
The Age Penalty

and its E�ect on Cache Performance

Edith Cohen Haim Kaplan

AT&T Labs{Research School of Computer Science

180 Park Avenue, Florham Park Tel-Aviv University

NJ 07932, USA Tel-Aviv 69978, Israel

edith@research.att.com haimk@math.tau.ac.il

Abstract

Web content caching is recognized as an
e�ective mechanism to decrease server load,
network tra�c, and user-perceived latency.
An HTTP compliant cache associates with
each cached object an expiration time calcu-
lated according to directives set by the ob-
ject's origin server. The cache incurs a miss

when it has no cached copy of a requested
object or when the existing copy had expired
(is not fresh). Upon a miss, the cache needs
to fetch or validate a copy through exchanges
with another cache with a fresh copy or the
origin server. Thus, misses generate tra�c
and prolong service times.

Caches are deployed as proxies, reverse
proxies, and hierarchically and as a result,
caches often serve other caches. As this
happens, content age at higher-level caches,
in addition to availability and freshness,
emerges as a performance factor. The age

of a cached copy of an object is the elapsed
time since fetched from the respective ori-
gin. Fresh cached copies of the same ob-
ject can have di�erent ages and older copies
typically expire sooner. Therefore, a proxy
cache would su�er a higher miss rate if it
receives older objects (e.g., from a reverse-
proxy cache). Similarly, reverse-proxy caches
that serve proxy-caches receive more requests
than an origin server would have received.
We refer to the increase in miss rate due to
age as the age penalty. We use trace-based
simulations to measure the extent of the age
penalty for content served by content deliv-
ery networks and large caches. Even though

the age penalty had not been considered pre-
viously, we demonstrate that it can be signif-
icant, and moreover, can highly vary under
di�erent practices.

1 Introduction

Caching and replication of Web contents
are widely deployed mechanisms for reducing
Web servers load, network load, and user-
perceived latency. The cache e�ectiveness
depends on the lifetime durations of cached
copies. Web caching is governed by HTTP,
which associates with each cached copy of
an object a freshness expiration time after
which it is considered stale. When a request
arrives and there is no cached copy (con-
tent miss), the cache attempts to obtain a
fresh copy through another cache or the ori-
gin server. When a request arrives and there
is a stale cached copy of the object, the cache
must attempt to validate it (ask for valida-
tion or a modi�ed copy) before serving it to
the user Validations are performed through
a conditional (If-Modified-Since or E-tag
based) GET request and involve communica-
tion with the origin server or another cache.
A large fraction of validation requests return
\unmodi�ed" (we term such requests fresh-

ness misses), but very often the latency they
incur is comparable to that of a full-
edged
content miss. Thus, both content and fresh-
ness misses decrease the cache e�ectiveness
and are important to avoid.

Caches determine an expiration time for a
1



cached copy by computing its freshness life-

time and its (approximate) age. A copy be-
comes stale when its age exceeds its freshness
lifetime. The freshness lifetime is essentially
determined by the origin server as it is com-
puted using directives and values found in the
object's response headers. If explicit direc-
tives are not provided, a heuristic is used.
The copy's age is the elapsed time since it
was sent by its origin server. When a copy is
obtained from another cache it has a positive
age and thus, typically a shorter time-to-live
(TTL) than would have been if fetched di-
rectly from the origin server.

Caches are being deployed throughout the
network. Proxy caches are placed in ISPs
networks close to clients and reverse proxy
caches are placed near network exit points
and cache objects for hosted Web sites. Con-
tent delivery services (CDNs) such as Aka-
mai and Sandpiper place caching servers in
multiple locations [1, 10]. Therefore, it is be-
coming increasingly more common that (ex-
plicitly or transparently) content is served to
a cache (such as a proxy cache) from another
cache (e.g., a reverse proxy). As this happens,
another performance factor emerges, namely,
the age of copies at higher-level caches. If an
older copy of an object is received by the low-
level cache, the cached copy expires sooner
and thus is less likely to remain fresh till a
subsequent request arrives for the same ob-
ject. Therefore, low-level caches that receive
older copies incur more misses. We refer to
the relative di�erence in the number of fresh-
ness misses incurred by a cache when it for-
wards requests to a non-authoritative (high-
level cache) vs. authoritative (origin server)
source as the age penalty .

Cache performance issues related to con-
tent age had been by and large overlooked.
Our main contribution is introducing the age
penalty issue and assessing its magnitude.
Aging issues take a di�erent spin for con-
tent served by CDNs. CDNs such as Aka-
mai act as reverse proxies, but have tighter
relation with their clients (Web sites). In
particular, they deploy a consistency mech-
anism other than HTTP/1.1 between them
and their clients. Downstream client caches,
however, still use the HTTP response head-
ers to determine the object lifetime. The in-

teraction of two coherence mechanism gives
rise to di�erent practices that greatly a�ect
object age, and as a result, the e�ectiveness
of client caches, user-perceived latency, and
tra�c. We discuss observed CDN practices
and measure the associated age penalty.

