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Abstract

This paper seeks to understand how network failures
affect the availability of service delivery across wide
area networks and to evaluate classes of techniques
for improving end-to-end service availability. Using
several large-scale connectivity traces, we develop a
model of failures that includes key parameters such
as failure location and failure duration. We then use
trace-based simulation to evaluate several classes of
techniques for coping with network failures. We find
that caching alone is seldom effective at insulating
services from failures but that the combination of
mobile extension code and prefetching can improve
failure rates by as much as an order of magnitude
for classes of service whose semantics support discon-
nected operation. We find that routing-based tech-
niques may provide significant improvements, but
that the improvements of many individual techniques
are limited because they do not address all signifi-
cant categories of network failures. By combining the
techniques we examine, some systems may be able to
improve availability by as much as one or two orders
of magnitude.

1 Introduction

This paper seeks to understand how network fail-
ures affect the availability of service delivery across
wide area networks (WANs) and to evaluate classes
of techniques for improving end-to-end service avail-
ability. By providing a quantitative analysis of these
techniques, we hope to provide a framework to help
service designers select from and make best use of
currently-available techniques. Further, we seek to
evaluate the potential impact on availability from
proposed extensions to the Internet infrastructure
such as replication of active objects [1, 3, 13, 29, 30,
35] and overlay routing [26].
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Although several commercial hosting services to-
day advertise 99.99% or 99.999% (“four 9’s” or “five
9’s”) server availability, providing highly available
servers is not sufficient for providing a highly avail-
able service because it is not an end-to-end approach:
other types of failures can prevent users from ac-
cessing services. Internet connectivity failures, un-
fortunately, are not rare. Paxson [23], for example
finds that “significant routing pathologies” prevent
selected pairs of hosts from communicating about
1.5% to 3.3% of the time, and more recent measure-
ments [36] suggest that availability has not signifi-
cantly improved since then. In contrast with the 5
minutes per year of unavailability for a five-9’s sys-
tem, a typical two-9’s Internet-delivered service will
be unavailable for nearly 15 minutes per day from a
typical client.

Although caching can improve file system avail-
ability [12, 14], there is reason to be concerned that
caching alone will not significantly improve WAN ser-
vice availability because much HTTP traffic is un-
cachable [7, 34]. This limitation motivates us to study
the potential effectiveness of other techniques such
as hoarding [14], push-based content distribution [9],
relaxed consistency, mobile extensions to ship service
code to proxies or clients [1, 3, 13, 29, 30, 35], any-
cast [2, 8, 35], and overlay routing [26]. Although
the performance benefits of many of these techniques
have been studied, their potential impact on end-to-
end availability has not been quantified.

Our analysis faces two challenges. First, we wish
to evaluate the potential effectiveness of a wide range
of techniques for a wide range of services. To do this,
we abstract away both the detailed design of the tech-
niques and the semantic requirements of the services.
By using these simplifications, we can determine up-
per bounds on improvements that different classes of
techniques can yield. To refine these simple bounds,
we then explore the sensitivity of the techniques to
parameters representing factors that could limit their
effectiveness. The second challenge is that available
studies of WAN failure patterns do not quantify sev-
eral important parameters. To address this, we ana-
lyze connectivity traces to develop a model suitable



for evaluating techniques for coping with failures.

This work makes three contributions. First, we
develop a WAN connectivity failure model that in-
cludes failure rate, failure location, and failure du-
ration. A key finding is that failure duration distri-
butions appear heavy-tailed, which means that long
failures account for a significant fraction of failure
durations. Second, we conclude that data-caching-
based techniques for improving service availability
will likely have little success, but that the combi-
nation of prefetching and shipping mobile extension
code to clients and proxies has the potential to im-
prove failure rates by over an order of magnitude.
Unfortunately, three factors may significantly limit
these gains: (i) compulsory misses to extension code
and state, (ii) capacity misses due to limitations in
the number of extensions a client or proxy can host,
and (iii) service-specific semantic requirements that
prevent some services from using these techniques.
Finally, we find that routing-based approaches can
significantly improve failure rates, but that near-
client, near-server, and interior network failures all
contribute significantly to the overall failure rates,
which limits end-to-end improvements from efforts
that address only one type of problem (e.g., multi-
hosting a server with multiple ISPs).

