System Support for Scalable, Reliable and Highly Manageable
Web Hosting Service

Mon-Yen Luo and Chu-Sing Yang
Department of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, R.O.C

Abstract

This paper presents the architecture and some key
mechanisms of an integrated framework for providing a
reliable and highly manageable Web hosting service on
a scalable server cluster. We devise a novel idea termed
“URL Formalization” and a corresponding data
structure, which provide a scalable solution to the
request distribution in the system. We exploit the
advantages of Java to implement a management system
to providing a highly manageable system. Our system
supports a higher level of services reliability than other
server cluster systems. The result of performance
evaluation on the proposed system shows that the
system is low-cost and effective.

1. Introduction

With the popularity of the Internet and the World Wide
Web, the desire for using the Web to serve business
transactions is increasing at an amazing rate. A
successful Web site has become increasingly essential
to the business community. However, constructing a
successful Web site must cope with many challenging
problems. First, a web site must be able to service
thousands of simultaneous client requests and scale to
rapidly growing user population. Furthermore, rapid
response and 24-by-7 availability are mandatory
requirements for a Web site as it competes for offering
users the best “surfing” experience. As a result, Web
hosting service is soaring as companies turn to service
providers to handle these challenges, avoid
infrastructure costs, and deal with staffing shortages.
The Web hosting service providers offer system
resources (e.g., bandwidth to the Internet, disks,
processors, memory, etc.) to store and provide Web
access to documents from individuals, institutions, and
companies who lack the resource or the expertise to
maintain a Web site.

Web server cluster [1] is a popular approach used in a
shared Web hosting infrastructure as a way to create
scalable and highly available solutions. However,
hosting a variety of contents (i.e., documents, Web
pages, resources, etc., generally called content in the
Internet parlance) from different customers on such a

distributed server system faces new design and
management problems and requires new solutions. This
paper describes the research work we are pursuing for
constructing an integrated framework to address the
challenges faced by hosting Web content on a server
cluster environment. Our system has a variety of design
goals, however, this paper focus on addressing the
following two major problems:

¢ Content management

How to place and manage hosting content in a
clustered server will become a very important but
challenging problem. You may imagine how tedious
and difficult if you have 500 different sites with a
variety of content types, and you try to place and
manage these contents on a server cluster with 60
nodes. Thus, developing a management system to
automate management operations and provide a
logical view of a monolithic system is extremely
important. In particular, such clustered servers tend
to be more heterogeneous because they generally
grow incrementally as needed. This is an important
advantage of clustered servers so that they can scale
gracefully with offered load, preserving previous
investments in hardware and software. Unfortunately,
this advantage will come at the cost of greatly
increased management complexity.

Service reliability

The existing clustered servers merely provide high
availability, but offer no guarantees about fault
resilience for the service. If one server node fails,
most of the existing clustered systems can mask this
failure and then reconfigure the system. However,
any requests in progress on the failed server will fail.
This will be unacceptable to the customers who
conduct E-transaction services on the Web. In
addition to detecting and masking the failed nodes,
an ideal fault-tolerant server should enable the
ongoing requests on the failed node to be smoothly
migrated and then recovered on another working
node. However, this is a challenging problem, and
none of the existing clustering schemes could
efficiently support this capability.



Basically, our system consists of a request distributing
mechanism and a Java-based management system. The
distributing mechanism presents a single entry point to
the external world, and manages the allocation of
incoming requests to server nodes. To effectively
support request distribution in the shared hosting
environment, we devised a novel idea termed “URL
Formalization” and a corresponding data structure. In
addition, we also augment the distributing mechanism
with a novel mechanism termed request migration,
which transparently enables request migration and
recovery in the Web server cluster in the presence of
server overload or failure. The Java-based management
system could relieve the administrator's burden on
managing the complex system.

The rest of this paper is organized as follows. In section
2, we will describe our distributing mechanism and how
it can provide a scalable solution to the request
distribution in our system. The section 3 presents how
we exploit several advantages of Java to implement a
management system to provide a highly manageable
system. In section 4, we describe how a higher
reliability can be achieved by our system. We present
the result of performance evaluation on the prototype
system in section 5. We discuss the advantages and
possible arguments of our system in section 6, and then
draw conclusions in section 7.

2. Distributing Mechanism

Given a clustered server, some distributing mechanism
is needed to dispatch and route the incoming requests to
the server best suited to respond. In this section, we
describe the design and implementation details of our
distributing mechanism.

2.1 Content-Aware Routing

Over the past few years, numerous distributing
mechanisms have been proposed. These schemes can
be classified into the following categories: client-side
approach [2,3], DNS based approach [4,5], TCP
connection routing [6,7], HTTP redirection [8], and
content-based routing [9,10,11]. We think that the
content-based routing mechanism is the best choice to
the Web hosting environment, because the other
schemes only can perform request routing based on
some simple criteria (e.g., number of ongoing
connections). As Web services became more
sophisticated, such simple routing schemes are no
longer sufficient. New services such as online retailing
began to use multiple tiers of servers for content and
transaction processing, posing more requirements and
challenges to the routing mechanisms. The content-
aware routing mechanism can offer many potential
benefits [11], such as sophisticated load balancing, QoS

support, session in content

deployment, etc.

integrity, flexibility

The distributing mechanism of the proposed system is
based on our previous work [11] on implementing a
content-based routing mechanism. We briefly describe
the operation of the content-based routing mechanism
as follows; the detailed description is given in [11]. The
dispatcher node that executes the routing mechanism
pre-forks a number of persistent connections [12,13] to
the back-end nodes, and then allocates system resources
by dispatching client requests on these trunks. When a
client tries to retrieve a specific content, the client-side
browser first needs to create a TCP connection. The
incoming TCP connection requests are acknowledged
and handled at the dispatcher until the client sends
packets conveying the HTTP request, which contains
the URL (specifies the content it is asking for) and
other HTTP client header information (e.g., Host,
cookie etc.). At that point, the dispatcher looks into the
HTTP header to make decision on how to route the
request. When the dispatcher selects a server that is best
suited to this request, it then chooses an idle pre-forked
connection from the available connection list of the
target server. The dispatcher then stores related
information about the selected connection in an internal
data structure termed “mapping table”, binding the user
connection to the pre-forked connection. After the
connection binding is determined, the dispatcher
handles the consequent packets by changing each
packet’s IP and TCP headers for seamlessly relaying
the packet between the user connection and the pre-
forked connection, so that the client and the server can
transparently receive and recognize these packets.