In Section 2 we overview HTTP freshness
control and its usage, and introduce aging is-
sues. Section 3 discusses our traces and ex-
perimental methodology. Section 4 contains
simulation results measuring the age penalty
for objects served from a high-level cache.
Section 5 is concerned with the age penalty
for objects served by content delivery net-
works. We conclude in Section 6.

2 Freshness control

Cache freshness control mechanisms are
discussed in the speci�cation of HTTP/1.1
and its predecessors. Caches should deter-
mine the freshness period conservatively, us-
ing parameters in the response headers of
the object. If the header does not include
speci�c directives, then it is suggested that
caches apply a heuristic, by �rst matching the
URL against some regular expression (e.g.,
according to su�x which usually indicates
the content type), and then determining the
freshness lifetime to be some fraction of the
elapsed time between the object's date and
its last modi�cation time. We provide a quick
overview of freshness control at caches. For
further details see [5, 2, 11, 8, 7].

The following response headers are used by
Squid [11] for freshness control:

� Date. A time stamp indicating when an
object is sent by the origin server. All
origin servers that have clocks must pro-
vide a Date header. An object received
without a Date header must be assigned
one by the recipient if the object will be
cached. The Date header of an object is up-
dated after a 304 (not modi�ed) response to
an If-Modified-Since GET request. This
header is an end-to-end header not supposed
to be changed by intermediate caches.

� Pragma: no-cache (HTTP/1.0) or
Cache-Control: no-cache (HTTP/1.1).



Explicit directive that the object is not to
be cached. Response without this directive
is considered cachable.

� Cache-Control: max-age (HTTP/1.1).
Explicit freshness lifetime value assignment
by the origin server in seconds. This value
is typically �xed for copies of the object ob-
tained at di�erent times.

� Expires: (HTTP/1.0). A time stamp
beyond which the object stops being fresh.
If Max-Age is also present then Max-Age

takes priority. In practice, Expires is of-
ten either set to be the current time or time
in the past (implying freshness lifetime of
zero), a far time in the future (years), or is
calculated dynamically as Date + T (pro-
viding for a freshness lifetime of T ) and es-
sentially behaves like a Max-Age directive.

� Last-Modified (HTTP/1.0). The time
when the object was last modi�ed by the
origin server.

� E-tag (HTTP/1.1). An identi�er for the
received version of the object. The E-tag
is generated at the origin and can be used
for validation instead of a Last-Modified

time.

� Age (HTTP/1.1). The cumulative time
an object spent in caches when received by
the current cache. This response header is
added and modi�ed by caches and is present
if all caches along the response path are
HTTP/1.1 compliant.

HTTP/1.1 speci�cation (and Squid) con-
sider every object as cachable unless an ex-
plicit no-cache directive is present.1 The
freshness calculation for a cachable object
compares the age of the object with its fresh-
ness lifetime. If the age is smaller than
the freshness lifetime the object is consid-
ered fresh and otherwise it is considered stale.
We refer to the di�erence between the fresh-
ness lifetime and the age as the time-to-live
(TTL).

Squid calculates the age of an object as the
di�erence between the current time (accord-
ing to its own clock) and the time speci�ed
by the Date header. This method of age cal-
culation is also described in HTTP/1.1 speci-
�cation. If an Age header is present, the age

1There are few exceptions to this rule such as re-
sponses to requests with authorization headers and
responses with vary headers that are not yet sup-
ported by Squid and are very rarely used.

is taken to be the maximum of the above and
what is implied by the Age header.

Squid implements freshness lifetime calcu-
lation according to HTTP/1.1 speci�cations
as follows. First, if a Max-Age directive
is present, the value is used as the fresh-
ness lifetime, and the TTL is the freshness
lifetime minus the age (or zero if negative).
Otherwise, if Expires header is present, the
freshness lifetime is the di�erence between the
times speci�ed by the Expires and Date

headers (zero if negative), and thus the TTL
is the di�erence between the time speci�ed by
the Expires header and the current time (or
zero in case this di�erence is negative). Oth-
erwise, no explicit freshness lifetime is pro-
vided by the origin server and a heuristic is
used: The freshness lifetime is assigned to
be a fraction (denoted by CONF PERCENT,
HTTP/1.1 mentions 10% as an example) of
the time di�erence (denoted by LM AGE)
between the time speci�ed by the Date

header and the time speci�ed by the Last-
Modified header, subject to a maximum al-
lowed value (denoted by CONF MAX and is
usually a day, since HTTP/1.1 requires that
the cache must attach a warning if heuristic
expiration is used and the object's age ex-
ceeds a day). Origin servers are supposed to
keep their clocks fairly close to real time, and
the age calculation assume that this is indeed
the case.