The rest of this paper proceeds as follows. We
first discuss related work in the areas of coping with
network failures and modeling Internet failure pat-
terns. We then describe the network failure model we
have developed. Section 4 evaluates classes of tech-
niques for coping with network failures when deliver-
ing Internet services. Finally, Section 5 summarizes
our conclusions.

2 Related work

The basic techniques we examine for improving ro-
bustness have been studied in other contexts. In
file systems, caching, hoarding, and relaxed consis-
tency can isolate clients from network and server
failures [12, 14, 27]. Odyssey [21] explores using
application-specific adaptation to cope with discon-
nection by dynamically adjusting service semantics.

In the context of web services, previous studies
have examined the performance benefits of caching [7,
28, 33], prefetching [6, 22, 16, 24], pushing up-
dates [18, 28], push-based content distribution [9],
server replication [20], mobile code [1, 3, 13, 29, 30],
and overlay routing [26], but the impact on end-to-
end service availability of these techniques has not
been systematically quantified.

Systems implementing variations of some of these

techniques have been built. The Netscape Navigator
browser supports “off-line” browsing from its cache
and and the Microsoft Internet Explorer Browser sup-
ports hoarding. Joseph et al.’s Rover toolkit [13] is
designed to support disconnected operation for mo-
bile clients accessing services. But these techniques
have not been systematically applied to or evaluated
for large numbers of services.

Paxson studies IP-level routing pathologies and
finds that “major routing pathologies” thwart IP
routing between a given pair of hosts 1.5% to 3.4% of
the time [23]. The study focuses on quantifying the
prevalence and diagnosing the causes of IP-level fail-
ures. Our analysis builds on this study by studying
these traces to determine metrics relevant to end-to-
end service delivery: failure location and duration.

Labovitz et al. [17] examine route availability by
studying routing table update logs. They find that
only 25% to 35% of routes had availability higher
than 99.99% and that 10% of routes were available
less than 95% of the time. They find that 60% of
failures are repaired in a half hour or less, and that
the remaining failures exhibit a heavy-tailed distribu-
tion. These results are qualitatively consistent with
our end-to-end analysis and provide additional evi-
dence that connectivity failures may significantly re-
duce WAN service availability.

Zhang et al. [36] study NIMI and traceroute mea-
surements taken during December 1999 and January
2000. They find that routing reliability has neither
degraded nor improved significantly since Paxson’s
1995 study. The focus of this study is on stationarity
of network behavior, and it finds considerable varia-
tion in behavior at different network locations, at dif-
ferent times, and on different time scales. This points
to a potential limitation of our current study, which
uses average behavior across paths and over time to
develop a model of average availability. Given the
variability found by Zhang et al. for the metrics of
route stability, packet loss, and throughput, future
work to study the impact of route variability of con-
nectivity would be valuable.

3 Network failure model

We seek to model parameters of network failures that
most directly affect techniques to improve availabil-
ity. The most basic parameter is failure rate: what
fraction of time are two nodes unable to communi-
cate? We then analyze failure patterns along two
dimensions: failure location and failure duration.
Failure duration is important because it influ-
ences the effectiveness of techniques for coping with



failures. For example, it may be simpler to use
caching or prefetching to mask short failures than
long failures since masking long failures requires pre-
dicting access patterns across longer periods of time,
transferring more data to the cache, and storing more
data in the cache.

Failure location is important because it influences
the effectiveness of routing-based strategies. We use
a simple model that classifies failures into three oper-
ationally significant categories — “near-source,” “in-
middle,” and “near-destination.” Near-source fail-
ures represent failures of the client stub network that
disconnect a source machine or source subnet from
the rest of the Internet. Near-destination failures
have a similar effect on destinations. In-middle fail-
ures represent connectivity failures in the middle of
the network that prevent a pair of nodes from con-
tacting one another (on the default route), but where
both nodes are able to contact a significant fraction of
the remaining nodes on the Internet. We also use the
term “stub failures” to refer to the combined near-
source and near-destination categories.