In this paper, we further point out that such a design
can enable a new capability: request migration. The
request can be migrated to another node in the presence
of server overload or server failure, which can control
the resource allocation in a fine granularity and enhance
service reliability, respectively. In this paper, we focus
on the aspect in terms of service reliability. To support
high reliability, we think the server cluster should be
augmented to include two important capabilities:
checkpointing and failover. That is, some intermediate
state of user requests should be logged periodically by
the checkpointing mechanism. If one server fails, the
failover mechanism should enable the ongoing requests
on the failed node to be continued processing with a
valid intermediate state in another working node.
Although the two techniques has been investigated and
are well known in the research area of fault tolerance,
implementing these techniques in the distributed web
server still poses many new challenges.

First, the cost is very expensive if we log every
incoming request for checkpointing. In a Web hosting



system, not all content is equally important to the client
and the service provider. Some of the hosting contents
cannot tolerate service disruptions because of their
importance or cost. With the content-aware routing
capability, the distributing mechanism can differentiate
the important requests (e.g., requests for mission-
critical services, or requests for content owned by
important customers) from regular Web surfing
requests. Second, how to recover a Web request of a
failed server to continue execution in another working
node is a challenging problem. In particular, such
recovery mechanism should be user-transparent and
smooth. In the section 4, we will describe our design
that provides an elegant solution to this problem.

2.2 Content-Aware Intelligence

With the above mechanism, the next question is how to
build the content-aware intelligence into the dispatcher
for making routing decision. To address this, we should
have answers to the following questions:
e What kind of information do we need?
*How can we put the related information into the
dispatcher?
*How can the dispatcher perfom content-aware
routing based on these information?

To the first two questions, we devised an internal data
structure termed URL table to hold the content-related
information that enables the dispatcher to make
intelligent routing decisions. The possible information
includes content size, type, priority, which nodes
possess the content, etc. We argue that the URL table
should model the hierarchical structure of the Web
content. Such an argument is based on the observation
that people generally organize content using a
directory-based hierarchical structure. The files in the
same directory usually possess the same properties. For
example, the files underneath the /CGI-bin/ directory
generally are CGI scripts for generating dynamic
content.

Consequently, we implemented the URL table as a
multi-level hash tree, in which each level corresponds
to a level in the content tree and each node represent a
file or directory. Basically, each item (file or directory)
of content in a Web site should have a record
corresponding to it in the URL table. However, to
reduce the search time and the size of the table, our
URL table uses a “wildcard” mechanism to specify a
set of items that own the same properties. For example,
if all items underneath the sub-directory “/html/” are all
hosted in the same nodes and have the same content
type, only the entry /html/” exists in the URL table. If
the dispatcher intends to search the URL table to
retrieve the information about a URL “/html/misc.html”,
it can get the information from the record “/html” in the

table by just one level search. Otherwise, we also
implemented a mechanism to cache recently accessed
entries, which is a proven technique for searching
speedup. The URL table generally is self-generated,
maintained, and managed by the management system
(see next section) via parsing the content tree. The
administrator also can configure the URL table if
necessary.

Our previous experience [11] has taught us that to
address the third question is a more thorny challenge.
To perform content-based routing, the dispatcher
should look into the HTTP header of each request.
However, the HTTP header is composed of variable-
length strings. Therefore, performing content-based
routing implies that some kind of string search and
matching algorithm is required. It is well known that
such operations are time consuming. Our experience
showed that the system performance would be severely
degraded if we implement some string parsing
functions in the dispatcher. Some vendors also made a
similar observation [14], which indicated that you will
loss 7/8ths of your Web switch’s performance if you
turn on its URL parsing function.

The above problem will be more serious in the shared
Web hosting environment. We consider the following
URL:  http://’www.foo.com/sports/football/ as an
example for explanation. This URL identifies that the
content in the directory “/sports/football/” on the host
“om” can be accessed via HTTP protocol. A
client wishing to retrieve this resource should create a
TCP connection to the server and send a HTTP request
including a request line [13] in its header:
Get /sports/football/ HTTP 1.1

, followed by the remainder of the request. The Host
name of the URL will be transmitted in a Host header
field of the entity-header fields [13], followed by the
request line. Because all Web sites in the shared hosting
environment are publicized by the same IP address to
the external world, the host field is required to identify
which Web site the requests is for. This implies that the
dispatcher needs to look deeper in the HTTP header
(not just the request line) to find the host field. As the
HTTP header is composed of variable-length strings,
parsing the header to retrieve such information will be a
considerable burden.

To solve this problem, we devised a novel mechanism
termed URL Formalization. Our approach is to make
every directory and file of the Web content have a
formalized expression. In our system, all Web objects
originally reside on a reliable “home server”, which is
also the place for the customers to upload their content.
The document stored on the home server also serves a
permanent copy for consistency and robustness. Before
these web objects are placed to the server system, a


http://www.foo./

program will convert the original name of every
directory and file into a fixed length and formatted
name. Then, the program will parse all html files and
script files that generate dynamic content, and modify
the embedded hyperlinks to conform to the new name.
In addition, the new path name of each link will be
converted to a composition of the original path names
under its domain name. Finally, the content is placed to
the server nodes as the converted name. But, they also
have the original name as an aliasing name.