2.1 Usage of freshness control

To get an idea for the distribution of fresh-
ness control mechanisms used, we took one of
the logs we used (6 day NLANR cache trace,
see Section 3) and performed separate GET
requests to URLs appearing in the log. We
then weighted the freshness mechanism by
the number of requests to the object recorded
in the log. 3.4% of requests were to objects
with Max-Age speci�ed. 1.4% were with no
Max-Age header and with Expires speci-
�ed in a relative way (or to a time equal or
before the one speci�ed by the Date header),
and 0.8% were with Expires speci�ed in an
absolute way. The vast majority, 70%, did
not have either Max-Age or Expires speci-
�ed but had a Last-Modified header which



allowed for a heuristic calculation of fresh-
ness lifetime. Other requests either had nei-
ther of these 3 header �elds, were explicit
noncachables (3%), or corresponded to ob-
jects with response headers other than 200
(when separately GETted), the most com-
mon of which was 302 (HTTP redirect).

Figure 1 plots CDF (Cumulative Distri-
bution Function) of freshness lifetime values
weighted by respective number of client re-
quests. The majority of freshness lifetime val-
ues are 24 hours (86400 seconds), which is
mostly due to the heuristic calculation (using
Last-Modified) with a CONF MAX set-
ting of 24 hours. About 25% of values are

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000 120000

fr
ac

tio
n 

be
lo

w
 x

seconds

CDF of freshness lifetime values, weighted by requests

UC trace
SD trace

Figure 1: CDF of freshness lifetime values
weighted by requests (cachable objects only)

0 (due to Max-Age or Expires directive).
The linearity of the line between very short
freshness lifetime values and a value of 86400
(one day) is due to recently-modi�ed objects
and the heuristic expiration calculation (ob-
jects modi�ed less than 10 days ago and
a CONF PERCENT value of 10%). These
statistics also show that most freshness life-
time values are in e�ect �xed , being the same
for copies subsequently obtained from the ori-
gin. The freshness lifetime value is �xed when
it is computed using Max-Age, relative use
of Expires, Expires value before the current
Date (freshness lifetime of 0), or with the
heuristic when the object is su�ciently old to
have freshness lifetime of CONF MAX (that
is, the elapsed time since its creation times
CONF PERCENT is at least CONF MAX).
The two cases without �xed freshness life-
time values are (i) recently-modi�ed objects
with no explicit freshness control directive,
and (ii) the Expires value is �xed (that is,

the server returns the same value for later re-
quests). As we shall see next, these distinc-
tions are relevant for our study.

2.2 TTLs via di�erent sources

We consider the TTL of a cached copy
of an object at the time it is received by a
cache. The age of a received copy, and thus,
its TTL, may vary according to the source.
A copy fetched through the origin is typi-
cally received with zero age whereas a copy
obtained from a cache has positive age. 2

The relation between age and TTL depends
on the applicable freshness control directive:
With a \�xed" freshness lifetime value, (as
with Max-Age header. dynamically-set Ex-
pires header, or heuristic expiration for ob-
jects that were not modi�ed very recently),
the di�erence in TTL durations of two fresh
copies is equal to the di�erence in their ages
(the older copy becomes stale �rst). For ob-
jects with a \static" Expires header, the
TTL is the same for copies with di�erent
ages. For recently-modi�ed objects with no
explicit directives, the di�erence in TTL val-
ues of two copies is in fact greater than the
di�erence in their ages.3

The following �gures illustrate these gaps.
Figure 2(A) plots the TTL for an object with
Max-Age or \relative" Expires freshness
control when the object is served from its ori-
gin and when it is cached at a top-level cache.
The illustrated scenario is such that the cache
directly contacts an authoritative source only
when its cached copy is stale. Figure 2(B)
plots the same for objects with heuristic ex-
piration based on Last-Modified header. If
no-cache requests are received by the parent-

2Recall that the age of the copy is calculated as
the maximum of the age and the di�erence between
the current time and the Date header value. Hence,
if clocks at di�erent hosts are synchronized, copies
obtained from a cache should have positive age.

3Recall that when Expires or Max-Age headers
are not present, a heuristic is used to determine the
freshness lifetime. The freshness lifetime is deter-
mined as a fraction of the di�erence between Date

and Last-Modified. In that case the TTL gets pe-
nalized twice for the copy's age: �rst, the freshness
lifetime (fraction of the di�erence between Date and
Last-Modified subject to a limit) is smaller for older
copies, and second, the age of the older copy is larger.



T
T

L

time

from origin

from cache

max_age

T
T

L

from origin

from cache

conf_max

time

T
T

L

time

no-cache requests

max_age

from cache

from origin

(A) (B) (C)

Figure 2: TTL for an object (i) when fetched from the origin and (ii) when fetched from a
cache. (A) the object hasMax-Age response header; (B) object has heuristic expiration based
on Last-Modified response header, The slope of the line corresponds to CONF PERCENT
value and it levels o� at CONF MAX; (C) object with Max-Age response header when two
client requests with a no-cache directive where received.

cache, the TTL would look as illustrated in
Figure 2(C).

2.3 Age penalty

The age-penalty is measured by a what-if
scenario (illustrated in Figure 3). We com-
pare the performance of a (low-level) cache
that forwards requests (transparently or ex-
plicitly) to high-level caches to the perfor-
mance if all requests were forwarded to ori-
gin servers. We focus here on the freshness
hit-rate at the cache. Generally, the age-
penalty e�ect depends on the relation of inter-
request times and freshness lifetime duration
and kicks in when the low-level cache receives
more than one request per freshness lifetime.