This location model is admittedly simplistic.
Most notably, it represents in-middle failures as the
interruption of connectivity between a single pair of
nodes that does not affect any other pairs’ ability to
communicate. In reality failures in the middle of the
Internet infrastructure will typically affect more than
one pair of nodes [17]. Thus, groups of such middle
failures are likely to be correlated, and the correla-
tion will depend on details of network topology that
would be complex to model. However, we believe that
our simple model provides a reasonable first-order ap-
proximation for evaluating routing based techniques:
an in-middle failure represents the case where both
the source and destination can connect to a nontriv-
ial fraction of the Internet but cannot connect to each
other by the default route. Assuming that the core
Internet is not partitioned, routing-based techniques
are likely to be able to find an alternate route between
the nodes in such a situation.

Our failure model uses a simple model for inter-
arrival times. Given a failure rate (expressed as a
fraction of time a particular class of failures occurs at
a particular location) and an average failure duration,
we calculate the average inter-arrival time for each
class of failures. We then assume that failures arrive
independently with exponentially distributed inter-
arrival times with the given average arrival rate. We
leave as future work extending the model to (a) model
correlation in time of arrivals to a location, (b) model
correlation of arrivals across different locations, (c)
model time-of-day dependencies, and (d) model dif-

[ Parameter | Default value | Comment

Rate 1.5% (all failures) | Varies from .4% to 7.4%
1.25% (> 30s) in different data sets
Location Src: 25% All locations significant.
Mid: 50% Ratio varies widely
Dest: 25% across traces.
Duration avg = 609 sec. Appears heavy-tailed
pdf(x) = 162185
Interarrival avg = 48111 sec.

Table 1: Default parameters for failure model.

ferent failure patterns on different paths [36].

Another enhancement to the model left as future
work is modeling quality of service. Whereas our sim-
ple model tracks periods of complete disconnection,
for some applications, the network has “failed” if the
bandwidth falls below a certain level or the latency
rises above some level. A more sophisticated failure
model might account for variations in quality of ser-
vice as well as the coarse metric of connectivity on
which we focus.

Table 1 summarizes key parameters for our
model. The following subsections describe how these
parameters are obtained.

3.1 Failure analysis methodology

Our basic methodology for quantifying failure pat-
terns uses datasets that consist of large numbers of
attempts by pairs of nodes to communicate. We iden-
tify attempts that succeed and those that fail and use
this information to develop models for the frequency,
duration, and location of failures in the Internet.

We use two types of dataset. First, traceroute
datasets consist of multiple traceroute measurements
between pairs of nodes participating in the study.
Second, HTTP datasets consist of logs of HTTP
requests through public Squid [31] proxies to web
servers. The datasets used are described in more de-
tail in the next subsection.

There are potential biases in our approach result-
ing from both limitations of our data sets and our
analysis of them.

First, the hosts and network paths that we trace
may not be representative of typical Internet con-
nectivity. Several of our traceroute datasets were
collected by Paxson, and he argues that the inte-
rior nodes measured may be representative of typi-
cal routes but that the end-hosts may not be [23)].
Other traceroute datasets were gathered by Savage
et. al [26] from sites selected for convenience. Al-
though our HTTP traces are sent to a collection
of servers dominated by publicly-available HTTP
servers, requests are sent from regional Squid proxies.
These Squid proxies may be unusual sources both in



terms of their network connectivity and in terms of
the user community they serve.

Although we seek to develop end-to-end failure
models, our data sets are not, strictly speaking, end-
to-end. In particular, the traceroute data sets track
failures at the IP level but omit higher-level protocol
failures such as DNS failures. Also, because trace-
route server machines’ failure patterns may not be
representative of those of HT'TP server machines, we
filter out “end-host” failures from the traceroute data
sets. These factors mean that we may underestimate
end-to-end failure rates.

