M easuring Client-Per ceived Response Times on the WWW

Ramakrishnan Rajamony and Mootaz Elnozahy
IBM Austin Research Lab, 11501 Burnet Road, Austin TX 78758
rajamony@us.ibm.com, mootaz@us.ibm.com

Abstract

The response time of a WWW service often plays an important role in its success or demise. From a user’s
perspective, the response time is the time elapsed from when a request is initiated at a client to the time that the
response is fully loaded by the client. This paper presents a framework for accurately measuring the client-perceived
response time in a WWW service. Our framework provides feedback to the service provider and eliminates the
uncertainties that are common in existing methods. This feedback can be used to determine whether performance
expectations are met, and whether additional resources (e.g. more powerful server or better network connection) are
needed. The framework can also be used when a consolidator provides Web hosting service, in which case the
framework provides quantitative measures to verify the consolidator’'s compliance to a specified Service Level
Agreement. Our approach assumes the existing infrastructure of the Internet with its current technologies and
protocols. No modification is necessary to existing browsers or servers, and we accommodate intermediate proxies
that cache documents. The only requirement is to instrument the documents to be measured, which can be done
automatically using a tool we provide.

1. Introduction and cannot represent user-perceived response times. For
instance, server latency data sheds no light on potential

Businesses increasingly use the World Wide Web problems within the network such as that caused by a
(WWW) to supply information such as news and movie SIOW Internet connection.

reviews, and perform services such as stock and A number of companies today offer to periodically poll
banking transactions for their customers. Responsive web services using a geographically distributed set of
service plays a critical role in determining end-user clients. At best, polling can generate approximation
satisfaction. In fact a customer who experiences alarge of the response time perceived by actual customers. At
delay after placing a request at a business’s web serv@forst, the geographic and temporal distribution of the
often switches to a competitor who provides fasteiholls may be completely different from that of a web
service. Two factors contribute to the response time asjte’s actual customers, leading to useless response time
perceived by a client: the network delay and the servefgata, Ultimately, the only reliable way to obtain client-
side latency (the time it takes to generate a responsfyrceived response time is to actually measure it.
from the time the request reaches the web server). Theg&les of such polling services include
are many established techniques for reducing th&eryerCheck[4], GoldTest [5], and eValid [6].

response time over the Web, including the use of .
powerful servers, reverse proxies at the server, Wehhis paper presents a novel framework for measuring
caches, and clever load balancing among clustered dp€actual response time perceived by customers as they
geographically dispersed servers. The services th&CCESS a Wep service. It does not require a Fhlrd party,
Akamai [1], Digital Island [2], and Inktomi [3] provide statistical polling, or extra workload. It is applicable to

together. or in a consolidated server, and whether the content

))) _they serve is statically or dynamically generated. Our
Given the vital role played by response times inframework also works with the existing technology
determining end-user satisfaction, businesses need fgstrictions and limitations. In particular, it does not
have quantitative information about the perceivediequire any changes to the Hyper Text Transfer
response times of their services. This informationprotocol [7], client browsers, or any existing
guides the reaction of the business if the performance {gchnology. The framework leverages the scripting and
below gxpectations. Server latency, i.e., the .timg it takegyent notification mechanisms in HTML 4.01 [8] and
to service a request once it enters a web site, is an offses scripting languages such as JavaScript 1.1 [9] to
used metric for infrastructure planning. However, servefneasure and collect client-perceived response times
latency measures do not include network interactiongithout any browser modifications. Both HTML 4.0

and JavaScript 1.1 are fairly de facto standards and are outside the bundle. We term this amside entry into
supported by the popular Netscape Navigator and the page.

Internet Explorer browsers. Finally, our methods do not
depend on the use of Java applets[10] and cookies[11],
support for which could be disabled by users.

The framework introduced here allows accurate
measurements of all instrumented entries to HTML
pages in a bundle. Furthermore, it calculates the
The response time data that we collect can beusedina response times of each embedded object such as images
variety of ways, some of which we describe here. A or Flash animations [12] within a web page.

Web service may use the data to determine whether it is .

in danger of losing its customers due to intolerable 2-1. HTML Scriptsand Event Handlers

response times. It may aso use the data to decide B

whether a proxy caching service will be useful, and if ~ The HTML standard specifies that a HTML page can
S0, where to p| ace the proxy caches. Web hosti ng IDCs contain embedded Client-SidESCI’iptS, which are
contract with businesses through Service Level executed as the page is parsed by the brdwser
Agreements (SLA), which specify the quality of service ~ Furthermore, HTML link elements can contain a script
that the IDC will provide. The ability to collect accurate ~ Snippet instead of a URI. When a link containing a
client-perceived response time values also enables the ~ SCript snippet is dereferenced, the script is executed.
creation of a new class of SLAs in which an IDC can The following paraphrases the HTML standard’s script
contract to serve some fraction of the site’s visitorsdescription [8].

within a specified amount of time. Finally, accurate A qjient-side script is a program that may

response time values can be used to differentiate accompany an HTML document or be embedded
between different proxy caching services. directly in it. The program executes on the client's
) o]) machine when the document loads, or at some other
We begin by providing some background in Section 2 time such as when a link is activated. Authors may
and describe the framework implementation in Section 4ttach a script to a HTML document such that it gets
3.1n Sectiqn 4, we analyze reall response time datg We executed every time a specific event occurs. Such
have ~obtained by instrumenting “The Wondering g¢ripts may be assigned to a number of elements via
Minstrels” web site. We describe related work in he intrinsic event attributes. Script support in

Section 5 and our conclusions in Section 6. HTML is independent of the scripting language.