For example, if an embedded link points to the above
URL, the link should be converted to
“/preamble/5967/1019/2048/”. The name
“om”, “sports”, and “football” are converted
to a formalized name 5967, 1019, and 2048
respectively. The preamble is a “magic number”, which
is designed to indicate that the following is a formalized
URL. This also implies that the name of the first level
directory of each server node is “/preamble”, and the
hosted content is placed under the directory. The design
of the preamble number is important, because we
should enable the dispatcher to know whether the URL
of a request is in normal form or formalized form. The
operations of parsing and reconstructing the HTML
files and the script files are pre-computed offline. Thus,
these operations do not impose any performance
penalty on regular operations of the server system.

In the URL formalization scheme, the request line of
the HTTP header in the above example will be:
Get /preamble/5967/1019/2048/ HTTP 1.1

The major advantage of such a design is to convert
user-friendly names to routing-friendly names. In other
words, our fixed-length and formalized names are
easier for dispatcher to process. We even can
implement the routing function in hardware for
performance boosting. In addition, the artful design of
placing the host name in the first level of the path name
can further speed up the routing decision. The
dispatcher can quickly identify that the incoming
request is for which Web site, rather than parse the
entirc  HTTP header to find out the host field.
Combined with the well-designed URL table, the
dispatcher can quickly retrieve related information to
make routing decision.

The design of the URL formalization is based on the
following observations. Generally, the reason for using
the variable-length string to name a file or directory is
just because it is mnemonic, thereby making it easier
for humans to remember. However, in most cases an

HTTP request is issued when the browser follows a link:

either explicitly, when the user clicks on an anchor, or
implicitly, via an embedded image or object. That is,
most URLs are invisible to the users, i.c., they do not
care about what name it has. Consequently, we can

convert the original name to a formalized form in the
manner of user transparency. However, in the relatively
infrequent case where users occasionally load Web
pages by typing a URL directly. That is why the magic
number as a preamble is necessary, so that the
dispatcher can distinguish the regular URL from the
formalized URL.

3. Java-based Management System

In this section, we first consider issues that arise in
designing a management system for hosting service in
server cluster environment. Following this, we describe
our technical design and implementation.

3.1 Analysis

Placing and managing hosting content in a server
cluster environment is not a trivial job; it needs to take
some important factors into consideration. First, the
hosting content might be as varied as static Web pages,
dynamic content (e.g., generated by a CGI script), or
multimedia data such as streaming audio or video.
Different contents have different requirements in terms
of system resources. For example, requests for
executing CGI scripts normally require much more
computing resources than static file retrieval requests
[15]. It is clear that some nodes with slow processors
are not suitable for providing CPU-intensive dynamic
content. Second, not all content is equally important to
the service provider. The variety of content from
different customers means that the expectations and
requirements on the quality of service differ. In addition,
the amount of money each customer is willing to spend
and can afford to pay differs. The administrator needs
to be able to place different content on different nodes
for meeting their performance requirements, or to exert
explicit control over resource allocation according to
the variety of service agreement.

This problem motivated us to design a management
system to ease the administrative operations and
provide a logical view of a monolithic system to the
system manager. We intended to construct a group of
daemons running on each node, and enable them to
cooperate to perform a variety of management
functions. However, many problems arose when we
tried to implement such an idea. The first major
problem is platform heterogeneity, which arises from
that we hope the proposed system is flexible enough
that each server node can use any kind of hardware,
operating system, and Web server software. This
implies that these daemons must be capable of running
on different platforms. The second considerable
problem 1is function heterogeneity, which is because
each server node might need different management
functions due to hosting different content. The third


http://www.foo./

problem is in terms of extensibility (or versioning and
distribution problem). That is, the functionality of this
management system cannot be extended or customized
without rewriting, recompilation, re-installation, and re-
instantiation of all existing daemons. In particular, each
service provider may have it’s own unique requirement.

3.2 Management Framework

For tackling the above problems, we decided to
construct the management system using Java [16]. The
management system is an extension of our previous
work [17], which is an extensible framework to address
the administration problem of a Web server cluster. Our
management system is composed of the following four
key components: controller, broker, managelet
(composed of two words: manage and —let, it means a
piece of code implementing a specific management
function), and remote console (see figure 1).

HTTP Daemon
Controler Invoke
‘Adminisiration Hustions
Modefied Kernel
Distributor
" Netork Managel
HTTP Dagmon HTTP Datmon
Broker . . . . . . . Broker
cnmmons;):‘::unn ‘Common Operting system
Web Server Node Web Server Node

Figure 1. Overview of the Management system

The broker runs on each Web server node to perform
the management functions, and monitor the status of the
managed node. The broker can load Java code from the
network and provides an environment for executing it.
To achieve this, we implemented a customized Class
Loader and Security Manager [18] as the skeleton of
the broker. We also implemented a monitor thread in
the broker daemon to collect the load information of the
host on which it is located. The collected load
information will be summarized and then sent to the
dispatcher node. Each management function is
implemented as a corresponding managelet, which is in
the form of Java class. These managelets are stored in a
reliable storage. One special daemon called controller
will be responsible for receiving requests from the
administrator, and then invokes brokers to perform the
delegated tasks by dispatching the corresponding
managelet to be executed on them. The remote console
is a Java applet, which can be run on any Java-enabled
Web browser. The administrator can download the
remote console and interact with it to perform

management operations.

There are two main advantages of such a design. First,
implementing the daemon in Java can relieve the
concerns related to heterogeneity of the target platforms.
As a result, these daemons can be capable of executing
on a variety of hardware architectures and operating
systems. The second advantage is derived from the
notion of downloaded executable content (data that
contain programs that are executed upon receipt),
which is a powerful feature of Java. Using this mobile
code technology, we can deploy just a simple local
daemon (broker) at each node, but support a variety of
management functions via downloading managelets. As
a result, the system can be tailored or extended to the
different requirements of different system types and
installations, without requiring significant redesign and
coding. In the following sections, we will describe how
the management system addresses some management
problems of hosting content on a server cluster.

