

Measuring Client-Perceived Response Times on the WWW
Ramakrishnan Rajamony and Mootaz Elnozahy

IBM Austin Research Lab, 11501 Burnet Road, Austin TX 78758
rajamony@us.ibm.com, mootaz@us.ibm.com

Abstract

The response time of a WWW service often plays an important role in its success or demise. From a user’s
perspective, the response time is the time elapsed from when a request is initiated at a client to the time that the
response is fully loaded by the client. This paper presents a framework for accurately measuring the client-perceived
response time in a WWW service. Our framework provides feedback to the service provider and eliminates the
uncertainties that are common in existing methods. This feedback can be used to determine whether performance
expectations are met, and whether additional resources (e.g. more powerful server or better network connection) are
needed. The framework can also be used when a consolidator provides Web hosting service, in which case the
framework provides quantitative measures to verify the consolidator’s compliance to a specified Service Level
Agreement. Our approach assumes the existing infrastructure of the Internet with its current technologies and
protocols. No modification is necessary to existing browsers or servers, and we accommodate intermediate proxies
that cache documents. The only requirement is to instrument the documents to be measured, which can be done
automatically using a tool we provide.

1. Introduction

 Businesses increasingly use the World Wide Web
(WWW) to supply information such as news and movie
reviews, and perform services such as stock and
banking transactions for their customers. Responsive
service plays a critical role in determining end-user
satisfaction. In fact a customer who experiences a large
delay after placing a request at a business’s web server
often switches to a competitor who provides faster
service. Two factors contribute to the response time as
perceived by a client: the network delay and the server-
side latency (the time it takes to generate a response
from the time the request reaches the web server). There
are many established techniques for reducing the
response time over the Web, including the use of
powerful servers, reverse proxies at the server, Web
caches, and clever load balancing among clustered or
geographically dispersed servers. The services that
Akamai [1], Digital Island [2], and Inktomi [3] provide
are examples of how these techniques could work
together.

Given the vital role played by response times in
determining end-user satisfaction, businesses need to
have quantitative information about the perceived
response times of their services. This information
guides the reaction of the business if the performance is
below expectations. Server latency, i.e., the time it takes
to service a request once it enters a web site, is an oft-
used metric for infrastructure planning. However, server
latency measures do not include network interactions

and cannot represent user-perceived response times. For
instance, server latency data sheds no light on potential
problems within the network such as that caused by a
slow Internet connection.

A number of companies today offer to periodically poll
Web services using a geographically distributed set of
clients. At best, polling can generate an approximation
of the response time perceived by actual customers. At
worst, the geographic and temporal distribution of the
polls may be completely different from that of a web
site’s actual customers, leading to useless response time
data. Ultimately, the only reliable way to obtain client-
perceived response time is to actually measure it.
Examples of such polling services include
ServerCheck[4], GoldTest [5], and eValid [6].

This paper presents a novel framework for measuring
the actual response time perceived by customers as they
access a Web service. It does not require a third party,
statistical polling, or extra workload. It is applicable to
any business, whether they run their services “in-house”
or in a consolidated server, and whether the content
they serve is statically or dynamically generated. Our
framework also works with the existing technology
restrictions and limitations. In particular, it does not
require any changes to the Hyper Text Transfer
Protocol [7], client browsers, or any existing
technology. The framework leverages the scripting and
event notification mechanisms in HTML 4.01 [8] and
uses scripting languages such as JavaScript 1.1 [9] to
measure and collect client-perceived response times
without any browser modifications. Both HTML 4.0

and JavaScript 1.1 are fairly de facto standards and are
supported by the popular Netscape Navigator and
Internet Explorer browsers. Finally, our methods do not
depend on the use of Java applets [10] and cookies [11],
support for which could be disabled by users.

The response time data that we collect can be used in a
variety of ways, some of which we describe here. A
Web service may use the data to determine whether it is
in danger of losing its customers due to intolerable
response times. It may also use the data to decide
whether a proxy caching service will be useful, and if
so, where to place the proxy caches. Web hosting IDCs
contract with businesses through Service Level
Agreements (SLA), which specify the quality of service
that the IDC will provide. The ability to collect accurate
client-perceived response time values also enables the
creation of a new class of SLAs in which an IDC can
contract to serve some fraction of the site’s visitors
within a specified amount of time. Finally, accurate
response time values can be used to differentiate
between different proxy caching services.

We begin by providing some background in Section 2
and describe the framework implementation in Section
3. In Section 4, we analyze real response time data we
have obtained by instrumenting “The Wondering
Minstrels” web site. We describe related work in
Section 5 and our conclusions in Section 6.

2. Background and Overview

We begin by defining some basic terms used through
the following discussion. A bundle is a set of web pages
that have been instrumented to measure client-perceived
response times. These may be HTML or non-HTML
pages, and could be static files or dynamically
generated content. The HTML pages in the bundle may
contain links to each other, enabling users to traverse
the bundle by dereferencing hyperlinks. There can be
two kinds of links: instrumented and uninstrumented.
An instrumented link points to a page whose response
time we want to measure when the link is dereferenced.
A page pointed to by an instrumented link is itself
instrumented. An uninstrumented link points to a page
for which we do not want to know the response time.

