
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Figure 1: Percentage of references to documents
whose last accesses are t minutes ago, for t from 5
to 10000.

ing property we found is that all traces exhibit excel-
lent long-term locality.

Figure 1 shows the percentage of references to a
document whose last reference is t minutes ago, for
t from 5 to 10000, in the DEC traces for the period
from Sep. 12 to Sep. 18. In other words, the �gure
shows the probability of a document being accessed
again as a function of the time since the last access to
this document. The graphs for other traces are sim-
ilar to the one shown here. Clearly, the probability
of reference drops signi�cantly as the time since last
reference increases (note that the y-axis is in logarith-
mic scale), with occasional spikes around multiples of
24 hours.

Figure 3 shows the accumulative percentage of ref-
erences to documents whose last references are less
than t minutes ago, for the entire DEC traces from
Aug. 29 to Sep. 22. The dashed curve on the graph
shows the corresponding percentage of bytes refer-
enced. In Figure 3, which uses linear scale for the y-
axis, and logarithmic scale for the x-axis, we see that
the curves are nearly linear. That is, the probability
of a document being referenced again within t min-
utes is proportionally to log(t), indicating that the
probability of re-reference to documents referenced
exactly t minutes ago can be modeled as k=t, where
k is a constant.

A di�erent study [LRV97] reached very similar
conclusions on a di�erent set of traces. Indeed, it is
this observation that promoted the design of the func-
tion D(t) in LRV. Since the studies �nd similar tem-
poral locality patterns in the Web access traces, the
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Figure 2: Percentage of references as a function of
time since last access by the same user.

probability density function of k=t has been used to
simulate temporal locality behavior in a recent Web
proxy benchmark [WPB].

There are two reasons for the good locality in
Web accesses seen by the proxy. One is that each
user's accesses tend to exhibit locality | �gure 2
shows the probability that a document is accessed
by a user t minutes after the last access by the same
user, for DEC traces in the period from Sep. 12 to
Sep. 18 (again, the �gures for other traces are sim-
ilar). Clearly, each user tends to re-access recently-
read documents, and re-access documents that are
read on a daily basis (note the spikes around 24 hours,
48 hours, etc. in the �gure). Though one might ex-
pect that browsers' caches absorb the locality among

the same user's accesses seen by the proxy, the results
seems to indicate that this is not necessarily the case,
and users are using proxy caches as an extension to
the browser cache. [LRV97] observes the same phe-
nomenon.

The other reason is that users' interests overlap in
time | comparing �gures 2 and 1, we can see that
for the same t, the percentage in �gure 1 is higher
than that in �gure 2. This indicates that part of the
locality observed by the proxy comes from the fact
that the proxy sees a merged stream of accesses from
many independent users, who share a certain amount
of common interests. Thus, we believe the locality
observed is not particular to the traces described here,
but rather a common characteristic of accesses seen
by proxies with a large enough user community.

To further demonstrate the e�ect of inter-user
sharing on hit ratios, Figure 4 shows the hit ratio
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Figure 3: Percentage of references and percentage of
bytes referenced to documents accessed less than t

minutes ago (the accumulative version of Figure 1).
Note that the y-axis is in linear scale and the x-axis

is in log scale.

and byte hit ratio as a function of the size of the
user group sharing the cache. The �gures are quartile
graphs [Tufte], the middle curve showing the median
of the hit ratios of individual groups of clients in the
DEC traces, and the other four points for each group
size showing the minimum, the 25% percentile, the
75% percentile, and the maximum of the hit ratios
of individual groups. The median hit ratios show an
almost linear increase as the group size doubles.

In the absence of cost and size concerns, LRU is
the optimal online algorithm for reference streams ex-
hibiting good locality [CD73] (strictly speaking, those
conforming to the LRU-stack model). However, in
the Web context, replacing a more recently used but
large �le can yield a higher hit ratio than replacing a
less recently used but small �le. Similarly, replacing
a more recently used but inexpensive �le may yield a
lower total cost than replacing a less recently used but
expensive �le. Thus, we need an algorithm that com-
bines locality, size and cost considerations in a simple,
online way that does not require tuning paramters ac-
cording to the particular traces, and yet maximizes
the overall performance.