Also, our data sets may under-report the num-
ber of failures that happen near the source node of
a request. In both the HTTP and traceroute data
sets, network disruptions near the intended source of
a measurement may prevent requests from being is-
sued during these periods when they are more likely
than average to fail.

Another source of bias is the data sampling pat-
terns used in some data sets. The traceroute data
sets (except uw-1) use exponentially-distributed ran-
dom inter-measurement times. By the PASTA (Pois-
son Arrivals See Time Average) principle [32], the
fraction of requests that fail in the traceroute exper-
iment should correspond to the fraction of time the
network is down (neglecting the source failure sam-
pling bias listed above). The HTTP data sets sample
routes according to the request pattern from clients
and therefore the samples reflect the request-average
behavior of the system, but this may differ from the
time-average behavior of the system because the state
of the network may affect whether a trace sample is
taken or not. For example, if a user’s first request to a
server fails, it is unlikely the user will send additional
requests to the server in the near future.

3.2 Datasets

Table 2 summarizes the traces we use to construct
our network failure model.

Paxson-1 and Paxson-2 are traceroute measure-
ments taken and originally analyzed by Paxson [23].
In Paxson-1 each site sends a probe to a randomly
chosen target with an exponential inter-probe inter-
val of 2 hours. The number of sites varies over the
course of the trace up to a maximum of 27 nodes. In
Paxson-2, 40% of measurements from a site are to a
randomly chosen target site with exponential inter-
probe intervals of 2 hours. The remaining 60% of a
sites measurements are sent in “bursts” with the same
2-hour inter-probe interval but without changing the
target from the previous probe.

Traceroute Datasets

| Dataset | Year | Duration | nhosts | nsamples |
Paxson-1 1994 45 days 27 7016
Paxson-1-na | 1994 45 days 22 4903
Paxson-2 1995 48 days 33 28943
Paxson-2-na | 1995 48 days 23 12613
uw-1 1999 34 days 36 54391
uw-3 1999 7 days 36 78816
uw-4a 1999 14 days 14 181151
uw-4b-all 1999 12 days 38 58488

HTTP Datasets

[ Dataset | Year | Duration | nhosts | nsamples |
Bol 2000 16 days 1/194284 8142820
Rtp 2000 12 days 1/282830 | 18577435
Squid2 2000 3 days 9/327835 | 23490956

Table 2: Network failure traces. For traceroute

traces, nhosts is the number of participating nodes; each
node acted as both a source and a destination. For
HTTP traces, nhosts shows {the number of proxy caches
traced}/{the number of servers they contacted.} Nsam-
ples shows the number of attempts to communicate in
each trace.

Paxson-1-na and Paxson-2-na represent the sub-
set of measurements in the Paxson traces that both
begin and end in North America.

uw-1, uw-3, uw-4a, and uw-4b-all are traceroute
traces collected by Savage et. al [26] at the University
of Washington. In uw-1, the inter-measurement time
is a uniform distribution with a mean of 15 minutes
and each measurement is between a random pair of
hosts. In uw-3 and uw-4b-all a random pair of hosts
is selected for each measurement using an exponen-
tial distribution with a mean of 9 and 150 seconds,
respectively. In uw-4a, every server sends requests to
every other server at the same time; these episodes
are scheduled using an exponential distribution with
mean of 1000 seconds.

A problem with uw4a is self-interference. Ap-
proximately 10 requests are issued by each node “si-
multaneously”, which may increase packet losses. To
reduce this effect, we filter obvious cases of self in-
terference: if at least one outbound packet in a burst
of requests from a node makes it to its destination,
then we conclude that connectivity from that node to
the Internet is available at the time of the burst. If
any other traceroute during the burst fails to make
it beyond the source node subnet or the “bottleneck”
routers that are traversed on all successful outbound
requests from that node, we conclude that traceroute
was a victim of self-interference and discard it from
the trace set. We use a similar procedure to filter
bursts of inbound traceroutes to destinations. Over-
all, we delete 1.6% of the requests from uw4a due to
self-interference.