Origin serverHigh-level cache

Low-level cache

Figure 3: A low-level cache with choice of
sources.

3 Experimental methodology

Our data included NLANR cache traces [6].
We used two 6 days traces from NLANR

caches collected January 20th till January
25th, 2000 and between July 25 to July 29,
2000 (the second set of logs was used only in
measuring CDN performance).

Our experiments required response header
values in order to deduce freshness life-
time durations. As these are not typically
logged by high-volume caches (including the
NLANR traces), we separately performed
GET requests shortly after downloading the
trace. Timeliness and the distribution of
freshness control directives and values (pre-
sented in Section 2.1) suggest that the pro-
jected values we obtained were fairly close
to actual freshness lifetime values that would
have been obtained at the time requests were
logged.

We run simulation using the original trace
and the projected values. The NLANR logs
contain various labels that characterize each
request by its type and cache performance.
(Classi�cation of hits and misses, presence of
no-cache request header, whether the cached
copy was stale or fresh, etc.). In the simula-
tion we accounted for clients requests with
no-cache header (forcing the cache to for-
ward the request to the server even if the
cache has a fresh copy of the object). We
used a heuristic to determine on which re-
quests content had changed (treating requests
on which the content deemed fresh by the
NLANR cache as \no change."). Our heuris-
tic used the labels associated with the re-
quest and the logged size of the response
to the client. In the simulation we applied
the Squid object freshness model (HTTP/1.1
compliant), using a CONF PERCENT value



of 10%, a CONF MAX value of a day, and a
CONF MIN value of 0 for all URLs. We used
the projected freshness lifetime durations. To
simulate requests served by origin servers, we
set the TTLs to be the respective projected
lifetime durations. In various experiments we
used TTL values lower than freshness lifetime
to simulate access through a cache.

Since we could not GET all URLs in a
reasonable time without adversely a�ecting
our environment, we selected a subset. We
used all URLs that were requested more than
12 times, and applied some weighted random
sampling to others. In total we fetched about
224K distinct URLs (the original logs had
millions, most of them requested only once
). We factored the sampling back in by scal-
ing the results and grouping URLs by number
of requests.

Our simulations assumed in�nite cache
storage capacity, which is consistent with cur-
rent trends and with the desired performance
on the actual traces we used.

We used the freshness rate as our perfor-
mance metric. We de�ne the freshness rate
as the ratio of freshness hits to content hits.
We de�ne content hits and freshness hits as
follows. A request for a fresh cached object is
considered a content hit and a freshness hit.
A request for a stale cached object is consid-
ered a content hit only if an authority with a
fresh copy (e.g, the server or another cache)
certi�es that it is not modi�ed. We refer to
requests that constitute content hits but not
freshness hits as freshness misses . Content
hit requests exclude requests to explicit non-
cachable objects, requests on which the client
speci�ed to bypass caches (no-cache request
header), and requests when the content had
actually changed. We also excluded the �rst
request for each object. Content hits include
requests for objects with respective freshness
lifetime value of 0.

We note that the freshness rate captures
only one performance aspect of a cache and
we later discuss how to interpret it and com-
bine it with others.

The Squid logs recorded the response code
returned to the client and the cache action.

We only considered GET requests such that
the cache returned a \200" or \304" response
code to its client. We further classi�ed these
requests as follows, using the listed Squid la-
bels.

� freshness hit (fhits):
TCP HIT, TCP MEM HIT, TCP IMS HIT

� freshness miss (fmiss):
TCP REFRESH HIT

� content miss (cmiss): we separately ac-
counted for

{ cmiss-r (the cache had a stale
cached copy, issued an IMS re-
quest, and got a Modi�ed response):
TCP REFRESH MISS

{ cmiss-d (there was no cached copy):
TCP MISS

� no-cache request header:
TCP CLIENT REFRESH MISS

The following table shows the fraction of
requests of each type.

log fhit fmiss cmiss-d cmiss-r no-cache

UC 23% 10% 56% 1% 10%
SD 19% 15% 56% 3% 7%

Requests classi�ed as fmisses, cmisses, or
no-cache involve communication with the
origin server or another cache. Freshness
misses constitute 13% (UC) and 19% (SD)
of all requests directed outside. The caches
directed most validation requests (fmisses
and cmisses-r) outside the NLANR hierarchy
(100% in the UC cache and 99.3% in the SD
cache). All these requests were directed to an
origin server or a transparent reverse proxy.
Our measurements suggested that the vast
majority of requests directed outside reached
the origin server. 4 The great exception was

4We distinguish a transparent reverse proxy cache
from an origin server by issuing two consecutive GET
requests within more that a few seconds apart to the
same IP-address of the same server. A cache return
a Date header as obtained from the authoritative
server. An authoritative server returns the current
time according to its clock. Thus, we examined the
Date header value of the two HTTP responses. The
same value indicated a cache. Two di�erent values,
where the di�erence approximates the time between
our two HTTP GET request-response pairs, suggest
origin server, very short TTL (few seconds or less), or
a non-cachable object (that is, no age-penalty e�ect).



requests directed to CDN servers (this is dis-
cussed further in Section 5). Thus, by and
large, the original trace was not subjected to
age penalty. If more validation requests are
directed to a cache we expect to see some
of the freshness hits transform to freshness
misses. It is also apparent that the vast ma-
jority (90% for UC and 95% for SD) of vali-
dation requests return Not-Modi�ed.