Browsers today support a wide variety of scripting
languages. JavaScript [9], VBScript [13], and Tcl [14]
re three examples of popular scriptingigaages.
avaScript is by far the most popular scriptintglaage,
adwd is supported by virtually all browsers that allow

ed .
Scripting [15].

2. Background and Overview

We begin by defining some basic terms used throug
the following discussion. Aundle is a set of web pages
that have been instrumented to measure client-perceivi
response times. These may be HTML or non-HTML

pages, and could be static files or dynammallyThe HTML standard also specifies several intrinsic

generated content. The HTML pages in the bundle Ma¥%ents and the interfaces through which a client-side

contain links to each other, enabling users to traverse . . :
; ; scripts can be invoked when different events occur. The
the bundle by dereferencing hyperlinks. There can b

wo kinds of links: instrumented and uninstrumented. ﬁ"|mekeeper uses three specific events that can invoke a

An instrumented link points to a page whose responseScrlpt attached to a document.
time we want to measure when the link is dereferenced.
A page pointed to by an instrumented link is itself®
instrumented. Aruninstrumented link points to a page
for which we do not want to know the response time.

onclick(): In the context of a link, the onclick
handler is invoked when the user clicks on a link.
The link is de-referenced based on the handler's
return value.

Users arrive at a specific page within a bundle in one of
two ways, causing it to be loaded in their browser. First;
the user may have dereferenced an instrumented link
from another page within the bundle. We call this an
instrumented entry into the page. Alternatively, they
may have directly entered the page’s URL into the

browser, or may have followed a link from a page A browser can defer script parsing only if the “defer”
attribute of the SCRIPT tag is set true. In it absence,

scripts must be parsed as they are encountered.

onload(): In the context of a document, the onload
handler is triggered when a document and its
embedded elements have been fully loaded. In the

context of an OBJECT element, the onload handler
is triggered when the object is fully loaded.

onunload(): Triggered when a document is about to
be unloaded to make room for a new document, or
when the browser is being closed.

2.1. Overview

Abstractly, our scheme consists of the following four
basic steps. We describe the details of each step later in
the paper.

1.

Before sending a request to a web server, the client
browser is made to determine and remember the
current time. This action is performed using a
client-side script embedded within the currently
displayed page.

The norma browser actions cause the regquested
page and its embedded elements to be loaded and

displayed.

After the response is fully received, the client
browser computes the response time as the
difference between the current time and the start
time remembered from step 1. We again use a
client-side script to carry out the computation,
initiating this step through an onload event handler
that triggers when the page fully loads. Note that
since both the start and end times are computed on
the client, no clock synchronization is required.

Once a response time value is determined, client-

side script action transmits it to a “record keeper”

The following sections discuss these mechanisms in
detail. We use JavaScript as the scripting language in
our prototype implementation. Originally introduced by
Netscape, JavaScript has become the de facto scripting
language on thaVWW, supported by most popular
browsers including Navigator and Explorer. However,
our approach is equally valid with other scripting
languages such as VBScript[13] or Tcl [14].

3. Implementation

3.1. Timekeeper

The Timekeeper determines the current time and

computes time deltas. It occasionally uses the Librarian

to check in new time samples and to check them out
later. It carries out these actions using HTML events

and scripts. The Timekeeper can also be made to record
the identity of each instrumented page or image along

with the corresponding response time sample.

Several policies may be implemented. For instance,
response time samples could be submitted when they
are collected, submitted in bulk, or submitted only when
they are above a particular threshold value. Under some
conditions, the record keeper can be any computer on
the WWW. This could serve having a third party verify
Service Level Agreements.

Consider an instrumented link in a web page. By
definition, the link points to a page that is itself
instrumented. When a user clicks on the link, a
Timekeeper script is invoked. The script determines the

web site based on an established policy. Severg) ent time, records it using the Librarian, and then

policies may be implemented. For

time values.

instance,
response time samples could be submitted whe
they are collected, submitted in bulk, or submitted
only when they are above a particular threshol
value. The record keeper could be any web serv
on the WWW, enabling an agent other than the.
origin web server to collect and maintain responsg,,,<mitted

ermits the link to be dereferenced. After this page is
lly loaded, it's onload handler is invoked. The handler
obtains the time at which the page request was made by

Z?uerying the Librarian. It then calculates the response
i

me as the difference between the current time and the
send-time”. If the measured response time is to be
later, the handler records it using the
Librarian. Figure 1 summarizes these actions.