Bol, Rtp, and Squid2 are traces of HTTP re-



| | Temp | Perst [ Total |

Paxsonl 1.3% 0.43% 1.7%

Paxsonl-na | 1.4% 0.48% 1.9%

Paxson2 1.7% 0.19% 1.9%

Paxson2-na | 0.60% | 0.072% 0.7% §
uwl NA 0.15% NA =
uw3 NA 0.027% NA &
uwda NA 0.61% NA B
uw4b-all NA 0.0047% NA g
Bol 7.4% B
Rtp 1.5% £
Squid2 1.1%

Table 3: Fraction of requests that fail.

quests taken at proxy caches that are part of the
Squid cache hierarchy [31]. Bol and Rtp are from in-
dividual proxies, and Squid2 combines requests from
nine proxies. We first filter the trace to remove the
22.6% of requests satisfied locally (e.g., a cache hit) or
indirectly (e.g., via a sibling cache). We then filter
all TCP_REFRESH _MISS requests from the trace be-
cause such requests fail a disproportionate fraction of
the time (80% to 90% of the TCP_REFRESH_MISS
requests fail in most of the traces.) We ignore re-
quests with reply code 400 or 500 (which account for
0.37% of all replies) because it is ambigous whether
connections were successful in these cases. We then
count requests with code 504 (“Gateway time out”)
as failed connections, and we count the remaining
requests as successful network connections from the
proxy to the server.

3.3 Failure rates

For the Paxson data sets, we find “temporary” failure
rates (where connectivity is interrupted for at least
30 seconds during a traceroute episode but where the
traceroute episode eventually succeeds in contacting
its target) of 0.6% to 1.7%, and find “persistent” fail-
ure rates (where the traceroute fails to reach its des-
tination) of 0.07% to 0.48% when end-host failures
are excluded. The overall failure rates of these traces
is 0.7% to 1.9%.

We find similar failure rates for the uw and
HTTP traces. As Table 3 shows, the uw data sets
show similar persistent failure rates to the Paxson
traces (though the temporary failures are, unfortu-
nately, not included in the uw data sets.) The Rtp
and Squid2 traces’ failure rates are similar to the
overall traceroute rates — 1.5% and 1.1%. The Bol
trace shows a higher rate, and we note that the com-
ponent traces of the Squid2 data set show consid-
erable variability, with individual proxies exhibiting
failure rates of 0.37%, 0.5%, 0.67%, 0.85%, 1.2%,
1.6%, 1.8%, 3.6%, and 6.8%.

Overall, the data suggest that typically 0.5% to

100% |- ‘
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60% |- Near-Dest
40% .
20% In-Middle
0% Near-Source
0

paxsonl

paxsonl-na

paxson2

paxson2-na
uw

uw3

uw4a

uw4b-all

Figure 1: Location of failures. The segments of each
bar show the fractions of failures that occur at particular
locations.

2% of requests fail to communicate with their server,
but some proxies differ considerably from this typical
behavior and see rates as low as 0.36% or as high as
7% in our data sets. Our simulations in Section 4 will
use a default failure rate of 1.25%. This means that a
given pair of nodes is unable to communicate 1.25%
of the time due to network failures lasting 30 seconds
or longer.

3.4 Failure locations

We focus on the traceroute data sets because they in-
clude hop-by-hop routing information, and we use the
following heuristics to classify failures into the near-
source, in-middle, and near-destination categories.
We define the source bottleneck set as the set of
routers that are visited by all successful outgoing re-
quests from a node and the source subnet set as the
set of routers whose IP addresses match the source
node’s in the top 24 bits. We define the destination
bottleneck and subnet sets similarly. A failed request
is classified as a near-source failure if (a) the request
only succeeds in reaching nodes in the source bot-
tleneck set or source subnet set or (b) two or more
successive requests from the same source to different
destinations fail. We use a similar definition for the
near-destination failures. We classify all remaining
failures as in-middle failures.

Figure 1 summarizes the fraction of failures clas-
sified as near-source, near-destination, or in-middle
by these criteria.