4 High-level cache simulation

The following experiment attempts to mea-
sure the age penalty when content is fetched
from nonauthoritative servers such as reverse
proxy caches. As discussed above, a given
request can constitute a hit or a miss at
the higher-level cache. For request consti-
tuting cache misses, performance would have
been better had the higher-level cache not
been there, as longer latency and more tra�c
is incurred than through direct communica-
tion between our cache and the origin server.
The higher-level cache is also not as e�ec-
tive on request constituting content misses.
Thus, in order to distill the performance ef-
fects of age, we simulate an optimistic sce-
nario where all requests constitute cache hits
(the higher-level cache always keeps a fresh
copy). Note that overall performance would
be worse when this is not the case.

Our simulation corresponds to a situa-
tion where all requests to a given URL
are forwarded from our cache consistently
through the same top-level cache (e.g., a re-
verse proxy) 5. These top-level caches main-
tain continuous freshness by refreshing copies
through the respective origin servers as soon
as it becomes stale. Under these assumptions,
for objects with �xed freshness lifetime dura-
tions, the TTL of the copy at the top-level
cache cycles from the lifetime duration to 0.
We denote the freshness lifetime value by T
and compute the TTL obtained after each

5Interestingly, analysis shows that otherwise the
age penalty is higher [3]

NLANR log & object freshness rate
requests fraction source fhits=chits

UC 1 origin 52%
UC 1 cache 43%
UC 0.1 origin 35%
UC 0.1 cache 28%

SD 1 origin 47%
SD 1 cache 38%
SD 0.1 origin 30%
SD 0.1 cache 24%

Table 1: Freshness rates when requests are
directed to (i) a cache or (ii) origin servers.

(content or freshness) miss as

TTL = T � (time� log start time) mod T :

For requests labeled as CLIENT REFRESH
in the trace (arriving with no-cache request
header), we set the TTL to T in order to sim-
ulate a situation where misses are forwarded
to the origin server.

The respective freshness rates in the two
scenarios are listed in Table 1, and show
that the overall age penalty of going through
higher-level caches amounts to 20%-25% de-
crease in freshness hits. The logs UC0.1 and
SD0.1 are reduced traces that included a ran-
dom sample of 10% of the requests.

5 Content Delivery Networks

Many sites now use content delivery net-
works (CDNs) to distribute some of their con-
tent [1, 10]. CDNs place multiple servers dis-
tributed inside di�erent ISP's networks. Each
of these servers is essentially a cache. Like re-
verse proxy caches, these servers only process
URLs within the CDN domain, but like proxy
caches, they are located close to clients. Since
clients can reach a CDN server through fewer
router hops and peering points, the response
time, packet loss, and the number of data re-
transmissions typically improves. CDNs also
o�-load origin sites.

The current architecture used by popular
CDNs (such as Akamai [1]) involves URL



substitutions. The origin sites substitute
the original object URL to one within the
CDN domain. For example, the origin site
substitutes the URL of the embedded image
http://cnn.com/images/icons/video.gif

with the URL http://a388.g.akamaitech

.net/7/388/21/e0a3b4215f9e4b/cnn.com/images/

icons/video.gif. The substituted URL is
termed by Akamai the Akamaized URL or
ARL.

Clients are then directed to a \good" CDN
server (one that is likely to be less loaded,
have a cached copy of the object, and be close
to the client). When the client local DNS
server resolves the hostname of the object,
the Akamai DNS server returns an IP-address
of a \good" CDN server. CDNs mainly serve
relatively static content such as images and
java applets but are striving to serve addi-
tional content types including streaming me-
dia, authenticated content and dynamic con-
tent.

The URL substitution architecture forces
the deployment of some coherence protocol
between the CDN and the origin sites. One
natural possibility is to adhere to HTTP/1.1
freshness control - where copies on the CDN
servers must be refreshed when they expire.
This approach would make the aging issues
similar to plain reverse proxy caches. We
shall see, however, strong indication that a
di�erent mechanism is used.