3.3 Configuration Management

We provided several administration functions on the
dispatcher for the administrator to configure the server
system. Examples include join/remove a server node
into/from the system, read the related statistical data,
etc. We defined the control interface as the boundary
between these native configuration functions pertained
to the dispatcher and the rest of the management system.
As a result, our management system can be easily
integrated with the Server-Load-Blancer from other
vendors by extending the control interface to support
the proprietary configuration functions of each vendor.

We then extended the functions of remote console for
the administrator to configure the system. With the
remote console applet, adding or removing a node is an
easy job and does not require the extensive
reconfiguration of all other nodes. The GUI of remote
console applet supports tracking and visualization of
the system’s configuration and state. As a result,
although the system configuration may change
dynamically and availability of nodes is also subject to
change, the administrator still can easily know which
node is operating as a part of the system.

We also provide the monitor mechanism for the
administrator to monitor the status (e.g. resource
utilization) of each node, ensure the resources provided
by the web site are operational, and verify the web
content can be delivered normally. Otherwise, some
problems that are trivially found in a single system may
be hidden for a long time and difficult to be detected.
The system will dispatch the managelets to execute on
the managed node, collect a variety of statuses, and
then report the summary to the remote console after
consolidating the raw data. Reliable operational status



of providing hosting service on the distributed server,
unless made in such an automated way, requires
significant human effort to achieve in such a complex
system. In addition, the remote console also provides
log and alarm functions to enable the administrator to
identify security problems or other situations.

3.4 Content Management

We implemented several new management functions
and system calls for the administrator to configure the
URL table. The URL table is initialized by a program
that parses the content tree of the Home server. We
extended the remote console to visualize the URL table,
which produces a single, coherent view of the Web
document tree that is actually partitioned on different
nodes. The remote console provides a file manager
interface containing methods for inserting, deleting, and
renaming files or directories. With the GUI, the
administrator can easily assign different content to
different servers for meeting the performance
requirements of different customers. The administrator
also can assign some specific content to multiple server
nodes for fault tolerance or high availability. Whenever
the administrator changes the document deployment,
the remote console will inform the controller of these
changes. The controller will change the URL table to
adapt these changes, and send the managelets that
perform the content management functions to propagate
these changes to the whole system. As a result,
although the content deployment may change
dynamically, the administrator still can easily know the
system’s status.

We implemented several managelets to perform the
content management functions. For example, one
managelet is responsible to add a file into the local file
system of the node that it executes. If one spare node is
recruited into the server system, the managelet is sent to
this node to automatically replicate some content to this
node. Similarly, if the node is excluded from the system,
one specific managelet is sent to offload web pages
from this node. Another example is that we implement
a managelet to roam in the system for checking content
consistency.

4. High Reliability

In this section, we will describe how a higher reliability
could be achieved by our system. Our system
guarantees service reliability at tree levels. First, a
status detection mechanism can detect and mask the
server failures. Second, a request-failover mechanism
enables an ongoing Web request to be smoothly
migrated and recovered on another server node in the
presence of server failure. Third, we implemented a
mechanism to prevent the single-point-of-failure

problem.

4.1 Failure Detection

The broker, running on each back-end server node, can
also be used to provide a failure detection service for
the entire system. Periodically (the interval is
adaptable), the monitor thread of the broker will wake
up and initiate a request to the web server running on
the managed node. For minimizing the additional
workload added on the managed node, such a request is
designed for retrieving a small file. If the server
responds normally, the broker sends an “I-am-alive”
message (i.e., heartbeat message) to the dispatcher. In
addition, the monitor thread also measures the response
time of the issued request over each interval. If the new
measured value is larger/smaller than the previous
measurement, the next interval time will be
increased/decreased. The increased/decreased value is
proportional to the difference of the two measured
values.

There are two main purposes in such a design. First, it
will prevent the monitor thread from burdening the load
of the web server. If the server is overloaded, the
monitor thread will decrease the frequency of the probe
by discovering the longer response time. Second, fine-
grained load balancing can be achieved by such a
design. That is, if the managed server node is
overloaded, the time of interval will be lengthened.
This means that the broker will increase the time of
interval between this heartbeat and the next. The
dispatcher keeps a counter for each server node, and
such a counter will be incremented periodically. When
the dispatcher receives a heartbeat from one server
node, it resets the counter associated with this server
node. On selecting a server for a new arriving request,
the dispatcher will check the counter associated with
the candidate server. If the counter exceeds a “warning
value”, the server node may be either overburdened or
unreachable. Such a node will be skipped, and the
request will automatically be allocated to the next most
available server. As a result, the dispatcher could detect
the overloaded node and stop dispatching new requests
to it. If the counter exceeds a “dead value” (which is a
higher threshold than warning value), the node will be
declared dead and be temporarily removed from the
server cluster, and an alarm message will be sent to the
administrator. As a result, the failed server node can be
detected and masked by the whole system.

4.2 Failover

In this section, we describe how an ongoing Web
request can be smoothly migrated and recovered on
another server node in the presence of server failure.
We divide web requests into three types: requests for



static content, requests for dynamic content, and
requests for session-based services. We devised
corresponding  solution for each category. We
implemented a program in the management system to
parse the content tree and specify the type of each Web
object in the URL table. For example, files ending with
‘jpg’ or ‘html’ are classified into the type of static
content, and any URL that include ‘cgi-bin’ or file
ending with ‘.php’ are considered to be a dynamic
content. As a result, the dispatcher can identify the type
of each request via consulting the URL table, and then
failover the requests of each category with the
corresponding approach in case of server failure.

4.2.1 Requests for Static Content

To requests for static content, we use the following
mechanism to failover a request on another node. First,
the dispatcher will select a new server, and select an
idle pre-forked connection connected with the target
server. Then the dispatcher re-binds the client-side

connection to the newly selected server-side connection.

After the new connection binding is determined, the
dispatcher issues a range request on the new server-
side connection to the selected server node. From the
TCP related information (i.e., ACK number, sequence
number) recorded in the mapping table, the dispatcher
can infer how many bytes the client has successfully
received. As a result, the dispatcher can make a range
request by including the Range header in it, specifying
the desired ranges of bytes (generally starts from the
last acknowledge number from the clients). Integrating
with the technique of reusing pre-forked connection and
seamlessly relaying packet between two TCP
connections, we can smoothly recover a request on
another node.