Users arrive at a specific page within a bundle in one of
two ways, causing it to be loaded in their browser. First,
the user may have dereferenced an instrumented link
from another page within the bundle. We call this an
instrumented entry into the page. Alternatively, they
may have directly entered the page’s URL into the
browser, or may have followed a link from a page

outside the bundle. We term this an outside entry into
the page.

The framework introduced here allows accurate
measurements of all instrumented entries to HTML
pages in a bundle. Furthermore, it calculates the
response times of each embedded object such as images
or Flash animations [12] within a web page.

2.1. HTML Scripts and Event Handlers

The HTML standard specifies that a HTML page can
contain embedded client-side scripts, which are
executed as the page is parsed by the browser1.
Furthermore, HTML link elements can contain a script
snippet instead of a URI. When a link containing a
script snippet is dereferenced, the script is executed.
The following paraphrases the HTML standard’s script
description [8].

A client-side script is a program that may
accompany an HTML document or be embedded
directly in it. The program executes on the client's
machine when the document loads, or at some other
time such as when a link is activated. Authors may
attach a script to a HTML document such that it gets
executed every time a specific event occurs. Such
scripts may be assigned to a number of elements via
the intrinsic event attributes. Script support in
HTML is independent of the scripting language.

Browsers today support a wide variety of scripting
languages. JavaScript [9], VBScript [13], and Tcl [14]
are three examples of popular scripting languages.
JavaScript is by far the most popular scripting language,
and is supported by virtually all browsers that allow
scripting [15].

The HTML standard also specifies several intrinsic
events and the interfaces through which a client-side
scripts can be invoked when different events occur. The
Timekeeper uses three specific events that can invoke a
script attached to a document:

• onclick(): In the context of a link, the onclick
handler is invoked when the user clicks on a link.
The link is de-referenced based on the handler’s
return value.

• onload(): In the context of a document, the onload
handler is triggered when a document and its
embedded elements have been fully loaded. In the

1 A browser can defer script parsing only if the “defer”
attribute of the SCRIPT tag is set true. In it absence,
scripts must be parsed as they are encountered.

context of an OBJECT element, the onload handler
is triggered when the object is fully loaded.

• onunload(): Triggered when a document is about to
be unloaded to make room for a new document, or
when the browser is being closed.

2.1. Overview

Abstractly, our scheme consists of the following four
basic steps. We describe the details of each step later in
the paper.

1. Before sending a request to a web server, the client
browser is made to determine and remember the
current time. This action is performed using a
client-side script embedded within the currently
displayed page.

2. The normal browser actions cause the requested
page and its embedded elements to be loaded and
displayed.

3. After the response is fully received, the client
browser computes the response time as the
difference between the current time and the start
time remembered from step 1. We again use a
client-side script to carry out the computation,
initiating this step through an onload event handler
that triggers when the page fully loads. Note that
since both the start and end times are computed on
the client, no clock synchronization is required.

4. Once a response time value is determined, client-
side script action transmits it to a “record keeper”
web site based on an established policy. Several
policies may be implemented. For instance,
response time samples could be submitted when
they are collected, submitted in bulk, or submitted
only when they are above a particular threshold
value. The record keeper could be any web server
on the WWW, enabling an agent other than the
origin web server to collect and maintain response
time values.

Steps 1, 3, and 4 are divided between two agents within
the browser called the Timekeeper and the Librarian:

• The Timekeeper is responsible for computing the
response time values. In doing so, it uses the
Librarian to save and retrieve state values.
Depending on a prespecified policy, the Timekeeper
also communicates the computed response time
samples along with other information to a record
keeping web site.

• The Librarian stores and retrieves state values upon
request. It provides the Timekeeper with a well-
defined interface for performing these actions.

The following sections discuss these mechanisms in
detail. We use JavaScript as the scripting language in
our prototype implementation. Originally introduced by
Netscape, JavaScript has become the de facto scripting
language on the WWW, supported by most popular
browsers including Navigator and Explorer. However,
our approach is equally valid with other scripting
languages such as VBScript[13] or Tcl [14].

3. Implementation

3.1. Timekeeper

The Timekeeper determines the current time and
computes time deltas. It occasionally uses the Librarian
to check in new time samples and to check them out
later. It carries out these actions using HTML events
and scripts. The Timekeeper can also be made to record
the identity of each instrumented page or image along
with the corresponding response time sample.

Several policies may be implemented. For instance,
response time samples could be submitted when they
are collected, submitted in bulk, or submitted only when
they are above a particular threshold value. Under some
conditions, the record keeper can be any computer on
the WWW. This could serve having a third party verify
Service Level Agreements.

Consider an instrumented link in a web page. By
definition, the link points to a page that is itself
instrumented. When a user clicks on the link, a
Timekeeper script is invoked. The script determines the
current time, records it using the Librarian, and then
permits the link to be dereferenced. After this page is
fully loaded, it’s onload handler is invoked. The handler
obtains the time at which the page request was made by
querying the Librarian. It then calculates the response
time as the difference between the current time and the
“send-time”. If the measured response time is to be
transmitted later, the handler records it using the
Librarian. Figure 1 summarizes these actions.