Experimentation shows that the content
of the response is not sensitive to the par-
ticular Akamai hostname used (e.g., when
a388.g.akamaitech.net is substituted with
a534.g.akamaitech.net). Furthermore, the
response content is not sensitive to changes
in the 3 �elds of the ARL preceding
the part that contains the origin URL
(e.g., /388/21/e0a3b4215f9e4b/ in the exam-
ple above). Values in the last of these
�eld suggest that it encodes a time dura-
tion, counter, or an object identi�er. It seems
that the redundancy in URL to ARL trans-
lation is used to encode freshness lifetime
and that the Akamai servers use the infor-
mation embedded in the requested ARL to
determine when to refresh (through the orig-
inal URL). In some cases (as in the exam-
ple above) the ARL seems to be unique per

version of the URL, as it encodes the ver-
sion identi�er (e0a3b4215f9e4b). Measuring
latency when requesting di�erent ARLs 6

strongly suggest that CDN servers refresh
a copy when a request is received with a
new \Akamization" of the same URL.7 It is
also evident that Akamai servers do not con-
duct any checks to determine if a particular
\Akamization" was actually used by the ori-
gin site, since they responded to requests with
arbitrary values (even in the URL portion of
the ARL, e.g., in the ARL above, the URL
portion cnn.com/images/icons/video.gif can
be substituted with an arbitrary URL). With
CDN servers not performing checks, freshness
control can be performed either by (i) CDN
servers considering a copy as expired after a
pre-agreed duration had elapsed, or as the
content of a particular embedded URL is
modi�ed at its origin site, the origin site has
to (ii) re-substitute a new ARL for it or (iii) to
trigger removal of all cached copies at all
CDN servers. The most plausible possibility
seems to be the �rst, that is, the use of pre-
agreed durations, most likely encoded within
the ARL itself.

We discuss how age a�ects performance un-
der past and present CDN practices.

5.1 Leave response headers intact

The �rst practice we discuss was imple-
mented by the two studied CDN sites un-
til about March of 2000. The CDN servers,
like plain HTTP caches should, populated the
end-to-end header values of their responses
with the original settings provided for the ob-
ject when it was fetched from the origin site.
As a result, when an object is fetched to a
cache from a CDN server, its age includes the

6We conducted the following measurements with
several URLs: We compared the latency of 500 GET
requests of the URL from the same CDN server when
(i) the same ARL was used each time (ii) a di�erent
ARL was used each time (e.g., by replacing the string
e0a3b4215f9e4b). The cumulative latency in the
latter measurement was 25%-40% slower than in the
�rst. This suggests that when seeing a new Akamiza-
tion, the CDN server obtains a new copy of the URL
from the origin server prior to sending the response.

7As of 11/2000, Akamai seem to use HTTP redi-
rect (302 response code) to the original URL in some
cases when a new Akamization is seen.



duration it resided on the CDN server. More
speci�cally, when a CDN server responded to
an HTTP request it returned the Date, Ex-
pires, Max-Age, and Last-Modified re-
sponse headers as they were when the object
was fetched to the CDN server from the true
origin site. The CDN servers, however, di�er
from HTTP caches since they are considered
by caches to be the authoritative sources for
the substituted URLs (ARLs). Hence, their
responses are always considered valid for the
present request (even if already expired) and
they constitute a �nal destination of requests
with no-cache request headers.

To experimentally measure the age penalty
e�ect for CDN-delivered objects we extracted
from the (January, 2000) NLANR logs re-
quests that used two CDNs Akamai [1] and
Digital Island (Sandpiper) [10]. To that end
we extracted URLs whose hostname included
the strings \akamai," \sandpiper", or had the
pre�x \fp.cache." We note that this is only a
subset of requests served by these providers
because sometimes the domain name does not
include these strings. We used the same sim-
ulation methodology as outlined in Section 3.
For these URLs we calculated TTLs in two
ways: 1) According to the headers provided
by the content provider, 2) As they would
have been calculated if a current copy was ob-
tained from the origin (with the Date set to
current time and adjusting for dynamically-
generated Expires headers.) Figure 4 shows
the fraction of URLs with TTL value below x
for varying x. When fetched directly from the
origin, most objects have TTL value of a day
(this is consistent with what we get when con-
sidering all objects in the log). When fetched
from the CDN server, TTL values drop dras-
tically, and most of them become zero.

The table below includes for each provider
and cache, the respective fraction of requests
in the log, the freshness rate as is (fetched
from the CDN behaving as an HTTP cache
with respect to the headers), and the fresh-
ness rate as would-have-been if the origin
server was serving the object.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000 120000

fr
ac

tio
n 

of
 tt

l v
al

ue
s 

<
 x

ttl (seconds)

ttl values from origin and from content-host

ttls from content-host
ttls from origin

Figure 4: CDF of TTL values when content
is fetched from origin vs. content-host

CDN cache % of log fhits=chits thru:
requests CDN origin

Sandpiper UC 0.4% 5% 76%
Sandpiper SD 0.5% 6% 67%
Akamai UC 1.7% 5% 61%
Akamai SD 1.1% 6% 63%

These results show that requests to objects
served through CDNs incur a ten to �fteen
fold decrease in freshness hits and 2-3 fold in-
crease in freshness misses relative to the same
requests directed to respective origins.

Freshness misses constitute 26%-38% (UC
and SD Sandpiper) and 26%-40% (SD and
UC Akamai) of all requests forwarded by the
UC cache to the CDN, which is considerable
more than general statistics across all logged
requests. Our simulation suggests that most
of these requests are due to the age penalty
e�ect.