Steps 1, 3, and 4 are divided between two agents withiyan, the user directly types the location of a document
the browser called thEmekeeper and thelLibrarian: y P

in the address bar of a browser, the currently displayed

e The T||'nekeeper is responsib|e for Computing the document in the browser window is replaced with the

response time values. In doing so, it uses th@ne requested by the user. Before loading the new
Librarian to save and retrieve state values.document, the browser invokes @amunload handler, if

Depending on a prespecified policy, the TimekeepePne has been specified. The Timekeeper performs
also communicates the computed response timgleanup operations on this event, communicating the

samples along with other information to a recordcollected response time values to a record keeper. A
keeping web site. cleanup operation is also initiated when the user closes

: . i the browser window.
The Librarian stores and retrieves state values upon

request. It provides the Timekeeper with a well-
defined interface for performing these actions.

CSTART: User clicks on IinID

Script 1 *

sendtime = current time
Save sendtime (use Librarian)
Load page indicated by link

Script 2: onload event handler

START: User exits browser or
Loads new page

Script 3 ¢

Perform cleanup operations
(see Figure 2)

v

(END: User views paga

now = current time
delta = now — sendtime OR

(from Librarian)
Record delta (see Figure 2)

END: Browser exits

new page loads

Figure 1: Timekeeper actions

The cleanup operations performed by the Timekeeper
and its actions for informing the record keeper are
summarized in Figure 2. There are two points of entry
shown in the figure, corresponding to the unexplained
actions in Figure 1. The left hand side depicts the
Timekeeper actions on individua response time
samples. The right hand side shows the Timekeeper
actions if the browser window is closed or if the user
directly loads a new page.

The Timekeeper may implement any desired policy to
communicate the response time samples. For instance,
in order to amortize the cost of communicating the
response time samples to the record keeper, a policy to
collect some number of samples before communicating
them could be implemented. Alternately, the policy may
be to communicate only response times greater than an
upper bound. The Timekeeper actions in Figure 2

START

Qew response time sam pID

NO

Accumulate

implement the former (“‘communicate samples in bulk”)
policy. The next section describes the Timekeeper
actions to communicate the collected response time
samples in greater detalil.

3.2 Transmitting Response Time Values

The response time samples collected by the Timekeeper
and saved by the Librarian must be communicated to a
record keeper in order to be of use. Our framework
permits the record keeper can be the source web server
itself, or any other web server on the Internet. Several
policies could be established for communicating the
samples. Some examples are:

» Communicate on every sample

e Communicate after
number of samples

accumulating a prescribed

START

((cleanup operation) >

Retrieve saved samples

sample?

Save sample using
Librarian

v

END

> from Librarian

!

Compose record keeper
URL, access record keeper
(see Section 3.2)

END

Figure 2: Timekeeper operations contd. (implements “communicate samples in bulk” policy)

« Communicate only those samples that exceed apre- current window objeét We use this feature to
established threshold vaue. communicate with the record keeper by opening a new
window with the response time URL. The record keeper
is set up to respond with a page that closes the window.
This is done with a page with an onload handler that
For any established policy, we assume that the source performs a tvindow.close()" operation.
web server provides the Timekeeper with a JavaScript
function to determine when and what samples to
communicate.

e Communicate only samples from favored customers
(as determined by a cookie).

Since the unload handler is invoked when each
document is displaced from the browser window, the
Timekeeper needs to distinguish between the unload
The Timekeeper uses a JavaScript Image object in order handler invocations on an instrumented entry to the next
to perform the communication. Image objects were ~ page, or on an outside entry to an arbitrary page that
introduced in client—side JavaScript 1.1 and are may be inside or outside the bundle. We make the
primarily used to preload images [9]. By setting $ne distinction by setting a variable in the window object

attribute of an image object to a desired URL, thebefore carrying out an instrumented entry to the next
specified content is loaded and placed in the browsergage. The unload handler checks whether this variable
cache. By initiating actions such as image replacemeri$ set in the window object. If it finds the variable set,

and animation only after all the desired images arave know that the current page is being displaced to
preloaded, the quality of visual effects in the browseimake room for an instrumented page in the bundle.
can be enhanced. Image loading does not blocRtherwise, the Timekeeper performs the cleanup
JavaScript execution. Instead, the image content igperations from within the unload handler. We reset this
loaded asynchronously alongside other browser actiong/ariable in readiness for the next unload within the

onload handler that is invoked after an instrumented

When the Timekeeper needs to communicate with thgage has fully loaded.

record keeper, it composes a special URL containin
the data. This URL accesses a script on the recor@ince opening a separate communication window could
keeper site. The record keeper extracts informatiosletract from the end-user experience, the Timekeeper
from the URL, and replies with a response. Thehas two choices. First, it can make the communication
response is set to be non-cacheable in order to prevewindow small (but see Section 3.3.2). Second, it can
intervening proxies from squelching record keeperdecide that losing the last few collected samples is
communication. better than opening a new window.

HTML specifications stipulate that if the currently Yet another option is to use a cookie. If the client
loaded document has amnload event handler browser has cookies enabled, the Timekeeper could also
specified, that handler must be invoked before a newave the information in a cookie for transmission at a
document is loaded. The unload handler is also invoketter date. This cookie could be expired as soon as a
if the user closes the browser window. The Timekeepeliequest carrying it is sent to the source web server,
uses this event handler to communicate with the recorgausing it to no longer be sent out on future requests.
keeper when the user visits an uninstrumented page tue to JavaScript security restrictions that control
makes an outside entry to a page in the bundle. access to cookies from scripts, the record keeper will

. .) . . have to be the same as the source web server in this
Using the image preload technique to communicate wit

the record keeper on a browser close is problematic.