When the user directly types the location of a document
in the address bar of a browser, the currently displayed
document in the browser window is replaced with the
one requested by the user. Before loading the new
document, the browser invokes an onunload handler, if
one has been specified. The Timekeeper performs
cleanup operations on this event, communicating the
collected response time values to a record keeper. A
cleanup operation is also initiated when the user closes
the browser window.

The cleanup operations performed by the Timekeeper
and its actions for informing the record keeper are
summarized in Figure 2. There are two points of entry
shown in the figure, corresponding to the unexplained
actions in Figure 1. The left hand side depicts the
Timekeeper actions on individual response time
samples. The right hand side shows the Timekeeper
actions if the browser window is closed or if the user
directly loads a new page.

The Timekeeper may implement any desired policy to
communicate the response time samples. For instance,
in order to amortize the cost of communicating the
response time samples to the record keeper, a policy to
collect some number of samples before communicating
them could be implemented. Alternately, the policy may
be to communicate only response times greater than an
upper bound. The Timekeeper actions in Figure 2

implement the former (“communicate samples in bulk”)
policy. The next section describes the Timekeeper
actions to communicate the collected response time
samples in greater detail.

3.2 Transmitting Response Time Values

The response time samples collected by the Timekeeper
and saved by the Librarian must be communicated to a
record keeper in order to be of use. Our framework
permits the record keeper can be the source web server
itself, or any other web server on the Internet. Several
policies could be established for communicating the
samples. Some examples are:

• Communicate on every sample

• Communicate after accumulating a prescribed
number of samples

Figure 1: Timekeeper actions

END: Browser exits
OR

new page loads

Script 1

 now = current time
 delta = now – sendtime
 (from Librarian)
 Record delta (see Figure 2)

Script 2: onload event handler

Perform cleanup operations
(see Figure 2)

Script 3

START: User clicks on link

END: User views page

START: User exits browser or
 Loads new page

 sendtime = current time
 Save sendtime (use Librarian)
 Load page indicated by link

Figure 2: Timekeeper operations contd. (implements “communicate samples in bulk” policy)

Accumulate
sample?

Save sample using
Librarian

END

Retrieve saved samples
from Librarian

Compose record keeper
URL, access record keeper

(see Section 3.2)

END

YES

NO

START
(new response time sample)

START
(cleanup operation)

• Communicate only those samples that exceed a pre-
established threshold value.

• Communicate only samples from favored customers
(as determined by a cookie).

For any established policy, we assume that the source
web server provides the Timekeeper with a JavaScript
function to determine when and what samples to
communicate.

The Timekeeper uses a JavaScript Image object in order
to perform the communication. Image objects were
introduced in client—side JavaScript 1.1 and are
primarily used to preload images [9]. By setting the src
attribute of an image object to a desired URL, the
specified content is loaded and placed in the browser’s
cache. By initiating actions such as image replacement
and animation only after all the desired images are
preloaded, the quality of visual effects in the browser
can be enhanced. Image loading does not block
JavaScript execution. Instead, the image content is
loaded asynchronously alongside other browser actions.

When the Timekeeper needs to communicate with the
record keeper, it composes a special URL containing
the data. This URL accesses a script on the record
keeper site. The record keeper extracts information
from the URL, and replies with a response. The
response is set to be non-cacheable in order to prevent
intervening proxies from squelching record keeper
communication.

HTML specifications stipulate that if the currently
loaded document has an unload event handler
specified, that handler must be invoked before a new
document is loaded. The unload handler is also invoked
if the user closes the browser window. The Timekeeper
uses this event handler to communicate with the record
keeper when the user visits an uninstrumented page or
makes an outside entry to a page in the bundle.

Using the image preload technique to communicate with
the record keeper on a browser close is problematic.
Consider a case where the user has closed the browser,
and the unload handler has initiated the record keeper
image load. Since image loading is done
asynchronously, the browser may die even before the
TCP connection to the record keeper is fully open.
Unfortunately, to the best of our knowledge, neither
Navigator nor Explorer support UDP URL schemes.
Consequently, we use a different method for record
keeper communication on a browser close.

In both Navigator and Explorer, a new browser window
can be reliably opened from an unload handler. A new
window is opened by using the open method of the

current window object2. We use this feature to
communicate with the record keeper by opening a new
window with the response time URL. The record keeper
is set up to respond with a page that closes the window.
This is done with a page with an onload handler that
performs a “window.close()” operation.

Since the unload handler is invoked when each
document is displaced from the browser window, the
Timekeeper needs to distinguish between the unload
handler invocations on an instrumented entry to the next
page, or on an outside entry to an arbitrary page that
may be inside or outside the bundle. We make the
distinction by setting a variable in the window object
before carrying out an instrumented entry to the next
page. The unload handler checks whether this variable
is set in the window object. If it finds the variable set,
we know that the current page is being displaced to
make room for an instrumented page in the bundle.
Otherwise, the Timekeeper performs the cleanup
operations from within the unload handler. We reset this
variable in readiness for the next unload within the
onload handler that is invoked after an instrumented
page has fully loaded.