4 GreedyDual-Size Algorithm

The original GreedyDual algorithm is proposed by
Young [You91b]. It is actually a range of algorithms,

but we focus one particular version which is a gener-
alization of LRU. It is concerned with the case when
pages in a cache have the same size, but incur di�er-
ent costs to fetch from a secondary storage. The al-
gorithm associates a value, H , with each cached page
p. Initially, when a page is brought into cache, H is
set to be the cost of bringing the page into the cache
(the cost is always non-negative). When a replace-
ment needs to be made, the page with the lowest H
value, minH , is replaced, and then all pages reduce
their H values by minH . If a page is accessed, its
H value is restored to the cost of bringing it into the
cache. Thus, the H values of recently accessed pages
retain a larger portion of the original cost than those
of pages that have not been accessed for a long time.
By reducing the H values as time goes on and restor-
ing them upon access, the algorithm integrates the
locality and cost concerns in a seamless fashion.

To incorporate the di�erence sizes of the docu-
ment, we extend the GreedyDual algorithm by set-
ting H to cost=size upon an access to a document,
where cost is the cost of bringing the document, and
size is the size of the document in bytes. We called
the extended version the GreedyDual-Size algorithm.
The de�nition of cost depends on the goal of the re-
placement algorithm: cost is set to 1 if the goal is to
maximize hit ratio, it is set to the downloading la-
tency if the goal is to minimize average latency, and
it is set to the network cost if the goal is to minimize
the total cost.

At the �rst glance, GreedyDual-Size would require
k subtractions when a replacement is made, where k
is the number of documents in cache. However, a dif-
ferent way of recordingH removes these subtractions.
The idea is to keep an \ination" value L, and let all
future setting of H be o�set by L. Figure 5 shows an
e�cient implementation of the algorithm.

Using this technique, GreedyDual-Size can be im-
plemented by maintaining a priority queue on the
documents, based on their H value. Handling a hit
requires O(log k) time and handling an eviction re-
quires O(log k) time, since in both cases a single item
in the queue must be updated. More e�cient imple-
mentations can be designed that make the common
case of handling a hit requiring only O(1) time.

Online-Optimality of GreedyDual-Size

It can be proven that GreedyDual-Size is online-
optimal. For any sequence of accesses to documents
with arbitrary sizes and arbitrary costs, the cost of
cache misses under GreedyDual-Size is at most k

times that under the o�ine optimal replacement algo-
rithm, where k is the ratio of the cache size to the size
of the smallest page. The ratio is the lowest achiev-
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Figure 4: Hit ratio and byte hit ratio as a function of the size of the user group sharing the cache. The x-axis is
in log scale.

Algorithm GreedyDual:

Initialize L 0.
Process each request document in turn:

The current request is for document p:

(1) if p is already in memory,

(2) H(p) L+ c(p)=s(p).
(3) if p is not in memory,

(4) while there is not enough room

in memory for p,

(5) Let L minq2M H(q).
(6) Evict q such that H(q) = L.

(7) Bring p into memory and set

H(p) L+ c(p)=s(p)
end

Figure 5: GreedyDual Algorithm.

able by any online replacement algorithm. Below is a
proof of the online-optimality of GreedyDual-Size.

Neal Young proved in [You91b] that Greedy Dual
for pages of uniform size is k-competitive. We prove
here that the version which handles pages of multiple
size is also k-competitive. (In both cases, k is de�ned
to be the ratio of the size of the cache to the size of the
smallest page). The proof below is based on a proof
that another algorithm called BALANCE which also
solves the multi-cost uniform-size paging problem is
k-competitive [CKPV91].