Consider a case where the user has closed the brows8(3. The Librarian

and the unload handler has initiated the record keeper

image load. Since image loading is doneThe Librarian is responsible for storing and retrieving
asynchronously, the browser may die even before théme samples on behalf of the Timekeeper. At present,
TCP connection to the record keeper is fu||y open_tO the best of our knowledge, there is no straightforward
Unfortunately, to the best of our knowledge, neithermechanism in a browser to maintain state across page
Navigator nor Explorer support UDP URL schemesloads. In particular, for security reasons, browsers do
Consequently, we use a different method for recordiot permit client-side scripts to maintain state across
keeper communication on a browser close.

In both Navigator and Explorer, a new browser window: For example, enable JavaScript in your browser and

can dbe rgliably o%er;)ed f“.)m z;m unload :}?né“e;' tﬁ NeWisit http://www.cs rice.edu/~rrk/neverclose.html. Many
window is opened by using thapen method of the web sites use this annoying technique to make it

difficult for usersto leave their site.

function OpenStateWindow()
{ /] Open a state window if needed
var h = self.open (*", “statewin”,
“width=100,height=100,location=no”);
if (typeof h.valid == “undefined”) {
h.document.write (“Benign msg for user”);
h.document.close ();
h.valid = true; // Don't write next time
}

return h;

}

function SaveSendtime () {
var h = OpenStateWindow ();
h.sendtime = (new Date()).getTime ();
}

function GetSendtime () {
var h = OpenStateWindow ();
return h.sendtime; // can be undefined

}

function RTonload () { // onload handler
var sendtime = GetSendtime ();
if (typeof sendtime != “undefined”) {
var now = new Date ();
var delta = now.getTime () — sendtime;
/I Accumulate delta, or transmit now
}
}

function RTonclick () { // link onclick handler
SaveSendtime ();
return true; // Permit link to be dereferenced

}

Figure 3: Timekeeper operation with Separate Window
Librarian

page loads. When a new document is loaded, all of the
scripts and variables associated with a page are cleared.
In this section, we present three approaches for
implementing the Librarian without resorting to browser
modifications.

3.3.1 Saving Statein a Cookie

HTTP, the protocol used for retrieving web pages, is
inherently stateless [7]. Cookies were introduced as a
mechanism to enable clients to build stateful sessions on
top of HTTP [11]. Simply stated, a cookie is a tag
created by the server and delivered to the client along
with an HTTP response. On subseguent requests to the
same server, the client presents the tag along with its
request. Cookies permit a session to be built using
individual HTTP transactions.

Cookies can be subverted for maintaining state. While it
is the server that typically sets cookies, client-side
scripts also have the ability to set, modify, and retrieve
cookies. Thus, the Librarian could use cookies to
maintain state across page loads. The Librarian could
use JavaScript when state needs to be saved, and
retrieve it again using JavaScript.

The naive approach described above has a severe
drawback. Today, the WWW is dotted with caches and
proxies. The idea behind caching is to place an object
“closer” to the user, reducing the demands placed by a
request on both the network and the origin web server,
enabling it to be serviced quickly. However, since
cookies are used to create sessions out of HTTP, a
cache that observes a request with an attached cookie
typically doesnot service the request forwarding it
instead to the origin web server [7]. This is the correct
approach since two requests for the same URL with
different cookies could potentially lead to different
responses. Consequently, using cookies to maintain
state would cause each request to be sent to the origin
web server, negating the usefulness of proxies and
caches. The cookie approach is therefore practical only
when the content being delivered is itself dynamic, with
no intervening proxy caching it.

Browser window on desktop

Response Time Frame: INVISIBLE to user
Frame name = “RTFrame”
Contains no document

Main Frame: VISIBLE to user
Sized to full browser window
Displays documents loaded by user

function SaveSendtime () {
var now = new Date ();
top.RTFrame.sendtime = now.getTime ();

}

function GetSendtime () {
if (top.frames.length == 0 ||
top.frames[0].name != “RTFrame”)
top.location = Frameset page URL;
else
return top.RTFrame.sendtime;

}

function RTonload is same as in Figure 3
function RTonclick is same as in Figure 3

Figure 4: Timekeeper and Librarian operations
when using frames

3.3.2 Using a Separate Window through or replaced by navigating in the second
frame.

Since client-side JavaScript enables state to be stored in
awindow object, the simplest approach isto open a new
window on the first outside entry to a web page in the
bundle and to save the state there. For as long as this
window stays open and until a different URL is loaded
in it, state stored in its context can be recovered. Figure
3 shows sample JavaScript code that achieves this goal.

The Librarian can use frames to save state by placing
each instrumented page in the bundle within a frameset
document that divides the top-level browser window
into two frames: the response-time frame and the main
frame. The response-time frame is set to zero size and is
therefore not visible to the user. The main frame holds
the instrumented content.