What caused the age-penalty through CDN
servers to be so much worse than through
HTTP-compliant caches (see Section 4) was
deployment of a freshness control mechanism
other than HTTP/1.1 to decide when to re-
fresh their copies of hosted objects. The
freshness lifetime value used by the CDN
server was typically considerably longer than
the HTTP-implied value, and thus, the typ-
ical hosted object HTTP-expired well before
it was refreshed by the CDN server. For ex-
ample, often the content-host-served objects
have an age exceeding Max-Age value, re-
sulting in a TTL of 0 and them becoming
stale almost immediately at an HTTP/1.1
compliant cache.



Around March, 2000, one of the CDNs,
Akamai, addressed the issue by rewriting
some of the end-to-end response headers of
hosted objects. In particular, the Date

header value was set to the current time
at the Akamai server, and the Expires is
made consistent with the Max-Age direc-
tive. The returned headers are then such
that an HTTP/1.1 compliant cache assigns
the same TTL as it would have if it had con-
tacted the origin server8. This rewriting of
response headers eliminated much of the un-
necessary freshness misses. However, the in-
teraction of the two freshness control proto-
cols gives rise to further questions.

5.2 ARL freshness control

It is evident from the previous measure-
ments that the freshness control mechanism
between the CDN servers and the sites allows
considerably longer freshness lifetime dura-
tions than HTTP freshness control. Thus,
the freshness rate of client caches can be sig-
ni�cantly improved if the freshness lifetime
known to the CDN servers is translated into
the HTTP response headers. In particular,
when the \Akamization" is unique per ver-
sion, the Expires header can be set accord-
ingly to a far time in the future, and as a
result, greatly reduce the number of fresh-
ness misses at downstream caches and net-
work load due to validations.

To asses the potential gain we used a 5 day
long trace from the UC NLANR cache taken
between 25 and 29 of July, 2000. Note that
this trace was downloaded after Akamai im-
plemented the change of rewriting response
header values. The trace included for each
request the response code returned from the
UC cache to the client, the UC cache action
taken to process it, and service times (the to-
tal processing time from the UC cache per-
spective).

In total there were 19K requests to 6K
di�erent ARLs in the akamaitech.net domain

8This is true in all cases except when the Expires
header is used in a relative way and there is no Max-

Age directive (see Section 2), and when clocks on the
origin site and the Akamai server are not synchro-
nized

for which the UC cache returned a 200 (OK)
or 304 (Not-Modi�ed) response code to the
client. 304 responses are freshness misses at
the client cache and 200 responses are content
misses at the client cache. The breakdown of
requests is given in Table 2. In each category,
we further breakdown requests according to
actions taken at the UC cache. In particular,
we list the percentage of freshness hits at
the UC cache (LOCAL), misses forwarded
to a sibling cache (SIBLING), and misses
forwarded to the Akamai server (DIRECT)9.
All request directed to a SIBLING were
cache content misses (TCP MISS in Squid
terminology). For DIRECT requests we
accounted separately for those that arrived
from the client with a no-cache request
header (TCP CLIENT REFRESH MISS),
those that were freshness misses at the UC
cache (TCP REFRESH HIT), and other
cache misses. We calculated average service
time for requests in each category excluding
values exceeding 10 seconds, since otherwise
the average is distorted by few outliers. Ser-
vice times of less than 10 seconds included
all local responses and about 99.5% of all
responses. It is evident that average service
times highly varies by request category.
LOCAL requests are handled signi�cantly
(70%) faster than requests on which the
cache contacted another server. The re-
sponse time on 304 responses is about 40%
shorter than on 200 responses.

We are now able to asses the potential re-
duction in freshness misses, both at the UC
cache and at caches of its clients. 10.4K out
of the 19.4K (over 50%) of the requests di-
rected to the UC cache from client caches
were validation requests with 304 response.
All of these requests except for those with
a no-cache request header could have been
eliminated. Thus, 45% of total requests be-
tween client caches and the UC caches would
have been eliminated. Considering average
service times shows that the average latency
gain would have amounted to about 150ms
(plus RTT) per request. Requests from the
UC cache to Akamai servers that potentially
could have been eliminated are all validation
requests without a no-cache request header.
This included about 19% (11% for 200 client

9no requests were forwarded to a parent cache



at client cache at UC cache

content miss (200) LOCAL DIRECT SIBLING

9K 208ms 35% 80ms 59% 269ms 6% 360ms
no-cache 304 miss

20% 1.1K 12% 0.62K 68% 3.6K

freshness miss (304) LOCAL DIRECT SIBLING

10.4K 157ms 28% 51ms 67% 196ms 5% 201ms
no-cache 304 miss

18% 1.3K 29% 2K 53% 3.5K

Table 2: Breakdown of requests according to cache action.

responses and 29% for 304 responses) of total
requests issued to an outside server (sibling
cache or origin).

On a side note, it is evident that the UC
cache evicts items more aggressively than its
clients caches: the majority of requests where
304 response was sent to the client were con-
tent misses at the UC cache and on the other
hand 60% of the freshness misses at the UC
cache were freshness misses (and content hits)
at the client. This suggests that UC cache
performance on these items (and the possi-
ble gain from ARL uniqueness) would bene�t
from increased storage or better replacement
policy.