As noted earlier, the methodology used for gath-
ering the traces may tend to undersample during pe-
riods when the network near the intended source of
the measurement is malfunctioning. As one might
therefore expect, the near-destination failure rate is
higher than the near-source failure rate in most of the
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Figure 2: Illustration of ambiguity in failure event dura-
tion from probe samples.

data sets. Given that for these data sets the source
and destination nodes were selected from the same
collection of traceroute hosts, we speculate that the
near-destination failure rates reported above are more
representative of the stub network disconnection rate
than the near-source rates.

Overall, we observe that both stub network and
interior failures contribute significantly to failures but
that the relative prevalence of interior compared to
stub failures varies. Paxson2, Paxson2-na, and uw3
are dominated by interior failures, Paxsonl, Paxsonl-
na, and uwl have similar amounts of interior com-
pared to stub failures, and the other traces are domi-
nated by stub failures. Our simulation by default cat-
egorizes failures as near-source, in-middle, and near-
destination in a ratio of 1:2:1.

3.5 PFailure durations

As Figure 2 illustrates, the relatively low sampling
rate at some locations and data sets can lead to two
ambiguities for estimating the duration of a failure
event. First, the samples shown could either be from
one long failure or two (or more) short failures. Sec-
ond, the beginning of the failure could have occurred
soon before the first probe that failed or soon after
the last probe that succeeded; there is a similar ambi-
guity for the ending time. For our baseline model, we
assume that any series of failures without an interven-
ing success represents a single failure event, and we
use the data to provide both upper and lower bounds
on the duration of each such event. An area for fu-
ture work is developing failure data sets that provide
better failure-duration information.

Figure 3 shows the cumulative distribution func-
tion of the duration of failure events lasting longer
than 30 seconds for the http data sets. Our rationale
for only looking 30 seconds or longer failures is that
short failures may be better handled by transport-
level retransmission than the more aggressive tech-
niques we explore. Excluded sub-30-second failures
account for 28.8% of the failed probes and 70.7% of
the failure events for the lower bound list of dura-
tions; they account for 6.5% of the probes and 31.7%
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Figure 3: Cumulative distribution function of failures
lasting longer than 30 seconds in the combined HTTP
data sets.
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of the events for the upper bound list.

This distribution appears well modeled by the
function F(z) = 1 — 192 %8. The average dura-
tion of this function is unbounded. For our simula-
tions, we arbitrarily place an upper limit on failure
durations of 500,000 seconds, which yields an average
failure duration of 609 seconds.

For the traceroute data sets, the long inter-probe
times make it difficult to precisely characterize the
duration of short persistent failures. Figure 4 com-
pares the duration of long failure events — 1000 sec-
onds or more — between the traceroute and HTTP
data sets. For clarity, we combine all of the trace-
route failures into one data set and all of the HTTP
failures into another one and show the upper and
lower bounds of the cumulative distribution function
for each. Note that the traceroute lower bound line
is to the right of the upper bound line for much of
the range because the two lines track different sets of
data once the sub-1000-second events are excluded.

Based on the data in Figures 3 and 4, it appears
that the duration of 30+-second HTTP and 1000+-
second traceroute failure events display cumulative
distribution functions of the form F(z) =1 — (k/z)*
with a = 0.85. This function corresponds to a heavy-
tailed distribution typified by a significant number of
long failures, decreasing recovery rate, large variance,
and high mean [10].

The traceroute and HTTP data sets each have
significant limitations for the purposes of modeling
failure duration: the HTTP data sets may con-
tain sampling-interval biases, and the traceroute
data sets’ sparse sampling interval leaves uncertainty
about the duration of individual events. Despite
these limitations, the data sets appear qualitatively
consistent with one another, which suggests that the
results are not anomalous.
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Figure 4: Cumulative probability function of the dura-
tion of failures lasting longer than 1000 seconds. The x
axis is the duration and the y axis is the probability that
a failure event will have less than the specified duration.