All of the above bounds are tight, since we can
always assume that all pages are as small as pos-
sible and have the same cost and invoke the lower
bound of k on the competitive ratio for the uniform-
size uniform-cost paging problem found in [ST85].

It should also be noted that the same bound can
be proven for the version of the algorithm which uses
c(p) instead of c(p)=s(p) in the description of the al-
gorithm in Figure 5. Young has independently proven
a generalization of the result below [You97]. The gen-
eralization covers the whole range of algorithms de-
scribed in his original paper [You91b] instead of the
particular version covered here.

Theorem 1 GreedyDual-Size

is k-competitive, where k is the ratio of the size of

the cache to the size of the smallest document.

Proof. We will charge each algorithm for the docu-
ments they evict instead of the documents they bring
in. The di�erence between the two cost measures is
at most an additive constant.
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Each request for a document happens in a series of
steps. First the optimal algorithm serves the request.
Then each of the steps of GreedyDual-Size is executed
in a separate step. Each step of each request happens
at a di�erent point in time.

It is straightforward to show by induction on time
that for every document q in the cache

L � min
p2M

H(p) � H(q) � L+
c(q)

s(q)
:

Let Lfinal be the last value of L. Let smin denote
the size of the smallest document. Let scache be the
total size of the cache. Note that k = scache=smin.
We will �rst prove that the total cost of all documents
which OPT evicts is at least smin � Lfinal. Then we
will show that the total cost of all documents evicted
by GreedyDual-Size is at most scache � Lfinal.

Every time L increases, there is some document
which GreedyDual-Size has in the cache which the
optimal does not have in the cache. This is because
L only increases when GreedyDual-Size has exceeded
the size of its cache and must evict a document. Since
the optimal algorithm has already satis�ed the re-
quest, it has the requested document in the cache.
Since the newly requested document does not �t in
GreedyDual-Size's cache, GreedyDual-Size must have
some document in the cache which the optimal does
not have in the cache.

Consider a period of time in which GreedyDual-
Size has p in its cache and the optimal does not. Such
a period begins with the optimal evicting p from the
cache and ends when either we evict p from the cache
or the optimal brings p back in to the cache. We will
attribute any increase in L which occurs during this
period to the cost the optimal incurred in evicting p at
the beginning of the period. The cost of evicting p is
c(p). The only thing we have to prove in establishing
that the optimal cost is at least smin � Lfinal is that
L increases by at most c(p)=s(p) � c(p)=smin during
the period.

Let L1 be the value of L when the period begins.
We know that at this time H(p) � L1 + c(p)=s(p).
Furthermore, H(p) does not change during this pe-
riod. This is because H(p) only increases when p is
requested. p can only be requested on the last re-
quest of the period (because the period is de�ned to
the period of time in which GreedyDual-Size has p

in its cache and the optimal does not). If the last
request of the period is to document p, then the opti-
mal brings p into its cache, and hence the period ends
before H(p) increases. If the period ends by p's evic-
tion, H(p) remains the same until p is evicted. Since
H(p) is an upper bound for L, L can not increase to
more than L1 + c(p)=s(p) during the entire period.

Now we must establish that the total cost of all
documents evicted by GreedyDual-Size is at most
scache �Lfinal. Consider an eviction that GreedyDual-
Size performs. Let p be the document that is evicted
and let L1 and L2 be the values for L when it is
brought in and evicted from the cache, respectively.
The value of H(p) when p is brought in to the cache is
L1+c(p)=s(p). p can only be evicted if L equalsH(p).
Since H(p) can only increase during the time that p
is in the cache, we know that L2 � L1 � c(p)=s(p).

Draw an interval on the real line from L1 to L2
that is closed on the left end and open on the right
end. Assign the interval a weight of s(p). If we
draw an interval for every such eviction, the cost of
GreedyDual-Size is upper bounded by the sum over
all intervals of their length times their weight. By def-
inition, all intervals lie in the range from 0 to Lfinal.