Since opening a separate communication window could
detract from the end-user experience, the Timekeeper
has two choices. First, it can make the communication
window small (but see Section 3.3.2). Second, it can
decide that losing the last few collected samples is
better than opening a new window.

Yet another option is to use a cookie. If the client
browser has cookies enabled, the Timekeeper could also
save the information in a cookie for transmission at a
later date. This cookie could be expired as soon as a
request carrying it is sent to the source web server,
causing it to no longer be sent out on future requests.
Due to JavaScript security restrictions that control
access to cookies from scripts, the record keeper will
have to be the same as the source web server in this
case.

3.3. The Librarian

The Librarian is responsible for storing and retrieving
time samples on behalf of the Timekeeper. At present,
to the best of our knowledge, there is no straightforward
mechanism in a browser to maintain state across page
loads. In particular, for security reasons, browsers do
not permit client-side scripts to maintain state across

2 For example, enable JavaScript in your browser and
visit http://www.cs.rice.edu/~rrk/neverclose.html. Many
web sites use this annoying technique to make it
difficult for users to leave their site.

page loads. When a new document is loaded, all of the
scripts and variables associated with a page are cleared.
In this section, we present three approaches for
implementing the Librarian without resorting to browser
modifications.

3.3.1 Saving State in a Cookie

HTTP, the protocol used for retrieving web pages, is
inherently stateless [7]. Cookies were introduced as a
mechanism to enable clients to build stateful sessions on
top of HTTP [11]. Simply stated, a cookie is a tag
created by the server and delivered to the client along
with an HTTP response. On subsequent requests to the
same server, the client presents the tag along with its
request. Cookies permit a session to be built using
individual HTTP transactions.

Cookies can be subverted for maintaining state. While it
is the server that typically sets cookies, client-side
scripts also have the ability to set, modify, and retrieve
cookies. Thus, the Librarian could use cookies to
maintain state across page loads. The Librarian could
use JavaScript when state needs to be saved, and
retrieve it again using JavaScript.

The naïve approach described above has a severe
drawback. Today, the WWW is dotted with caches and
proxies. The idea behind caching is to place an object
“closer” to the user, reducing the demands placed by a
request on both the network and the origin web server,
enabling it to be serviced quickly. However, since
cookies are used to create sessions out of HTTP, a
cache that observes a request with an attached cookie
typically does not service the request forwarding it
instead to the origin web server [7]. This is the correct
approach since two requests for the same URL with
different cookies could potentially lead to different
responses. Consequently, using cookies to maintain
state would cause each request to be sent to the origin
web server, negating the usefulness of proxies and
caches. The cookie approach is therefore practical only
when the content being delivered is itself dynamic, with
no intervening proxy caching it.

function OpenStateWindow()
{ // Open a state window if needed
 var h = self.open (“”, “statewin”,
 “width=100,height=100,location=no”);
 if (typeof h.valid == “undefined”) {
 h.document.write (“Benign msg for user”);
 h.document.close ();
 h.valid = true; // Don’t write next time
 }
 return h;
}

function SaveSendtime () {
 var h = OpenStateWindow ();
 h.sendtime = (new Date()).getTime ();
}

function GetSendtime () {
 var h = OpenStateWindow ();
 return h.sendtime; // can be undefined
}

function RTonload () { // onload handler
 var sendtime = GetSendtime ();
 if (typeof sendtime != “undefined”) {
 var now = new Date ();
 var delta = now.getTime () – sendtime;
 // Accumulate delta, or transmit now
 }
}

function RTonclick () { // link onclick handler
 SaveSendtime ();
 return true; // Permit link to be dereferenced
}

Figure 3: Timekeeper operation with Separate Window
Librarian

Response Time Frame: INVISIBLE to user
Frame name = “RTFrame”
Contains no document

Main Frame: VISIBLE to user
 Sized to full browser window

Displays documents loaded by user

Browser window on desktop

Figure 4: Timekeeper and Librarian operations
when using frames

function SaveSendtime () {
 var now = new Date ();
 top.RTFrame.sendtime = now.getTime ();
}

function GetSendtime () {
 if (top.frames.length == 0 ||

top.frames[0].name != “RTFrame”)
 top.location = Frameset page URL;
 else
 return top.RTFrame.sendtime;
}

function RTonload is same as in Figure 3
function RTonclick is same as in Figure 3

3.3.2 Using a Separate Window

Since client-side JavaScript enables state to be stored in
a window object, the simplest approach is to open a new
window on the first outside entry to a web page in the
bundle and to save the state there. For as long as this
window stays open and until a different URL is loaded
in it, state stored in its context can be recovered. Figure
3 shows sample JavaScript code that achieves this goal.

One limitation of this approach is the presence of the
state window on the user’s desktop. Even though this
window is small and can be made to contain a benign
message, a user may arbitrarily close the window.
Furthermore, JavaScript security restrictions prevent a
script from opening a window in a minimized state, or
with a size smaller than a prescribed minimum, unless
the script has the UniversalBrowserWrite privilege.
While this privilege can be obtained by involving the
user, the process is fairly awkward and cumbersome.