One limitation of this approach is the presence of the i

state window on the user's desktop. Even though thid Nere are two ways a user can make an uninstrumented
window is small and can be made to contain a benigfilry (© @ page. First, a user could directly enter the
message, a user may arbitrarily close the windowYRL of thg frameset document. This causes both the
Furthermore, JavaScript security restrictions prevent fSPonse-time frame and the data frame to be loaded
script from opening a window in a minimized state, orWithin the browser. Alternately, the user could dlrectly
with a size smaller than a prescribed minimum, unles§Nter the URL of the data frame in the browser's

the script has th&JniversalBrowserWrite privilege. 'ocation bar. To force the browser to load the
While this privilege can be obtained by involving the corresponding frameset document, each instrumented

user, the process is fairly awkward and cumbersome. Pad€ in the bundle contains JavaScript to check for the
existence of the response-time frame. The existence

3.3.3 The Frame Approach check is made after the main frame has loaded. If the
response time frame does not exist, the JavaScript

i , Brces the corresponding frameset document to be
browser window on the user’s desktop could be used tp/- o4 in the top-level browser window

save state. However, in client-side JavaScript, the

window object does not have a one-to-one correlationState saving is accomplished exactly as in the case with
with a browser window. More specifically, each HTML the separate window. Figure 4 explains the approach,
frame within a browser window corresponds to ashowing how the Timekeeper and the Librarian interact
separate window object. This correspondence paves tliegether to determine the response time values.

way for us to save state in the window object context o
a frame within the same browser window as that
displaying the document being loaded by the user.

{/isiting the site through a browser window causes the
following actions to take place. On the first outside
entry to an uninstrumented page, the JavaScript actions
The window object is the global object and executionin Figure 4 cause the corresponding frameset document
context in client-side JavaScript. There is no directo be loaded. As long as the user makes instrumented
correlation between window as viewed in a desktop entries to the other pages in the bundle, the response
environment, and thaindow object. A window object time frame stays in the top-level browser window. The
is created for each desktop-level windaw frame response-time frame needs to be reloaded only if the
within a browser desktop window that displays a HTMLuUser makes an uninstrumented entry to a page in the
document. From our perspective, the interestindoundle.

property of client-side JavaScript is that it permits
scripts executing in the context of one window object t
access variables and scripts executing in anoth
window object’s context [9].

The main limitation of this approach is the need for
qoading the frameset document on uninstrumented
Hntries to pages in the bundle. When encountering a
page with frames, the browser first obtains the
The HTML standard describes frames as follows,container” frameset document. Only after receiving the

permitting frames to be created with zero size [8]. Suclgontainer frameset can the browser determine what
frames will be invisible to the user. documents to obtain and render in the internal frames.

HTML frames allow authors to present documentsThiS could give rise to extra client-server transactions
in multiple views, which may be independent 2nd delays for the user.

windows or subwindows. Multiple views offer Three factors mitigate the problem caused by the
designers a way to keep certain information visible frameset document. First, the web site might already
while other views are scrolled or replaced. Forhave a frame that exists on all pages, enabling the
example, within the same window, one frame might| ibrarian to simply use that frame. Second, the extra
display a static banner, a second a navigation mendglient-server transactions (when the Librarian uses a
and a third the main document that can be SCI’O”ededicated frame) are encountered on|y during'rhh'gﬂ

uninstrumented entry to a web page. Subsequent function SaveSendtime () {

instrumented browsing occurs at full speed. Findly, it var s = (new Date()).getTime ();
may be possible to avoid the extra transactions by window.name +=‘_RT_" +s;
setting a long lifetime for the frameset documents. }

HTTP permits content to be delivered with explicit

expiration times, allowing intervening caches and the function GetSendtime () {

client to cache content and use it without checking for var n = window.name;

validity against the origin web server. By providing the var rt = n.indexOf (_RT_));
frameset document with a long lifetime, the browser var s = n.substring (rt+4, n.length);
needs to fetch the container frameset only when it is window.name = n.substring (O, rt);
absent from the local browser cache. Consequently, return s;

when the user revisits a bundle at periodic intervals, as }

often happens since people are creatures of habit, the
browser will be able to use a cached copy of the
frameset document. Only the main frame’s content will
need to be fetched in such cases.

function RTonload is same as in Figure 3
function RTonclick is same as in Figure 3

Figure 5: Timekeeper and Librarian operations
3.3.4 Using the Window Name when using window names

In Section 3.3.3 we described the window object inthe name after the retrievalFigure 5 illustrates the
client-side JavaScript. Every window object has gdetails of this approach.

name property. This property exists primarily for use an obvious limitation of using the window name is the
as the value of 8TML TARGET attribute in the<A> race condition it introduces. In order to compute
or <FORM> tags. In essence, tHARGET attribute yesponse times, the window name is changed just prior
enables an anchor or form to dlsplay its results (WhEEb a new document being loaded in a window. The
the linked document is dereferenced or the form isaved state is retrieved and the window name restored
submitted) in the window with the supplied name. only when the document has fully loaded. During this
The initial window and all new browser windows interval, the window cannot be referred to by its original

opened by most versions of both Explorer and'@me.