The �nal observation is that the total weight of
all the intervals which contain any single point on
the real line is at most scache. Consider a point L

0 on
the line where an interval begins or ends. The total
weight of the intervals that cover this point is the sum
of the sizes of the documents which are in the cache
when L reaches a value of L0. Since the size of the
cache is at most scache, the sum of the weights of the
intervals which cover L0 is at most scache.

2

5 Performance Comparison

Using trace driven simulation, we compare the per-
formance of GreedyDual-Size with LRU, Size, Hy-
brid, and LRV. Size, Hybrid, and LRV are all \cham-
pion" algorithms from previously published studies
[WASAF96, LRV97, WA97]. In addition, for LRV, we
�rst go through the whole trace to obtain the neces-
sary parameters, thus giving it the advantage of per-
fect statistical information. In contrast, GreedyDual-
Size takes into account cost, size and locality in a
more natural manner and does not require tuning to
a particular set of traces.

5.1 Performance Metrics

We consider �ve aspects of web caching bene�ts: hit
ratio, byte hit ratio, latency reduction, hop reduc-
tion, and weighted-hop reduction. By hit ratio, we
mean the number of requests that hit in the proxy
cache as a percentage of total requests. By byte hit
ratio, we mean the number of bytes that hit in the
proxy cache as the percentage of the total number
of bytes requested. By latency reduction, we mean
the percentage of the sum of downloading latency for
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the pages that hit in cache over the sum of all down-
loading latencies. Hop reduction and weighted-hop
reduction are used to measure the e�ectiveness of the
algorithm at reducing network costs, as explained be-
low.

To investigate the regulatory role that can be
played by proxy caches, we model the network cost as-
sociated with each document as \hops". The \hops"
value can be the number of network hops travelled
by a document, to model the case when the proxy
tries to reduce the overall load on Internet routers,
or it can be the monetary cost associated with fetch-
ing the document, to model the case when the proxy
has to pay for documents travelling through di�erent
network carriers.

We evaluate the algorithms in a situation where
there is a skew in the distribution of \hops" values
among the documents. The skewed distribution mod-
els the case when a particular part of the network is
congested, or the proxy has to pay a di�erent amount
of money for documents travelling through di�erent
networks (for example, if the proxy is at an Inter-
net Service Provider). In our particular simulation,
we assign each Web server a hop value equal to 1 or
32 2, so that 1=8 of the servers have hop value 32 and
7=8 of the servers have hop value 1. This simulates
the scenario, for example, that 1=8 of the web servers
contacted are located in Asia, or can only be reached
through an expensive or congested link.

Associated with the \hop" value are two metrics:
hop reduction and weighted-hop reduction. Hop re-
duction is the ratio between the total number of the
hops of cache hits and the total number of the hops
of all accesses; weighted-hop reduction is the corre-
sponding ratio for the total number of hops times
\packet savings" on cache hits. A cache hit's packet
saving is 2 + file size=536, as an estimate of the ac-
tual number of network packets required if the request
is a cache miss (1 packet for the request, 1 packet for
the reply, and size=536 for extra data packets, as-
suming a 536-byte TCP segment size).

For each trace, we �rst calculate the bene�t ob-
tained if the cache size is in�nite. The values for
all traces are shown in Table 1. In the table, BU-
272 and BU-B19 are two sets of traces from Boston
University [CBC95], VT-BL, VT-C, VT-G, VT-U are
four sets of traces from Virginia Tech [WASAF96],
DEC-U1:8/29-9/4 through DEC-U1:9/19-9/22 are
the requests made by users 0-512 (user group 1)
for each week in the three and half week period,
and DEC-U2:8/29-9/4 through DEC-U2:9/19-9/22
are the traces for users 1024-2048 (user group 2). We
experimented with other subsets of DEC traces and

2These numbers are chosen partly because, at one time, the

maximum number of hops along a packet's route was 32.

the results are quite similar to those obtained from
these subsets.