3.3.3 The Frame Approach

In the previous section we described how a separate
browser window on the user’s desktop could be used to
save state. However, in client-side JavaScript, the
window object does not have a one-to-one correlation
with a browser window. More specifically, each HTML
frame within a browser window corresponds to a
separate window object. This correspondence paves the
way for us to save state in the window object context of
a frame within the same browser window as that
displaying the document being loaded by the user.

The window object is the global object and execution
context in client-side JavaScript. There is no direct
correlation between a window as viewed in a desktop
environment, and the window object. A window object
is created for each desktop-level window or frame
within a browser desktop window that displays a HTML
document. From our perspective, the interesting
property of client-side JavaScript is that it permits
scripts executing in the context of one window object to
access variables and scripts executing in another
window object’s context [9].

The HTML standard describes frames as follows,
permitting frames to be created with zero size [8]. Such
frames will be invisible to the user.

HTML frames allow authors to present documents
in multiple views, which may be independent
windows or subwindows. Multiple views offer
designers a way to keep certain information visible,
while other views are scrolled or replaced. For
example, within the same window, one frame might
display a static banner, a second a navigation menu,
and a third the main document that can be scrolled

through or replaced by navigating in the second
frame.

The Librarian can use frames to save state by placing
each instrumented page in the bundle within a frameset
document that divides the top-level browser window
into two frames: the response-time frame and the main
frame. The response-time frame is set to zero size and is
therefore not visible to the user. The main frame holds
the instrumented content.

There are two ways a user can make an uninstrumented
entry to a page. First, a user could directly enter the
URL of the frameset document. This causes both the
response-time frame and the data frame to be loaded
within the browser. Alternately, the user could directly
enter the URL of the data frame in the browser’s
location bar. To force the browser to load the
corresponding frameset document, each instrumented
page in the bundle contains JavaScript to check for the
existence of the response-time frame. The existence
check is made after the main frame has loaded. If the
response time frame does not exist, the JavaScript
forces the corresponding frameset document to be
loaded in the top-level browser window.

State saving is accomplished exactly as in the case with
the separate window. Figure 4 explains the approach,
showing how the Timekeeper and the Librarian interact
together to determine the response time values.

Visiting the site through a browser window causes the
following actions to take place. On the first outside
entry to an uninstrumented page, the JavaScript actions
in Figure 4 cause the corresponding frameset document
to be loaded. As long as the user makes instrumented
entries to the other pages in the bundle, the response
time frame stays in the top-level browser window. The
response-time frame needs to be reloaded only if the
user makes an uninstrumented entry to a page in the
bundle.

The main limitation of this approach is the need for
loading the frameset document on uninstrumented
entries to pages in the bundle. When encountering a
page with frames, the browser first obtains the
“container” frameset document. Only after receiving the
container frameset can the browser determine what
documents to obtain and render in the internal frames.
This could give rise to extra client-server transactions
and delays for the user.

Three factors mitigate the problem caused by the
frameset document. First, the web site might already
have a frame that exists on all pages, enabling the
Librarian to simply use that frame. Second, the extra
client-server transactions (when the Librarian uses a
dedicated frame) are encountered only during the initial

uninstrumented entry to a web page. Subsequent
instrumented browsing occurs at full speed. Finally, it
may be possible to avoid the extra transactions by
setting a long lifetime for the frameset documents.
HTTP permits content to be delivered with explicit
expiration times, allowing intervening caches and the
client to cache content and use it without checking for
validity against the origin web server. By providing the
frameset document with a long lifetime, the browser
needs to fetch the container frameset only when it is
absent from the local browser cache. Consequently,
when the user revisits a bundle at periodic intervals, as
often happens since people are creatures of habit, the
browser will be able to use a cached copy of the
frameset document. Only the main frame’s content will
need to be fetched in such cases.

3.3.4 Using the Window Name

In Section 3.3.3 we described the window object in
client-side JavaScript. Every window object has a
name property. This property exists primarily for use
as the value of a HTML TARGET attribute in the <A>
or <FORM> tags. In essence, the TARGET attribute
enables an anchor or form to display its results (when
the linked document is dereferenced or the form is
submitted) in the window with the supplied name.

The initial window and all new browser windows
opened by most versions of both Explorer and
Navigator have no pre-defined name property.
Consequently, these windows cannot be addressed with
a TARGET attribute. The name property is read-only
in JavaScript 1.0, creating a problem when the initial
window has to be addressed. JavaScript 1.1 resolves
this problem by enabling the name attribute to be
modified from within a script [9].

When a new page is loaded in a window, all of the
scripts and variables associated with the window object
are cleared. However, a window’s name property
persists across page loads. Thus a web page loaded into
a window can be the target of actions in another
window, even if the loaded content does not explicitly
set the window name. This feature enables the same
content to be loaded in the main browser window or in a
popup window, depending on the context from where it
is referenced.

We can leverage the persistence of the name property
to store state. The idea is to append the desired state to
the window name and to retrieve it from there, restoring

the name after the retrieval3. Figure 5 illustrates the
details of this approach.