In an attempt to try to consider only ARLs
that are used in a unique fashion per URL
version we considered only requests to ARLs
where the value in the last �eld preceding
the URL seemed to contain a time-stamp,
counter, or version identi�er. We identi�ed
5.8K such requests which included 2.9K with
304 response and 2.9K with 200 response.
Out of the 304 responses there were 0.8K with
no-cache headers. Thus, about 35% of total
requests from clients to the UC cache would
have been eliminated. Out of the 5.8K re-
quests, about 60% were DIRECT and about
13% were DIRECT freshness hits. Thus,
about 20% of requests to the Akamai server
could have been eliminated.

The above discussion asses the potential
gain from translating the proprietary CDN
freshness control into the HTTP headers, but
leaves aside possible reasons for keeping two
sets of directives. For example, hit-count and
collecting statistics, but these can usually be

performed through the referring HTML page
or using a single embedded object on each
page.

6 Conclusion

We discussed the e�ects of object-age on
the performance of cascaded caches, and
showed, through trace-based simulations,
that the age penalty can be signi�cant. We
remark that the age penalty can be elim-
inated altogether if strong consistency is
maintained between high-level caches (e.g.,
reverse-proxies or CDN servers) and origin
servers. Strong consistency, however, is ex-
pensive and not facilitated through HTTP or
otherwise widely supported.

client caches higher−level
cache

origin

Figure 5: Client caches, high-level cache, and
the origin

For future work, we propose two ap-
proaches to alleviate the age penalty while
working within the current consistency infras-
tructure. The �rst, source selection, is de-
ployed by \low-level" caches. In some archi-
tectures a cache may have a choice of where
to forward requests on which a miss occurred.
If so, it is preferable to forward requests
to a server that is more likely to have the
\youngest" fresh copy of the object. More
generally, source selection should balance dis-
tance, likelihood of fresh cached copy, and



age. The second approach, rejuvenation, is
deployed by \high-level" caches. We use the
term rejuvenation for pre-term validation of
selected copies (well before they expire), as
a mean to decrease age. At the limit, fre-
quent rejuvenation amount to strong consis-
tency between the cache and the origin and
thus, no age penalty. Rejuvenations reduce
tra�c between the cache and its clients (and
user-perceived latency), but increase tra�c
between the cache and the origin servers (see
Figure 5). When the cache serves many
clients which request an object frequently, the
bene�t of decreased age penalty could signif-
icantly outweigh the cost. We analyse and
experimentally-evaluate rejuvenation in sub-
sequent work [4, 3].

The age penalty can widely vary for content
served by CDNs. The practice of intact end-
to-end HTTP response headers resulted in an
order of magnitude decrease in freshness hits
and in a 2-3 fold increase in validation traf-
�c. With edited response headers, it seems
that performance could greatly improve if
ARL freshness control is translated to HTTP
freshness control in the rewritten HTTP re-
sponse headers. Generally, it is desirable
that CDN clients would need to use only one
set of freshness control speci�cations, either
through HTTP headers, or through the CDN
proprietary mechanism. CDNs can then ei-
ther adhere to HTTP directives or re-write
them to be consistent with the proprietary
protocol. A related discussion on de�ning the
role of CDNs, possibly by incorporating spe-
ci�c CDN directives into HTTP headers, is
given in [9].

We conclude with the hope that our work
would contribute to better understanding,
by researchers and practitioners, of the age-
related facet of cache performance, and ulti-
mately, spur further work aimed at improving
performance of cascaded caches.

Acknowledgment

We thank Duane Wessels for answering
questions on a (since corrected) Squid logging
bug, and Bruce Maggs and Mark Nottingham
for answering questions on observed Akamai

practices. We also thank Je� Mogul for com-
ments on an earlier version of this paper.

References

[1] Akamai. http://www.akamai.com.

[2] T. Berners-Lee, R. Fielding, and
H. Frystyk. Hypertext Transfer Proto-
col | HTTP/1.0. RFC 1945, MIT/LCS,
May 1996.

[3] E. Cohen, E. Halperin, and H. Ka-
plan. Performance aspects of dis-
tributed caches using TTL-based consis-
tency. Manuscript, 2000.

[4] E. Cohen and H. Kaplan. Aging
through cascaded caches: performance
issues in the distribution of web content.
Manuscript, 2000.

[5] R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, and T. Leach,
P. Berners-Lee. Hypertext Transfer Pro-
tocol | HTTP/1.1. RFC 2616, ISI, June
1999.

[6] A Distributed Testbed for National In-
formation Provisioning.
http://www.ircache.net.

[7] J. C. Mogul. Errors in timestamp-based
HTTP header values. Technical Report
99/3, Compaq Western Research Lab,
December 1999.

[8] M. Nottingham. Optimizing object
freshness controls in Web caches. In The

4th International Web Caching Work-

shop, 1999.

[9] M. Nottingham. On de�ning a role for
demand-driven surrogate origin servers.
In The 5th International Web Caching

and Content Delivery Workshop, 2000.

[10] Digital Island (Sandpiper).
http://www.sandpiper.com.

[11] Squid internet object cache.
http://squid.nlanr.net/Squid.