Below, we divide our results into three subsec-
tions. In Section 5.2, we measure the hit rate and
byte hit rate of di�erent algorithms. In Section 5.3
we compare the latency reduction. In Section 5.4
we compare the hop reduction and weighted hop re-
duction. The corresponding value under the in�nite
cache are listed in Table 1. Since these simulations
assume limited cache storage, their ratios cannot be
higher than the in�nite cache ratios.

The cache sizes investigated in the simulation were
chosen by taking a �xed percentage of the total sizes
of all distinct documents requested in the sequence.
The percentages are 0.05%, 0.5%, 5%, 10% and 20%.
For example, for trace DEC-U1:8/29-9/4, which in-
cludes the requests made by users 0-512 for the week
of 8/29 to 9/4 and has a total data set size of 9.21GB,
the cache sizes experimented are 4.6MB, 46.1MB,
461MB, 921MB and 1.84GB.

Due to space limitation, we organize the traces
into four groups: Boston University traces, Virginia
Tech traces, DEC-U1 traces, and DEC-U2 traces, and
present the averaged results per trace group. The
results for individual traces are similar.

5.2 Hit Rate and Byte Hit Rate

We introduce two versions of the GreedyDual-Size
algorithm, GD-Size(1) and GD-Size(packets). GD-
Size(1) sets the cost for each document to 1, and
GD-Size(packets) sets the cost for each document to
2+size=536 (that is, the estimated number of network
packets sent and received if a miss to the document
happens). In other words, GD-Size(1) tries to mini-
mize miss ratio, and GD-Size(packets) tries to mini-
mize the network tra�c resulting from the misses.

Figure 6(a) shows the average hit ratio of the
four groups of traces under LRU, Size, LRV, GD-
Size(1), and GD-Size(packets). The graphs from left
to right show the results for Boston University traces,
Virginia Tech traces, DEC-U1 traces and DEC-U2
traces, respectively. Figure 6(b) is a simpli�ed ver-
sion of 6(a) showing only the curves of LRU and GD-
Size(1), highlighting the di�erences between the two.
Graph (c) shows the average byte hit ratio for the
four trace groups under the di�erent algorithms.

The results show that clearly, GD-Size(1) achieves
the best hit ratio among all algorithms across traces
and cache sizes. It approaches the maximal achiev-
able hit ratio very fast, being able to achieve over
95% of the maximal hit ratio when the cache size is
only 5% of the total data set size. It performs partic-
ularly well for small caches, suggesting that it would
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Trace Clients Total Total Hit Byte Reduced Reduced Reduced
Requests GBytes Rate HR Latency Hops WeightedHops

BU-272 5 17007 0.39 0.25 0.15 0.13 0.16 0.09

BU-B19 32 118104 1.59 0.47 0.27 0.20 0.48 0.25

VT-BL 59 53844 0.674 0.43 0.33 - 0.35 0.16

VT-C 26 11250 0.159 0.45 0.38 - 0.33 0.15

VT-G 26 47802 0.630 0.50 0.30 - 0.49 0.31

VT-U 74 164160 2.30 0.46 0.33 - 0.40 0.25

DEC-U1:8/29-9/4 512 633881 9.21 0.42 0.35 0.24 0.34 0.25

DEC-U1:9/5-9/11 512 691211 9.32 0.40 0.31 0.23 0.32 0.23

DEC-U1:9/12-9/18 512 658166 9.23 0.39 0.31 0.19 0.39 0.32

DEC-U1:9/19-9/22 512 280087 3.86 0.38 0.31 0.16 0.25 0.21

DEC-U2:8/29-9/4 1024 455858 5.57 0.33 0.22 0.20 0.27 0.19

DEC-U2:9/5-9/11 1024 428719 5.13 0.30 0.21 0.18 0.25 0.16

DEC-U2:9/12-9/18 1024 408503 4.94 0.29 0.19 0.15 0.24 0.17

DEC-U2:9/19-9/22 1024 170397 2.00 0.26 0.19 0.15 0.17 0.11

Table 1: Bene�ts under a cache of in�nite size for each trace, measured as hit ratio, byte hit ratio, latency
reduction, hop reduction, and weighted-hop reduction.

be a good replacement algorithm for main memory
caching of web pages.