An obvious limitation of using the window name is the
race condition it introduces. In order to compute
response times, the window name is changed just prior
to a new document being loaded in a window. The
saved state is retrieved and the window name restored
only when the document has fully loaded. During this
interval, the window cannot be referred to by its original
name.

The race condition causes a problem partly due to the
awkward interface that client-side JavaScript provides
for referring to a window. Given a window name, the
only way to obtain a reference to the window is by
using the window.open method. The name supplied to
the method must be exact, with no wildcards allowed.
Furthermore, if a window with the supplied name does
not exist, the method simply opens a new window with
that name. These properties of the open interface imply
that if a window with an ongoing instrumented page
load is targeted, a new window with the supplied name
is opened. This may distract and confuse the user.

In the next section, we describe how the window name
approach can be combined with the use of separate
windows to yield a practical, useful solution.

3.3.5. Separate Windows + Window Names

Taken individually, the separate window and window
name schemes suffer from limitations when used to
implement the Librarian. The separate window could be
a distraction for the user, since it must remain open for

3 We have empirically determined that both Navigator
and Explorer support names over 1000 characters.

function SaveSendtime () {
 var s = (new Date()).getTime ();
 window.name += ‘_RT_’ + s;
}

function GetSendtime () {
 var n = window.name;
 var rt = n.indexOf (‘_RT_’);
 var s = n.substring (rt+4, n.length);
 window.name = n.substring (0, rt);
 return s;
}

function RTonload is same as in Figure 3
function RTonclick is same as in Figure 3

Figure 5: Timekeeper and Librarian operations
when using window names

as long as there are instrumented entries to the bundle.
The window name scheme exposes a race condition that
could open a new browser window on the user’s
desktop, contrary to the content developer’s intent.

However, the separate window and the window name
schemes can be combined together to yield a practical
solution that does not suffer from these limitations. The
idea is to divide the windows in which the instrumented
pages will be displayed into two sets: the main windows
and the child windows. Main windows are those that are
not targets for any content. Child windows are those in
which content is loaded by actions in both main and
child windows.

For a page that is loaded in a main window, the
Librarian saves state in that window’s name. For a page
that is loaded in a child window, the Librarian saves
state as a property in the context of the child window’s
ancestor. The ancestor can be determined by following
the opener property of the child window, which is a
reference to the window object that opened the child
window. State saving and retrieving will be
accomplished by using a combination of the scripts
shown in Figures 4 and 5. Note that it is totally safe to
change a main window’s name, since by definition, a
main window can never be the target for any content.

3.4. Limitations

Our schemes have the following limitations:

1. We cannot compute response times for outside
entries to instrumented web pages. For example, we
cannot compute response times for pages loaded by
directly entering a URL into a browser’s location
bar.

2. Our scheme handles instrumented entries to HTML
pages and objects embedded within HTML pages.
We cannot compute response times for other
MIME types. For instance, we cannot compute the
response times for pure images (outside of a HTML
document) directly loaded by a browser, or for PDF
documents loaded and displayed by the Adobe
plugin. In order to handle such MIME types, we
need plugin support in the form of a public method
that can be used to determine the load status of the
content. Flash animations are an example of a
MIME type we can handle even when the
animation is loaded outside of an <OBJECT>

context, by using the PercentLoaded public
method of the MacroMedia Flash plugin [16].

3. Our implementation uses client-side JavaScript 1.1.
Consequently, it will not work with browsers that
do not support JavaScript 1.1, or that have disabled
JavaScript. In particular, our implementation
requires Navigator versions above 3.x, and
Explorer versions above 4.0.

4. Status and Evaluation
We have implemented our scheme on “The Wondering
Minstrels,” a poem-of-the-day web site that receives
several hundred hits a day. The site can be accessed at
http://www.cs.rice.edu/~rrk/minstrels.html, and has over
650 poems (now) that range in size from 2.6KBytes to
30 Kbytes. A few files that index all the poems take up
about 230Kbytes. We instrumented this site using an
automated tool we have developed, setting the record
keeper to be www.cs.utexas.edu. Note that the origin
web server and the record keeper are different servers.

Any
time

00:00
to

07:59

08:00
to

15:59

16:00
to

23:59

All 971 161 411 399

Unknown TLD 92 25 44 23

TLD: .us, .com,
.org, .net, .edu, .ca

685 72 285 328

All other TLDs 194 64 82 48

Table 1 shows the distribution of the response time
values we have collected from real visitors to the site
for files between 4400 and 4900 bytes in size. As of Jan
21, 2001, these were the most frequently accessed files
from the site. The actual web server response is larger
by about 260 bytes, which is the approximate size of the
HTTP header for these responses. We have broken
down the collected values by the time when the request
was serviced, and by the top-level domain (TLD) of the
client making the request. All times listed are behind
UTC by 6 hours. We were unable to resolve hostnames
for a number of clients accessing the site. These
unresolved hostnames are listed as “Unknown” and
account for 9.5% of the collected values.