4.2.2 Requests for Dynamic Content

Some web requests are for dynamic content (hereafter,
dynamic request for short), for which responses are
created on demand (e.g., CGI scripts, ASP), mostly
based on client-provided arguments. We cannot use the
above approach to recover a dynamic request because
the result of two successive requests with the same
arguments may be different. The most common
example is the dynamic Web pages constructed from
the database. The two successive requests to the same
page may be different due to the updates of the
database. That means it is impossible to “seam” the
results of the two requests by the range request
approach described above. If we want to recover such
dynamic request on another node, we should force the
client to give up the data that it has received and then
resubmit its request again. However, it will not be user-
transparent and compatible with the existing browser.

We used the following approach to solve this problem.
We made the dispatcher “store and then forward” the
response of a dynamic request. In other words, the
dispatcher will not relay the response to the client until
it receives the complete result. Hence, if the server node
fails in the middle of a dynamic request, the dispatcher
will abort this connection, and then submit again the
same request to another node. When it receives the
complete result, it starts to reply to the client. To relieve
the performance concern, we made the dispatcher to
function as reverse proxy (or termed as Web server
accelerator [19]). That is, the dispatcher will cache the
dynamic page so that the subsequent requests for the
same dynamic page can access the content from the
cache instead of repeatedly invoking a program to
generate the same page. We implemented the algorithm
proposed in [20] to manage the cached dynamic Web
pages. As a result, the system not only can solve the
failure recovery problem, but also significantly benefit
from this approach in terms of performance.

4.2.3 Requests for Session-based Services

A so-called session consists of a number of user
interactions, i.e., the user does not browse a number of
independent statically or dynamically generated pages,
but is guided through a session controlled by a server-
side program (e.g., a CGI script) associated with some
shared states. For example, such a state might contain
the contents of an electronic "shopping cart" (a
purchase list in a shopping mall site) or a list of results
from a search request. To recover a session is important
because it is widely used in the E-commerce services.

However, recovering a session on another node is a
more challenging problem. It requires knowledge of
application-specific details such as when is the
beginning of a session, internal state, intermediate
parameter, when is the end of this session, and so on. It
also needs a mechanism to replicate the intermediate
processing-state in order to ensure the fault-tolerance of
the session itself. We tackle these problems by the
following mechanisms.

First of all, we model the session-based services by a
state machine that consists of the following states: Start,
Browse, Search, update the state, Pay, and End. The
web site manager should define a session for which
fault resilience or higher performance is required, by
specifying some important Web pages a corresponding
state. For example, the manager can define the action,
“when a user adds the first item into a shopping cart on
a specific web page,* as a sign of the Start of a session;
and define the action, “when user clicks the check-out
button on a specific page”, as the End of this session.
The administrator could easily make such
configurations via the GUI of our management system.



Such configuration information will be stored in the
URL table.

As we described above, the dispatcher should consult
the URL table to assign the incoming request to one of
the web servers. When the dispatcher finds (here, we
see again the benefit and necessity of content-aware
routing mechanism) a request conveying the “start”
action, it will “tag” this client and then provide the fault
tolerance support for all consequent requests, until it
finds a request conveying the “end” action. We design a
primary-backup protocol [21] to replicate the
intermediate state of a session on a backup node. When
the primary server that is responsible for processing the
session fails, the backup server can take over its job
with the replicated state. The readers are referred to [21]
for further details.

4.3 System Robustness

We noticed that the dispatcher represents a single-
point-of-failure in our system, i.e., failure of the
dispatcher would bring down the entire Web server. To
improve the robustness of our system further, we can
use multiple dispatchers to cooperate for distributing
requests. In this configuration, the DNS approach [22]
can be used to map different clients to different
dispatchers.

We implemented a collection of daemon processes
(based on the SwiFT toolkit [23,24]) that provides fault
tolerance facilities on the group of dispatcher nodes,
logically configured as a ring. Each dispatcher node
runs the daemon process that monitors and backups its
logical neighbor’s state. All the dispatchers will
participate in load sharing under normal operating
conditions, i.e., no dispatcher is relegated to an idle hot
standby status waiting for the failure of a primary
dispatcher.

The dispatcher operates based on two important states:
URL table and connection binding information. The
URL table is a soft state that can be regenerated after
the failure. In contrast, the connection binding
information is a hard state that should be replicated in
the backup node. Consequently, we made the primary
dispatcher keeps a log of recent change of connection
binding information, and periodically replicates the
state change to its backup node to refresh the replicated
table. If the primary fails, the backup can take over the
primary’s job with the replicated state.

5. System Evaluation

This section presents the results of a performance study
on the prototype system. Due to space limitation, we
focus the discussion on the performance experiments
that evaluate the benefit of our URL formalization

mechanism and URL table. We will report the
performance data and a detailed analysis of the fault
tolerance mechanism in [21].

5.1 Measurement Setup

We constructed the following server cluster in
laboratory for performance evaluation. We used a
Pentium-2 (350 MHz CPU with 128 MB memory)
machine running Linux (version 2.2.12) to serve as a
dispatcher. The server cluster consists of the following
machines: four Pentium Pro (200 MHz CPU with
128MB) machines running Linux with Apache (version
1.2.4), and six Pentium-2 (300 MHz CPU with 128 MB
memory) running Windows NT with IIS 4.0. The
reason for such a software configuration is that we want
to show that our mechanism can operate with any kind
of operating system and server software. The Apache
servers are responsible for providing static content and
session-based service, and the IIS servers are
responsible for providing dynamic content. We
connected all these machines directly by a 3Com 3300
switch using 100Mbps full-duplex network connections.