4 Masking network failures

This section studies two classes of techniques for im-
proving end-to-end service availability by masking
network failures. Client-independence techniques —
such as data caching, prefetching, and mobile code
— provide a (possibly degraded) version of a service
using local resources when the remote server cannot
be contacted. Routing and connectivity techniques
use alternate network paths to route around failures.

These experiments focus on two goals. First, they
seek to quantify the potential effectiveness of these
techniques at improving service availability. In order
to provide information about of a broad range of tech-
niques, our experiments abstract away implementa-
tion details and thus provide an upper bound on the
techniques’ effectiveness. The second goal of our ex-
periments, therefore, is to understand what factors
may limit specific instantiations of these techniques
and to quantify their impact.

Although this paper focuses on service-level tech-
niques for improving availability, researchers will cer-
tainly work to improve reliability at the hardware and
transport layers as well. Indeed, achieving the goal of
four- or five-nine services will likely require advances
at all layers. So, in addition to the experiments de-
scribed above, we assess the sensitivity of our results
to changes in the reliability of the underlying infras-
tructure.

4.1 Client independence

A range of client independence techniques are avail-
able.

1. Caching. Caching hides network and server fail-
ures by serving requests from a nearby cache

rather than a distant server [12]. Most web
clients today include some form of caching.

2. Relaxed consistency and push-updates.
Relaxed consistency can improve availability by
allowing caches to serve potentially stale data
during failures rather than requiring the cache to
use (unavailable) current data. Alternately, un-
der a push-updates protocol [18, 28], servers may
update cached copies before clients issue reads
requesting the new versions. Push-updates thus
improves the chance that a cache will contain
current data during a disconnection.

3. Prefetching. Prefetching brings objects close
to a client before the client accesses them.
Hoarding, a form of prefetching in which a user
identifies groups of objects to fetch, is effective
for disconnected operation in file systems [14],
and the Microsoft Internet Explorer browser
implements a hoarding option for web pages.
Server push [9] such as the content distribu-
tion networks becoming commercially available
can be thought of as a form of server-directed
prefetching. Note that prefetching is more ag-
gressive than the “push update” approach de-
scribed in the previous paragraph. “Push up-
date” only distributes new versions of objects
that have already been referenced by a cache,
while prefetching can distribute unreferenced ob-
jects in order to avoid compulsory misses.

4. Replication of active objects. Several re-
searchers have proposed systems in which ac-
tive service objects may be cached or replicated
and then executed [1, 3, 13, 29, 30]. These tech-
niques may provide ways to extend the benefits
of caching, relaxed consistency (or “application-
specific adaptation” [21]), and prefetching to the
significant fraction of web services that are not
cachable [7, 34].

This set of experiments examines the potential
effectiveness of using these client independence tech-
niques to improve robustness of Internet services by
transforming failed sessions that are interrupted by
network disconnections into degraded sessions that
are served by the cache or by downloaded mobile
extensions. Clearly, the relative advantage of de-
graded sessions over failed sessions will vary from
service to service: some services can provide full ser-
vice while disconnected, others can provide tolerable
service across short disconnections, and still others
require continuous on-line communication with a re-
mote site to be effective. To cope with this wide



[ Workload [ Date [ Clients [ Servers | Sessions |
Squid-P | 3/28/00-4/03/00 1 131193 | 1557875
Squid-C 3/28/00 107 52526 403235
BU-P 1/17/95-5/17/95 1 4614 56789
BU-C 1/17/95-5/17/95 33 4614 68949

Table 4: Web access trace parameters.

range of service behaviors, this experiment does not
attempt to quantify the benefit of degraded service
over failed service; instead it seeks to quantify how
often services have the option to use caching, relaxed
consistency, prefetching, or mobile extensions to im-
prove their robustness to network disconnections.

Workload and methodology. In addition to the
failure model described above, the simulator uses two
sets of web service access traces to represent Internet
service access patterns. Table 4 summarizes key pa-
rameters for these traces. We examine both the Bol
Squid trace described earlier and a four-month trace
taken at clients at Boston University [5]. This trace
is old, but it includes client cache hits, and the client-
ID mappings are not changed over the trace period.
We examine both traces from the point of view of
a proxy shared by all clients in the trace (Squid-P
and BU-P) and from the point of view of individual
client machines (Squid-C and BU-C) with no shared
proxy. Because the Squid traces change the client-ID
mappings daily, we only look at the first day of the
Squid-C trace.