Table 1: Distribution of collected response time values

Figure 6 shows a histogram of the normalized response
time values, irrespective of the TLD from where or the
time the request was made. Each data point in the figure
indicates the number of response time values that fall
into a 200 ms bin to the right of that point. All response
times exceeding 10.8 seconds are aggregated and placed
into the bin at 11 seconds. There are several interesting
points to note about the figure. First, a small fraction of
the requests (about 1.8%) were satisfied within 200ms.
This is probably due to a cache hit in the client itself, or
in a proxy very close to it. Second, by considering the
average attention span window to be 4 seconds (i.e., “I
want my page to load in 4 seconds or I get bored”), we
see that 16% of the responses were served outside the
average attention span window.

Breaking down the response time values by time period
illustrates the variation in response times over the
course of a day. Figures 7, 8, and 9 show the response
time values for the midnight–8AM, 8AM–4PM, and
4PM-Midnight time windows respectively. These
figures show that the fraction of pages that take longer
than 4 seconds to load decreases from 22% in the night,
to 19% during the morning, and to 11% during the
afternoon.

Figures 10 and 11 break up the response time values by
top-level domain. We group together all com, org, edu,
net, us, and ca domains into one group, and all other
known TLDs into another. We realize that com, org,
and net clients could be spread throughout the world.
However, this crude division allows us to focus on the
response times faced by visitors located far away from
the Minstrels web site.

Figure 11 clearly shows the larger response times seen
by far-away visitors. About 26% of the users in this
group faced delays of more than 4 seconds. Further
analysis reveals that the two largest set of visitors in this

group are from the United Kingdom and Argentina.
While only 12.5% of the English faced response times
larger than 4 seconds, fully 58% of the Argentines fell
into the same category. Interestingly, if the Argentine
visitors were all served within 4 seconds, only 15% of
the far-away visitors would have waited for more than 4
seconds. These results indicate that if the Minstrels site

Figure 6: Distribution of collected response time values

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10

Histogram bin (seconds)

N
or

m
al

iz
ed

 fr
ac

tio
n

of
 R

T
 v

al
ue

s
All TLDs, all times

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10

Histogram bin (seconds)

N
or

m
al

iz
ed

 fr
ac

tio
n

of
 R

T
 v

al
ue

s Midnight - 8AM, All TLDs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10
Histogram bin (seconds)

N
or

m
al

iz
ed

 fr
ac

tio
n

of
 R

T
 v

al
ue

s 4PM - Midnight, All TLDs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

Histogram bin (seconds)

N
or

m
al

iz
ed

 fr
ac

tio
n

of
 R

T
 v

al
ue

s

8AM - 4PM, All TLDs

Figure 8: Response time distribution from 0800-1559 CST

Figure 9: Response time distribution from 1600-2359 CST

Figure 7: Response time distribution from 0000-0759 CST

were to contract with a proxy caching service, placing
just one cache in close proximity to the Argentine
visitors would provide the most benefit.

The nature of analysis presented here is similar to what
a commercial site would want to conduct on its visitors.
Our framework enables such an analysis and shows how
a site appears to different user groups accessing it. We
would like to stress here that such an analysis would not
be possible using information gathered at the server
only, as it would lack the actual networking effects.
Also, we would like to stress that traditional approaches
such as pinging the server would have a prohibitive cost
emulating all possible users and their geographic
distribution. Our experience with measuring actual
response times seen by real visitors to the Minstrels site
illustrates the need for a measurement framework such
as ours. The analysis we describe here is one of many
that can be carried out with real response-time data.

5. Related Work
A number of web sites contract with third party
companies to poll their servers at periodic intervals.
Typically, a battery of geographically distributed clients
“ping” the server with fictitious transactions. The site
owner specifies the frequency of polling and the
geographic distribution. Examples of such polling
services include ServerCheckTM [4], GoldTestTM [5],
and eValidTM [6]. Polling suffers from several
drawbacks. First, the data obtained through polling is a
statistical approximation to the response time seen by
real visitors to the web site. Polling can also increase
the load generated on a site’s servers. Ensuring accurate
or complete geographic coverage using polling is also
difficult. Finally, some services such as financial
transactions may be cumbersome to measure using
fictitious requests.

Candle’s eBusiness Assurance (eBATM) product [17]
provides an accurate breakdown of the time spent by a
user on a web page. eBA uses an applet to store state on
the client browser between page loads. The time at
which the user clicks on a link is stored in the applet's
context and the response time computed after the page
fully loads within the browser. eBA appears to have
been introduced around September 2000. In comparison
to our work, eBA’s main difference is its dependence on
a Java applet in order to save state. Since applets are
still not widely used owing to their (as perceived)
heavyweight nature, this is a fairly significant drawback.
In contrast, our scheme requires only JavaScript support
in order to compute response times. A significant
fraction of the sites on the web today (IBM, CNN,
ETrade, CNBC, Disney, etc.) use JavaScript, greatly
reducing the barrier to using a scheme such as ours.