We used 24 Pentium-2 (350 MHz CPU with 128 MB
memory) machines to run the WebStone [25]
benchmark for generating a synthetic workload to
evaluate the proposed system. Each machine runs four
WebStone client programs that emit a stream of Web
requests, and measure the system response. The
generated loads are varied in experiments by varying
the number of WebStone clients. We also inserted the
session model into the workload so that session-based
service could be investigated. We implemented [21] a
session generator in the WebStone client to issue
session-based requests. The content hosted in the
cluster system consisted of 97 Web sites (with
approximately 72000 unique files of which the total
size is about 1312MB).

To quantify the benefit of the new content-aware
routing mechanism, we measured and compared the
response time and throughput in the prototype system
equipped with the new mechanism, with those in a
baseline system without the proposed mechanism. The
baseline system is a server cluster (with the same
configuration described above) front-ended by the
dispatcher implementated in our previous work [11].
The dispatcher in the baseline system needs to parse the
entirce HTTP header to find out the host field for
making routing decision.

5.2 Results

The peak throughput of the proposed system is 3278
requests/sec. In contrast, the peak throughput of our
previous system is 2365 requests/sec. At the period of
peak throughput, the CPU utilization of the dispatcher



equipped with the new mechanism is 52% (and the
previous is 78%). The results show a significant
performance improvement.

The reason for this higher performance is because of
the clever design of URL formalization and its
associated data structure. The dispatcher can quickly
identify that the incoming request is for which Web site,
rather than parse the entire HTTP header to find out the
host field. Combined with the well-designed URL table,
the dispatcher can quickly retrieve related information
to make routing decision. To quantify the benefits of
such a design, we instrumented the Linux kernel of the
dispatcher to measure the latency of URL parsing and
searching. We generated a heavy load (128 clients) to
push the server into a prolonged overload state, and
then we measured the processing time (i.e., the time of
parsing a HTTP header and the time of searching the
URL table to retrieve the routing information).

As we described above, the content hosted on the test
system contained about 72000 Web objects. In such
scale, the memory consumed by the URL table is about
1.8 Mbytes. During the peak load, the average
processing time on a HTTP request is about 2.14 psec.
In contrast, the average processing time in the baseline
system is about 248 sec.

The major concern of a system equipped with some
fault-tolerance mechanisms might be how much
overhead is associated with these mechanisms, and if
the system’s performance will suffer from the
additional overhead. The higher throughput of the
proposed system can demonstrate that the performance
concern does not exist in our system. To precisely
quantify the additional overhead, we analyzed and
compared the response time of a Web request in our
system, with those in a baseline system without fault-
resilience support. Compared with the average response
time of the requests in the two configurations, we could
quantify how much additional overhead will be
introduced by the fault resilience mechanism.

The results of requests for static content are given in
Table 1. We do not see any performance degradation
introduced by the fault resilience mechanism. We also
found a similar result in the performance data regarding
the dynamic content. The reason of the low overhead is
that we do not need to keep any additional state for
recovering a request for static and dynamic content.

Request size (Kb) 4K 8K 32K
Our system (ms) 24.89 34.53 171.93
Baseline (ms) 23.58 32.25 170.24
Request size (Kb) 64K 256K 1024K
Qur system (ms) 305.29 1147.42 4809.14
Baseline (ms) 308.39 1145.62 4815.17

Table 1 Overhead (Static content)

In terms of session-based requests, our protocol
introduces an overhead of about 7% over the baseline
system that does not offer any guarantee. The additional
latency mostly comes from the need to wait for the
backup node to store the processing state. Notice that
the experiment was measured over a local area network,
where high-speed connections are the norm, resulting in
short observed response time and then large relative
overhead. The overhead would be insignificant when
comparing with the typical latency over the wide-area
networks [26,27].

6. Discussion

In this section, we discuss the advantages of our system
and possible arguments against it. We also describe the
related work.

6.1 Advantages

The first advantage of our system is that we provide an
innovative management system to address the
management problem of deploying web hosting
services on a server cluster. With the management
system, hosting service providers can easily manage
and maintain content on the distributed server as a
single large system. The management system provides
the administrator with a single system image on system
management. The system can also automate many
management operations that could ease the burden of
system management. In addition, our management
system offers a natural concurrent-problem-solving
paradigm, which provides a scalable solution to some
tedious management tasks in a large distributed server.
For example, we implemented a managelet to retrieve
some specific URL to determine the availability of the
content. The administrator can configure and dispatch
the managelet to several nodes to perform content-level
health checks concurrently.

The second advantage of our system is that we provide
a higher level of service-reliability support than other
server cluster systems. While the other systems can
only provide high availability by masking the server
failures, our system can provide high reliability by
enabling the requests on the failed node to be recovered
on another working node. Such a capability is important
and essential for the E-commerce providers. They are
willing to pay higher fee to get the guarantee of high
service reliability, since they know that service outage
in today's highly competitive marketplace can mean lost
revenue and lost credibility. Our content-aware routing
mechanism can enable the Hosting service providers to
charge for differentiated services. The dispatcher can
identifies the type and importance of each request, and
then provides corresponding level of reliability support.

HAWA [3] addressed the service availability problem



in client side by an applet-based approach. This is a
very interesting approach and has the advantage of low
overhead. However, they do not address the server-side
fault tolerance problem and deal with the transaction-
based service. Singhai et al. [28] and Chawathe et al.
[29] proposed a framework for building a highly
available Internet service on the cluster system. These
systems indeed could provide higher availability,
however, they are not fault-tolerant or highly reliable.
None of these approaches or systems addresses the
issue of request migration in presence of server failure

and smooth provision of service while migration occurs.

Ingham et al. [30] surveyed some existing approaches
for constructing a highly dependable Web server. They
also pointed out the importance of providing
transactional integrity and found that it is not addressed
in the existing system.

The idea of content-aware routing is not new. In
addition to us, a number of research projects [9,10,31]
and commercial products [e.g., 32-40] also use a similar
idea. However, we make the following unique
contributions. First, we augment the content-aware
routing with the fault-resilience capability. Second, we
devised the new idea of URL formalization and a
corresponding data structure. Comprehensive content-
specific knowledge can be stored in the table, from self-
learning by the management system or administrator’s
inference. Without the support of the content
management system, configuring and managing the
URL table will be a difficult problem. In contrast, the
data structures and what kind of content-aware
intelligence used in these commercial products are
unclear, at least, have never been described clearly in

the literatures.