Navigator have no pre-definechame property. The race condition causes a problem partly due to the
Consequently, these windows cannot be addressed witfjykward interface that client-side JavaScript provides
a TARGET attribute. Thename property is read-only for referring to a window. Given a window name, the
in JavaScript 1.0, creating a problem when the initiab,«“y way to obtain a reference to the window is by
window has to be addressed. JavaScript 1.1 resolvgﬁsing thewindow.open method. The name supplied to
this problem by enabling the name attribute to behe method must be exact, with no wildcards allowed.
modified from within a script [9]. Furthermore, if a window with the supplied name does
When a new page is loaded in a window, all of thghot exist, the method sim.ply opens a new wim_jow with
scripts and variables associated with the window objedfat name. These properties of dpen interface imply

are cleared. However, a windowsame property that if a window with an ongoing instrumented page

persists across page loads. Thus a web page loaded inf8@d is targeted, a new window with the supplied name
a window can be the target of actions in anothefS opened. This may distract and confuse the user.

window, even if the loaded content does not explicitlyn the next section, we describe how the window name

set the window name. This feature enables the samgproach can be combined with the use of separate
content to be loaded in the main browser window or in gindows to yield a practical, useful solution.

popup window, depending on the context from where it _ _
is referenced. 3.3.5. Separate Windows + Window Names

We can leverage the persistence ofrtaee property 'IEaken individually, the separate window and window
to store state. The idea is to append the desired state t0 L
name schemes suffer from limitations when used to

the window name and to retrieve it from there, reStorinqmplement the Librarian. The separate window could be
a distraction for the user, since it must remain open for

° We have empirically determined that both Navigator
and Explorer support names over 1000 characters.

as long as there are instrumented entries to the bundle. context, by using thePercentLoaded public
The window name scheme exposes a race condition that method of the MacroMedia Flash plugin [16].
could open a new browser window on the user's

desktop, contrary to the content developer’s intent. 3. Our implementation uses client-side JavaScript 1.1.

Consequently, it will not work with browsers that
However, the separate window and the window name do not support JavaScript 1.1, or that have disabled
schemes can be combined together to yield a practical JavaScript. In particular, our implementation
solution that does not suffer from these limitations. The requires Navigator versions above 3.x, and
idea is to divide the windows in which the instrumented Explorer versions above 4.0.

pages will be displayed into two sets: than windows .

and thechild windows. Main windows are those that are 4. Status and Evaluation

not targets for any content. Child windows are those iQNe have implemented our scheme on “The Wondering
which content is loaded by actions in both main anq\/linstrels," a poem-of-the-day web site that receives

child windows. several hundred hits a day. The site can be accessed at
For a page that is loaded in a main window, thehttp://www.cs.rice.edu/~rrk/minstrels.html, and has over
Librarian saves state in that window's name. For a pagé50 poems (now) that range in size from 2.6KBytes to
that is loaded in a child window, the Librarian saves30 Kbytes. A few files that index all the poems take up
state as a property in the context of the child window'sabout 230Kbytes. We instrumented this site using an
ancestor. The ancestor can be determined by followingutomated tool we have developed, setting the record
the opener property of the child window, which is a keeper to be www.cs.utexas.edu. Note that the origin
reference to the window object that opened the childveb server and the record keeper are different servers.
WIndOW.. State saving and .retr'|evmg will pe An 00:00 | 08:00 | 16:00
accomplished by using a combination of the scriptg ny o 0 o
shown in Figures 4 and 5. Note that it is totally safe tq time 07:59 | 15559 | 23:59
change a main window's name, since by definition, - : -
main window can never be the target for any content. Al 971 161 411 399

3.4. Limitations Unknown TLD 92 25 44 23

TLD: .us, .com,
.org, .net, .edu, .qa
1. We cannot compute response times for outside

entries to instrumented web pages. For example, we All other TLDs 194 64 82 48
cannot compute response times for pages loaded hy
directly entering a URL into a browser’s location

bar. Table 1: Distribution of collected response time values

Our schemes have the following limitations: 685 72 285 328

2. Our scheme handles instrumented entries to HTMiTable 1 shows the distribution of the response time
pages and objects embedded within HTML pagesyvalues we have collected from real visitors to the site
We cannot compute response times for othefor files between 4400 and 4900 bytes in size. As of Jan
MIME types. For instance, we cannot compute thep1 2001, these were the most frequently accessed files
response times for pure images (outside of a HTMLfrom the site. The actual web server response is larger
document) directly loaded by a browser, or for PDFpy about 260 bytes, which is the approximate size of the
documents loaded and displayed by the Adobeq4TTP header for these responses. We have broken
plugin. In order to handle such MIME types, we down the collected values by the time when the request
need plugin support in the form of a public methodwas serviced, and by the top-level domain (TLD) of the
that can be used to determine the load status of thgient making the request. All times listed are behind
content. Flash animations are an example of &TC by 6 hours. We were unable to resolve hostnames
MIME type we can handle even when thefor a number of clients accessing the site. These
animation is loaded outside of arOBJECT> ynresolved hostnames are listed as “Unknown” and

account for 9.5% of the collected values.