However, Figure 6(c) reveals that GD-Size(1)
achieves its high hit ratio at the price of lower byte
hit ratio. This is because GD-Size(1) considers the
saving for each cache hit as 1, regardless of the size
of document. GD-Size(packets), on the other hand,
achieves the overall highest byte hit ratio and the
second highest hit ratio (only moderately lower than
GD-Size(1)). GD-Size(packets) seeks to minimize (es-
timated) network tra�c, in which both hit ratio and
byte hit ratio play a role.

For the Virginia Tech traces, LRV outperforms
GD-Size(packets) in terms of hit ratio and byte hit
ratio. This is due to the fact that those traces have
signi�cant skews in the probability of references to
di�erent sized �les, and LRV knows the distribution
before-hand and includes it in the calculation. How-
ever, for all other traces where the skew is less signif-
icant, LRV performs worse than GD-Size(packets) in
terms of both hit ratio and byte hit ratio, despite its
heavy parameterization and foreknowledge.

LRU performs better than SIZE in terms of hit
ratio when the cache size is small (less or equal than
5% of the total date set size), but performs slightly
worse when the cache size is large. The relative
comparison of LRU and Size di�ers from the results
in [WASAF96], but agrees with those in [LRV97].

In summary, for proxy designers that seek to max-
imize hit ratio, GD-Size(1) is the appropriate algo-
rithm. If both high hit ratio and high byte hit ratio
are desired, GD-Size(packets) is the appropriate al-

gorithm.

5.3 Reduced Latency

Another major concern for proxies is to reduce the
latency of HTTP requests through caching, as nu-
merous studies have shown that the waiting time
has become the primary concern of Web users. One
study [WA97] introduced a proxy replacement algo-
rithm called Hybrid, which takes into account the dif-
ferent latencies incurred to load di�erent web pages,
and attempts to minimize the average latency. The
study [WA97] further showed that in general the al-
gorithm has a lower average latency than LRU, LFU
and SIZE.

We also designed two versions of GreedyDual-
Size that take latency into account. One, called
GD-Size(latency), sets the cost of a document to the
latency that was required to download the document.
The other, called GD-Size(avg latency), sets the cost
to the estimated download latency of a document,
using the same method of estimating latency as in
Hybrid [WA97].

Figure 7(a) shows the latency reductions for
LRU, Hybrid, GD-Size(1), GD-Size(latency) and
GD-Size(avg latency). The graphs, from left to right,
show the results for Boston University traces, DEC-
U1 traces and DEC-U2 traces. The �gure unfor-
tunately does not include results for Virginia Tech
traces because they do not have latency informa-
tion for each HTTP request. Clearly, GD-Size(1)
performs the best, yielding the highest latency re-
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Figure 6: Hit ratio and byte hit ratio comparison of the algorithms.
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duction. GD-Size(latency) and GD-Size(packets) �n-
ish the second, with LRU following close behind.
GD-Size(avg latency) performs badly for small cache
sizes, but performs very well for relatively large cache
sizes. Finally, Hybrid performs the worst.

Examination of the results shows that the reason
for Hybrid's poor performance is its low hit ratio.
In the Boston University traces, Hybrid's hit ratio
is much lower than LRU's for cache sizes � 5% of
the total data set sizes, and only slightly higher for
larger cache sizes. For all DEC traces, Hybrid's hit
ratio is much lower than LRU's, under all cache sizes.
Hybrid has a low hit ratio because it does not consider
how recently a document has been accessed during
replacement.

Since [WA97] reports that Hybrid performs well,
our results here seem to suggest that Hybrid's per-
formance is perhaps trace-dependent. In our simula-
tion of Hybrid we used the same constants in [WA97],
without tuning them to our traces. Unfortunately we
were not able to obtain the traces used in [WA97].