Finally, the request migration technique not only can be
used to provide fault resilience; it is also beneficial to
system management. If we need to perform several
management actions on one server node, and that might
overburden this node, the system can automatically
“migrate” the ongoing requests on this node to other
nodes. Otherwise, if we want to temporary remove a
node for maintenance, the request migration mechanism
can be invoked to transfer the ongoing requests to other
nodes. The same technique can also be used to solve the
“flash crowd” problem. It is well known that certain
event on particular web site could trigger a significant
load burst that persists for hours, or even days.
Examples include announcement of a new version of
popular software or product, a site mentioned as the
“best-site-of-the-week” on the news, or political sites
during a campaign. Although the clustered server can
provide compelling performance and accommodate the
growth of web traffic, it could suddenly become
swamped due to receiving far more requests on one
node than it was originally configured to handle. The

request migration mechanism can be invoked in
response to server overloaded.

6.2 Possible Arguments Against our System

Someone might argue that the content management
problem could be solved by a shared file system.
Through the communication network, server nodes at
different locations can access the content from the
shared file system to serve user requests. The advantage
of this approach is that we can easily manage and
maintain the content with a centralized policy. However,
such a design will suffer from the following problems.
First, accessing data over the network file system will
increase user perceived latency due to the overhead of
remote-file-I/O and LAN congestion. Some specific
distributed file systems (e.g., AFS [41]) that provide
cache mechanism might alleviate this problem.
However, it is well-known that the access patterns of
WWW exhibit high skew with regard to the access
frequencies of content, thus the popular files tend to
occupy RAM space in all the nodes. The redundant
replication of “hot” content through the RAM of all the
nodes leaves much less of available RAM space for the
rest of the content, leading to a worse overall system
performance. Second, the shared file system approach
does not take the variety of content into consideration.

6.3 Work in Progress

We are pursuing on extending and completing the
functionality of the system in the following aspects.
First, we are designing a load balancing mechanism to
ensure an even load distribution in the system. Since
the access patterns of WWW exhibit high skew, the
static content-placement may lead to load imbalance. In
other words, the servers that store the popular
documents will get overloaded, resulting in hot spots
and bad system performance. As a result, we are
implementing an  auto-replication  facility to
dynamically adjust content placement for ensuring an
even load distribution. Cherkasova et al. [42,43],
Narendran et al. [44], Rabinovich et al. [45,46] have
done great works in a similar problem.

Second, we are investigating the issue of service Level
agreement (SLA), which will enable the content owners
to specify their specific requirements such as bandwidth
usage, number or placement of content replicas, or
required degrees of service reliability. With the
proprietary request-failover mechanism, our system can
offer a strong SLA (service-level agreement) on service
reliability: the important customers can be promised
that no user requests will be lost due to server overload
or failure. We are implementing the related
mechanisms to configure the management policy to
meet the complex requirements of different customers.



Third, we are investigating how to support service
differentiation and QoS guarantee to satisfy the
customer’s requirement.

7. Conclusion

Business demand is fueling the market for companies
that specialize in hosting and managing other
companies' Web sites. However, there are lots of
actions and functions in most hosting service providers
at the low end today. They must gradually move to
more sophisticated services as the content of a Web site
and e-business operations become more complex. In
this paper, we have described the research work we are
pursuing in this direction. We provide an integrated
framework to construct a reliable and highly
manageable Web hosting service on a scalable server
clusterr, We have demonstrated that the URL
Formalization mechanism and a corresponding data
structure can provide a scalable solution to the request
distribution in the system. The management system can
mask the complexity of such a distributed environment,
providing a highly manageable system. A higher level
of services reliability can be achieved by the proposed
system. We believe that we have taken an important
step toward providing a successful hosting service.

Availability

You can get more information about this system and
see a demo demonstration of the remote console on our
Web site: http://pds.cse.nsysu.edu.tw.

Acknowledgement

This work was supported by the National Science
Council, R.O.C., under contract no. NSC 89-2622-E-
110-003.

References

[1] A. Fox, S. Gribble, Y. Chawathe and E. A. Brewer,
“Cluster-based scalable network services,” In
Proceedings of SOSP '97, October 1997.

[2] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T.
Anderson, and D. Culler, “Using smart clients to
build scalable services,” In Proceedings of the 1997
USENIX Annual Technical Conference, January 6-
10, 1997.

[31 Y. M. Wang, P. Y. Chung, C. M. Lin, and Y. Huang,
“HAWA: a client-side approach to high-availability
web access,” In Proceedings of the Sixth
International World Wide Web Conference, April
1997.

[4] R. McGrath T. Kwan and D. Reed, “NCSA's World
Wide Web server: design and performance,” IEEE
Computer, November 1995.

[5] V. Cardellini, M. Colajanni, P.S. Yu, “DNS
dispatching algorithms with state estimators for
scalable Web-server clusters”, World Wide Web
Journal, Baltzer Science, Vol. 2, No. 3, pp. 101-113,
Aug. 1999.

[6] D. Dias, W. Kish, R. Mukherjee, and R. Tewari, “A
scalable and highly available web server,” In
Proceedings of the COMPCON’96, February 1996.

[7] G. D. H. Hunt, G. S. Goldszmidt, R. P. King and R.
Mukherjee. “Network dispatcher: a connection
router for scalable Internet services,” In the
Proceedings of the 7th International World Wide
Web Conference, April 1998.

[8] D. Andresen, T. Yang, O. Ibarra, “Towards a
scalable distributed WWW server on networked
workstations,” Journal of Parallel and Distributed
Computing, Vol 42, pp. 91-100, 1997.