—— All TLDs, all times ? —+— Midnight - 8AM, All TLDs

L i

Nl o

AN NEE |
o TR

OIOZ AT, L VWK“AE Pt

0 2 4 6 8 10 0 2 4
Histogram bin (seconds)

Normalized fraction of RT values

Normalized fraction of RT values

Histogram bin (seconds)

. o i Figure 7: Response time distribution from 0000-0759 CST
Figure 6: Distribution of collected response time values

Figure 6 shows a histogram of the normalized response
time values, irrespective of the TLD from where or the
time the request was made. Each data point in the figure
indicates the number of response time values that fall
into a 200 ms bin to the right of that point. All response
times exceeding 10.8 seconds are aggregated and placed
into the bin at 11 seconds. There are several interesting
points to note about the figure. First, a small fraction of
the requests (about 1.8%) were satisfied within 200ms.
Thisis probably due to a cache hit in the client itself, or 0 ‘
in a proxy very close to it. Second, by considering the 0 2
average attention span window to be 4 seconds (i.e., “I

want my page to load in 4 seconds or | get bored”), we] o
see that 16% of the responses were served outside tiFidure 8: Response time distribution from 0800-1559 CST

average attention span window. 0.14

——8AM - 4PM, All TLDs

0.12

0.14 1‘
0.1 \
|

0.08 I\
‘|

0.06

0.04 L*
0:02 J vm A

Normalized fraction of RT values

LAV

¥

6 8 10

Histogram bin (seconds)

Breaking down the response time values by time perio —+—4PM - Midnight, All TLDs

illustrates the variation in response times over the
course of a day. Figures 7, 8, and 9 show the respon
time values for the midnight-8AM, 8AM-4PM, and
4PM-Midnight time windows respectively. These
figures show that the fraction of pages that take longe
than 4 seconds to load decreases from 22% in the nigl
to 19% during the morning, and to 11% during the
afternoon.

0.12

0.1

0.08

0.06

\—-0—___‘_

«R
\.AVA.A
0.02 \,AUI*
Figures 10 and 11 break up the response time values | o m e WZ’
4 6 8 10

Normalized fraction of RT values

top-level domain. We group together all com, org, edu 0 2

net, us, and ca domains into one group, and all othe Histogram bin (seconds)

known TLDs into another. We realize that com, org,) o

and net clients could be spread throughout the worlc, Fidure 9: Response time distribution from 1600-2359 CST

However, this crude division allows us to focus on thegroup are from the United Kingdom and Argentina.

response times faced by visitors located far away fronfhile only 12.5% of the English faced response times

the Minstrels web site. larger than 4 seconds, fully 58% of the Argentines fell
,) into the same category. Interestingly, if the Argentine

Figure 11 clearly shows the larger response times Segfitors were all served within 4 seconds, only 15% of

by far-away visitors. About 26% of the users in thisye faraway visitors would have waited for more than 4

group faced delays of more than 4 seconds. Furthefecongs. These results indicate that if the Minstrels site
analysis reveals that the two largest set of visitors in this

were to contract with a proxy caching service, placing
just one cache in close proximity to the Argentine —e—All times, com+edu+net+org+us+ca
visitors would provide the most benefit. 0.1

The nature of analysis presented here is similar to what
acommercial site would want to conduct on its visitors.
Our framework enables such an analysis and shows how
a site appears to different user groups accessing it. We
would like to stress here that such an analysis would not
be possible using information gathered at the server
only, as it would lack the actual networking effects.

0.08

0.06

1
0.04
0.02 L\nﬁﬁﬂ T

Normalized fraction of RT values

Also, we would like to stress that traditional approaches . ﬂyw

such as pinging the server would have a prohibitive cost ; W A

emulating al possible users and their geographic 0l ‘ IS S Lt sntanl PO
distribution. Our experience with measuring actua 0 2 4 6 8 10
response times seen by real visitors to the Minstrels site Histogram bin (seconds)

illustrates the need for a measurement framework such
as ours. The analysis we describe here is one of many
that can be carried out with real response-time data.

Figure 10: Response time distribution for shown TLDs

5. Related Work oo —+—All times, all other

0.06 TLDs except B
Unknown

A number of web sites contract with third party
companies to poll their servers at periodic intervals.
Typically, a battery of geographically distributed clients
“ping” the server with fictitious transactions. The site
owner specifies the frequency of polling and the
geographic distribution. Examples of such polling
services include ServerChétk[4], GoldTest" [5],

0.05
]
0.04
0.03 N
0.02 m J

Normalized fraction of RT values

and evalid” [6]. Polling suffers from several ' UH *

drawbacks. First, the data obtained through polling is 5 o1 ¢ 4 2ol 10 1
statistical approximation to the response time seen | V ﬂ j V

real visitors to the web site. Polling can also increas 0 1

the load generated on a site’s servers. Ensuring accur 0 2 4 6 8 10
or complete geographic coverage using polling is als Histogram bin (seconds)

difficult. Finally, some services such as financial
transactions may be cumbersome to measure usir