It is a surprise to us that GD-Size(1), which
does not take latency into account, performs bet-
ter than GD-Size(latency) and GD-Size(avg latency).
Detailed examination of the traces shows that the
latency of loading the same document varies signif-
icantly. In fact, for each of the DEC traces, vari-
ance among latencies of the same document ranges
from 5% to over 500%, with an average around 71%.
Thus, a document that was considered cheap (taking
less time to download) may turn out expensive at the
next miss, while a document that was considered ex-
pensive may actually take less time to download. The
best bet for the replacement algorithm, it seems, is
to maximize hit ratio.

In summary, GD-Size(1) is the best algorithm to
reduce average latency. The high variance among
loading latencies for the same document reduces the
e�ectiveness of latency-conscious algorithms.

5.4 Network Costs

To incorporate network cost considerations,
GD-Size(hops) sets the cost of each document to
the hop value associated with the Web server of
the document, and GD-Size(weightedhops) sets the
cost to be hops � (2 + file size=536). Figure 7(b)
and 7(c) show the hop reduction and weighted-hop
reduction for LRU, GD-Size(1), GD-Size(hops), and
GD-Size(weightedhops).

The results show that algorithms that consider
network costs do perform better than algorithms that
are oblivious to them. The results here are di�erent
from the latency results because the network cost as-
sociated with a document does not change during our

simulation. The results also show that the speci�cally
designed algorithms achieve their e�ect. For hop re-
duction, GD-Size(hops) performs the best, and for
weighted-hop reduction, GD-Size(weightedhops) per-
forms the best. This shows that GreedyDual-Size not
only can combine cost concerns nicely with size and
locality, but is also very exible and can accommo-
date a variety of performance goals.

Thus, we recommend GD-Size(hops) as the re-
placement algorithm for the regulatory role of
proxy caches. If the network cost is proportional
to the number of bytes or packets, then GD-
Size(weightedhops) is the appropriate algorithm.

5.5 Summary

Based on the above results, we have the following
recommendation. If the proxy wants high hit ra-
tio or low average latency, GD-Size(1) is the ap-
propriate algorithm. If the proxy desires high byte
hit ratio as well, then GD-Size(packets) achieves a
good balance among the di�erent goals. If the doc-
uments have associated network or monetary costs
that do not change over time, or change slowly over
time, then GD-Size(hops) or GD-Size(weightedhops)
is the appropriate algorithm. Finally, in the case of
main memory caching of web documents, GD-Size(1)
should be used because of its superior performance
under small cache sizes.

6 Conclusion

This paper introduces a simple web cache replace-
ment algorithm: GreedyDual-Size, and shows that it
outperforms existing replacement algorithms in many
performance aspects, including hit ratios, latency re-
duction, and network cost reduction. GreedyDual-
Size combines locality, cost and size considerations in
a uni�ed way without using any weighting function or
parameter. It is simple to implement and accommo-
dates a variety of performance goals. Through trace-
driven simulations, we identify the cost de�nitions
for GreedyDual-Size that maximize di�erent perfor-
mance gains. GreedyDual-Size can also be applied to
main memory caching of Web documents to further
improve performance.

The GreedyDual-Size algorithms shown so far can
only optimize one performance measure at a time. We
are looking into how to adjust the algorithm when the
goal is to optimize more than one performance mea-
sures (for example, both hit ratio and byte hit ratio).
We also plan to study the integration of hint-based
prefetching with the cache replacement algorithm.

Finally, we have shown that if an appropriate
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network cost can be associated with a document,
GreedyDual-Size algorithm can be used to adjust
the caching of di�erent documents to a�ect the
Web tra�c. In other words, if proxy caches use
the GreedyDual-Size algorithm, and they can be in-
formed of the congestion on the network, the caches
can cooperate to reduce the tra�c over the congested
links. However, how to detect congested path on the
network and how to assign appropriate cost values for
the a�ected documents are topics beyond the scope
of this paper, and remain our future work.
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