[9]1 V. Pai, M. Aron, M. Svendsen, G. Banga, P.
Druschel, W. Zwaenepoel, and E. Nahum,
“Locality-aware request distribution in cluster-
based network servers,” In Proceedings of the 8th
International Conference on Architectural Support
for Programming Languages and Operating Systems,
October 1998.

[10] A. Cohen, S. Rangarajan, and H. Slye, “On the
performance of TCP splicing for URL-aware
redirection,” In Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems,
October 11-14, 1999.

[11]C. S. Yang and M. Y. Luo, “Efficient support for
content-based routing in Web server clusters,” In
Proceedings of the 2nd USENIX Symposium on
Internet Technologies and Systems, October 11-14,
1999.

[12]J. C. Mogul, “The case for persistent-connection
HTTP,” In Proceedings of the SIGCOMM'95
August 1995.

[13] T. Berners-Lee, R. Fielding, H. Frystyk, J. Gettys,
J. C. Mogul. Hypertext Transfer Protocol—
HTTP/1.1--Draft Standard RFC 2616, June 1999.

[14] The Advantages of F5 Layer 7 Management,
White paper of F5 Lab. Available at
http://www.f5.com/solutions/whitepapers/layer7.ht
ml

[15] A. Iyengar, E. MacNair and T. Nguyen, “An
analysis of Web server performance,” In
Proceedings of the GLOBECOM '97, November
1997.

[16] K. Arnold and J. Gosling. The Java Programming
Language. Addison-Wesley Publishing Company,
Reading, MA, 1998.

[171C. S. Yang and M. Y. Luo, “Design and
implementation of an administration system for
distributed Web server,” In Proceedings of the 12
USENIX Systems Administration Conference,
December 1998.



[18] L. Gong. Inside Java 2 Platform Security, Addison
Wesley, Reading, MA, June 1999.

[19] E. Levy-Abegnoli, A. Iyengar, J. Song, and D.
Dias, “Design and performance of a Web server
accelerator,” In Proceedings of the INFOCOM'99,
March 1999.

[20]J. Challenger, A. Iyengar, and P. Dantzig, “A
scalable system for consistently caching dynamic
Web data,” In Proceedings of the INFOCOM'99,
March 1999.

[21TM. Y. Luo and C. S. Yang, “Constructing Zero-
loss Web Services,” In Proceedings of the
INFOCOM 2001, April 22-26, 2001.

[22] M. Colajanni, P.S. Yu, D.M. Dias, “Analysis of
task assignment policies in scalable distributed
Web-server systems”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 9, No. 6, June 1998.

[23]Y. Huang and C. M. R. Kintala, “Software
implemented fault tolerance: Technologies and
experience,” In Proceedings of 23rd Intl.
Symposiumon Fault-Tolerant Computing, pages 2—
9, Toulouse, France, June 1993.

[24]Y. Huang et.al., “NT-SwiFT:Software
implemented fault tolerance on Windows NT,” In
Proceedings of the 2™ USENIX NT Symposium,
Seattle, August 1998.

[25] WebStone, http://www.sgi.com/

[26] P. Barford and M. E. Crovella, “Measuring Web
performance in the wide area,” Performance
Evaluation Review, August 1999.

[27] M. Kalyanakrishnan, R. K. Iyer, and J. U. Patel.
“Reliability of Internet hosts: a case study from the

end user's perspective,” Computer Networks, 31, pp.

47-57, 1999.

[28] A. Singhai, S.-B. Lim, and S. R. Radia, “The
SunSCALR framework for Internet servers,” In
Proceedings of the Twenty-Eighth Annual
International ~ Symposium  on  Fault-Tolerant
Computing, June 1998.

[29] Y. Chawathe and E. A. Brewer, “System support
for scalable and fault-tolerant Internet services,” In
Proceedings of Middleware '98, September 1998.

[30] D. Ingham, F. Panzieri, S.K. Shrivastava,
“Constructing dependable Web services,” IEEE
Internet Computing, Vol.4, N. 1, January/February
2000.

[311 G. Apostolopoulos, D. Aubespin, V. Peris, P.
Pradhan, D. Saha, “Design, implementation and
performance of a content-based switch,” In
Proceedings of the Infocom 2000, March 2000.

[32] Alteon. Alteon 180 Web Switch.
http://www.alteonwebsystems.com

[33] ArrowPoint. CS-100 Switch.
http://www.arrowpoint.com/

[34] Coyote Point. Equalizer.

http://www.coyotepoint.com

[35] F5Labs. Big/IP. http://www.f5.com/

[36] Foundry Networks.
http://www.foundrynet.com.

[37] Lucent. WebSwitch. http://www1.bell-
labs.com/project/webswitch/default.htm

[38] HydraWeb. Hydra
http://www.hydraweb.com

[39] IPivot.
http://www.intel.com/network/ipivot/index.htm

[40] Resonate, http://www.resonate.com.

[41] M. Satyanarayanan. “Scalable, secure, and highly
available distributed file access,” IEEE Computer
23, 5 May 1990.

[42] L.Cherkasova, “FLEX: load balancing and
management strategy for scalable Web hosting
service,” In Proceedings of the Fifth International
Symposium on Computers and Communications,
July 3-7, 2000.

[43] L. Cherkasova and S. Ponnekanti, “Achieving load
balancing and efficient memory usage in a Web
hosting service cluster,” HP Laboratories Report No.
HPL-2000-27, February 2000.

[44] B. Narendran, S. Rangarajan and S. Yajnik, “Data
distribution algorithms for load balanced fault
tolerant web access”, In Proceedings of the
Symposium on Reliable and Distributed Systems,
October 1997.

[45] M. Rabinovich and A. Aggarwal, “RaDaR: a
scalable architecture for a global Web hosting
service,” In Proceedings of the 8th International
World Wide Web Conference, May 1999.

[46] M. Rabinovich, I. Rabinovich, R. Rajaraman, and
A. Aggarwal, “A dynamic object replication and
migration protocol for an Internet hosting service,”
In  Proceedings of the IEEE International
Conference on Distributed Computing Systems,
May 1999.

Serverlron.

5000.