fictitious requests. Tivoli has also introduced a product around September

Candle’s eBusiness Assurance (8BA product [17] 2000 called Quality of Service Monitor (QoS), as part
provides an accurate breakdown of the time spent by @ their Web Management Solutions package [18]. QoS
user on a web page. eBA uses an applet to store state ¢#S a proxy that sts inside the web site firewall to
the client browser between page loads. The time dfitercept responses as they leave the site. The proxy
which the user clicks on a link is stored in the applet'edds a small amount of JavaScript code to the content
context and the response time computed after the paged also remembers the time at which the response is
fully loads within the browser. eBA appears to havesent back. The added script contacts the QoS proxy
been introduced around September 2000. In comparisomhen the page has finished rendering. QoS then
to our work, eBA’s main difference is its dependence orapproximates the response time seen by the client as the
a Java applet in order to save state. Since applets ailelta between when the response is sent to the client,
still not widely used owing to their (as perceived) and when the proxy hears back from the client. There
heavyweight nature, this is a fairly significant drawback.are two main differences between the QoS work and
In contrast, our scheme requires only JavaScript suppoours. First, in order to avoid clock synchronization
in order to compute response times. A significantporoblems, the record keeper must be the QoS proxy.
fraction of the sites on the web today (IBM, CNN, Second, QoS calculates the response time from the
ETrade, CNBC, Disney, etc.) use JavaScript, greatlyoint of view of the proxy, giving rise to three important
reducing the barrier to using a scheme such as ours. implications. First, response times can be computed

Figure 11: Response time distribution of “far away” TLDs

only if the client contacts the proxy after each page is
rendered, adding an extra client--proxy communication
to every transaction. Second, the client most likely does
not have to creste a new TCP connection to
communicate with the proxy after rendering the page.
Consequently, the measured response time does not take
TCP connection setup times into account. Third, QoS
cannot determine response times for requests fulfilled
by intermediate proxy caches. QoS is more suited for
environments such as e-commerce transactions, where
the origin server is likely to be involved in every
response. Furthermore, QoS also measures the back-end
transaction service time (by tagging requests as the
enter the site), and the page render time (measured by
the added script), both of which are very valuable.

6. Conclusions

On the World Wide Web, the response time seen by a
client is a key metric that determines end-user
satisfaction. Most schemes in existence today rely on
polling the web server using a set of geographicaly
dispersed clients in order to obtain a representative set
of response time samples. Polling yields data that is at
worst inaccurate, and at best, statistical in nature.

In this paper, we have presented a framework for
accurately measuring the response time perceived by a
client browser. We are able to measure response times
for al vists to pages instrumented using our
framework, through hyperlinks that have been
instrumented. We can also measure response times for
all objects embedded within a web page. Our
framework imposes very little overhead on the client
computer, and fits the needs of various existing
commercia web sites.

We divide the work in collecting response time samples
between a Timekeeper, who computes all time values,
and a Librarian, who provides the Timekeeper with
services for saving and retrieving state. The Timekeeper
implementation is fairly straightforward. On the other
hand, implementing the Librarian is challenging owing
to the difficulty in persisting state across page loads in
existing browsers. We present several solutions to this
problem, which are well suited for use in existing
commercia web sites.

Acknowledgements

We would like to thank Sitaram lyer for alowing us to
instrument the Wondering Minstrels web site and
allowing us to publish the aggregate data. We would
also like to thank the Computer Science departments at
Rice University and UT Austin for use of their web

servers. Brian Pinkerton, our shepherd, made many
valuable comments that have improved the quality of
this paper. Finally, we would like to thank our

anonymous reviewers for their helpful insights.

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

Akamai FreeFlow™,
html/en/sv/content_delivery.html,
Technologies Inc.

Digital Island Inc., Footprint™, http://www.digital
island.net/services/cd/footprint.shtml

Inktomi Corporation, www.inktomi.com

NetMechanics ServerCheck™: http://www.netme
chanics.com/monitor.htm, NetMechanics Inc.
GoldTest™: http://www.keynote.com/services/
services/keyreadiness/gol dtest.html, Keynote
Systems Inc.

evalid™ Test Services: http://www.soft.com/
eValid/ServicesMonitoring/index.html, Software
Research Inc.

J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. BernersLee, “Hypertext Transfer
Protocol — HTTP 1.1", RFC 2616, June 1999.

Dave Raggett, Arnaud Le Hors, and lan Jacobs,
“HTML 4.01 Specification”, W3C, December
1999.

David Flanagan. JavaScript, The Definitive Guide,
O'Reilly & Associates Inc., 1998

K. Arnold, J. Gosling, and D. Holmes, “The Java
Programming Language”, Addison-Wesl&000.

D. Kristol and L Montulli, “HTTP State
Management Mechanism”, RFC 2109, February
1997.

Macromedia Flash 5, http://www.macromedia.com
[/software/flash/, Macromedia Inc.

Microsoft Scripting Technologies: VBScript, http:
/Imsdn.microsoft.com/scripting/default.htm?/scripti
ng/vbscript/default.htm, Microsoft Corporation.
John K. Ousterhout, Tcl and the Tk Toolkit,
Addison-Wesley Publishing Company, 1994.
Microsoft Corporation, “Using VBScript and
Jscript on a web page”, http://msdn.microsoft.com
llibrary/techart/msdn_vbnjscrpt.htm

Flash methods, http://www.macromedia.
com/support/flash/publishexport/scriptingwithflash/
scriptingwithflash_03.html, Macromedia Inc.
eBusiness Assurafte http://www.candle.com/
solutions_t/enduser_solutions/site_performance_an
alysis_external/index.html, Candle Corporation.
Tivoli Web Management Solutions, http://Awww.
tivoli.com/products/demos/twsm.html, IBM
Corporation

http://www.akamai .com/
Akamai