Tivoli has also introduced a product around September
2000 called Quality of Service Monitor (QoS), as part
of their Web Management Solutions package [18]. QoS
uses a proxy that sits inside the web site firewall to
intercept responses as they leave the site. The proxy
adds a small amount of JavaScript code to the content
and also remembers the time at which the response is
sent back. The added script contacts the QoS proxy
when the page has finished rendering. QoS then
approximates the response time seen by the client as the
delta between when the response is sent to the client,
and when the proxy hears back from the client. There
are two main differences between the QoS work and
ours. First, in order to avoid clock synchronization
problems, the record keeper must be the QoS proxy.
Second, QoS calculates the response time from the
point of view of the proxy, giving rise to three important
implications. First, response times can be computed

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10

Histogram bin (seconds)

N
or

m
al

iz
ed

 fr
ac

tio
n

of
 R

T
 v

al
ue

s

All times, all other
TLDs except
Unknown

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10

Histogram bin (seconds)

N
or

m
al

iz
ed

 fr
ac

tio
n

of
 R

T
 v

al
ue

s

All times, com+edu+net+org+us+ca

Figure 10: Response time distribution for shown TLDs

Figure 11: Response time distribution of “far away” TLDs

only if the client contacts the proxy after each page is
rendered, adding an extra client--proxy communication
to every transaction. Second, the client most likely does
not have to create a new TCP connection to
communicate with the proxy after rendering the page.
Consequently, the measured response time does not take
TCP connection setup times into account. Third, QoS
cannot determine response times for requests fulfilled
by intermediate proxy caches. QoS is more suited for
environments such as e-commerce transactions, where
the origin server is likely to be involved in every
response. Furthermore, QoS also measures the back-end
transaction service time (by tagging requests as the
enter the site), and the page render time (measured by
the added script), both of which are very valuable.

6. Conclusions

On the World Wide Web, the response time seen by a
client is a key metric that determines end-user
satisfaction. Most schemes in existence today rely on
polling the web server using a set of geographically
dispersed clients in order to obtain a representative set
of response time samples. Polling yields data that is at
worst inaccurate, and at best, statistical in nature.

In this paper, we have presented a framework for
accurately measuring the response time perceived by a
client browser. We are able to measure response times
for all visits to pages instrumented using our
framework, through hyperlinks that have been
instrumented. We can also measure response times for
all objects embedded within a web page. Our
framework imposes very little overhead on the client
computer, and fits the needs of various existing
commercial web sites.

We divide the work in collecting response time samples
between a Timekeeper, who computes all time values,
and a Librarian, who provides the Timekeeper with
services for saving and retrieving state. The Timekeeper
implementation is fairly straightforward. On the other
hand, implementing the Librarian is challenging owing
to the difficulty in persisting state across page loads in
existing browsers. We present several solutions to this
problem, which are well suited for use in existing
commercial web sites.

Acknowledgements

We would like to thank Sitaram Iyer for allowing us to
instrument the Wondering Minstrels web site and
allowing us to publish the aggregate data. We would
also like to thank the Computer Science departments at
Rice University and UT Austin for use of their web

servers. Brian Pinkerton, our shepherd, made many
valuable comments that have improved the quality of
this paper. Finally, we would like to thank our
anonymous reviewers for their helpful insights.

References

1. Akamai FreeFlowTM, http://www.akamai.com/
html/en/sv/content_delivery.html, Akamai
Technologies Inc.

2. Digital Island Inc., FootprintTM, http://www.digital
island.net/services/cd/footprint.shtml

3. Inktomi Corporation, www.inktomi.com
4. NetMechanics ServerCheckTM: http://www.netme

chanics.com/monitor.htm, NetMechanics Inc.
5. GoldTestTM: http://www.keynote.com/services/

services/keyreadiness/goldtest.html, Keynote
Systems Inc.

6. eValidTM Test Services: http://www.soft.com/
eValid/Services/Monitoring/index.html, Software
Research Inc.

7. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, “Hypertext Transfer
Protocol – HTTP 1.1”, RFC 2616, June 1999.

8. Dave Raggett, Arnaud Le Hors, and Ian Jacobs,
“HTML 4.01 Specification”, W3C, December
1999.

9. David Flanagan. JavaScript, The Definitive Guide,
O’Reilly & Associates Inc., 1998

10. K. Arnold, J. Gosling, and D. Holmes, “The Java
Programming Language”, Addison-Wesley, 2000.

11. D. Kristol and L Montulli, “HTTP State
Management Mechanism”, RFC 2109, February
1997.

12. Macromedia Flash 5, http://www.macromedia.com
/software/flash/, Macromedia Inc.

13. Microsoft Scripting Technologies: VBScript, http:
//msdn.microsoft.com/scripting/default.htm?/scripti
ng/vbscript/default.htm, Microsoft Corporation.

14. John K. Ousterhout, Tcl and the Tk Toolkit,
Addison-Wesley Publishing Company, 1994.

15. Microsoft Corporation, “Using VBScript and
Jscript on a web page”, http://msdn.microsoft.com
/library/techart/msdn_vbnjscrpt.htm

16. Flash methods, http://www.macromedia.
com/support/flash/publishexport/scriptingwithflash/
scriptingwithflash_03.html, Macromedia Inc.

17. eBusiness AssuranceTM, http://www.candle.com/
solutions_t/enduser_solutions/site_performance_an
alysis_external/index.html, Candle Corporation.

18. Tivoli Web Management Solutions, http://www.
tivoli.com/products/demos/twsm.html, IBM
Corporation