For our simulations, we post-process the traces to
group individual accesses into sessions. We define a
session as a set of accesses from a client (-C traces) or
proxy (-P traces) to a single server in which the max-
imum gap between successive requests is 60 seconds.
Our figure of merit for availability is the fraction of
sessions that complete without interruption.

Our simulator tracks the references to objects
in the traces and uses trace information to classify
the objects as cachable or uncachable and to identify
when objects change. It assumes that each simulated
client (-C traces) or proxy (-P traces) has an infinite
cache that stores all objects accessed previously in
the simulation.

To evaluate prefetching techniques and mobile
code as a class without knowing the details of each
service, we use the simulation parameter install_time
to represent the amount of time from the first ac-
cess by a client or proxy to a service until the ser-
vice has downloaded sufficient state or programs or
both to the cache to cope with network disconnec-
tions. Our default install time is 100 seconds. Dur-
ing the install_time, clients and proxies must access
the service from cached data or via the origin server.

If the network remains up during an entire ses-
sion, the simulator classifies the session as No Failure.
For sessions in which the network fails, the simulator
examines the objects referenced in the session and
classifies the session as follows: Cache Hit if all re-
quests are for fresh cached web objects; Stale Hit if
all requests are for cached web objects and if some of
those objects require updates from the server; Hoard-
able Degraded if the install_time for the service has
completed at time of the failure and all requests are
for cachable objects but some miss; Dynamic De-
graded if the install_time has completed at the time
of the failure but not all session data are cachable;
and Fail if the install_time has not completed at
the time of the failure and either some data are not
cachable or some data are cache misses.

For these experiments, we set the failure-location
distribution to make all failures “in-middle” failures,
and we conduct five trials with different random
seeds for the network failure model and graph the
mean and standard deviation of results. We de-
scribe improvements to failure rates in terms anal-
ogous to the common definition of “speedup” [11]:

improvement = LailureRateorig
P ~ failureRatepew

Results. First, we examine the effectiveness of
these general techniques as well as the extent that
installation time limits improvements. The y-axis of
Figure 5 shows the fraction of sessions classified in the
categories listed above on a logarithmic scale so that
equal intervals reflect equal improvements to failure
rates. The x-axis shows the install_time for each ser-
vice also using a log scale, and each graph shows these
results for a different workload. When installation
times are short, the combined effect of all techniques
is to improve the failure rate by at most factors of
14.4 (Squid-P), 15.4 (BU-P), 2.7 (Squid-C) and 5.22
(BU-C) for the four workloads compared to the fail-
ure rate that would be encountered if each request
were sent to the origin server.

The improvements available from caching alone
appear small (improvements to failure rates of 1.1,
1.6, 1.1, and 1.4 for caching and of 1.1, 1.6, 1.1,
and 1.4 for caching plus relaxed consistency or push-
updates). Note that the Squid workload’s lower-level
caches may hide sessions that only reference cached
data, causing us to understate the benefits of caching
alone. Conversely, the BU trace are not filtered by
caches, but they are old and may reflect a workload
that is unrealistically easy to cache. It seems likely
that caching’s benefits lie between these values.

In contrast with caching alone, aggressive
prefetching plus caching may be able to achieve signif-
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Figure 5: Session result v. state installation time. Each region between two lines represents the fraction of sessions
that can be handled by the specified technique plus those above it in the graph.

icant improvements for those services where prefetch-
ing is feasible; the simulations indicate upper bounds
of 3.0, 6.2, 1.8, and 4.0 for this combination.

The only limiting factor to active object replica-
tion in this model is our assumption that each ser-
vice requires different extension code and data, and
that extensions cannot be downloaded until a ser-
vice is first accessed. Under this assumption, im-
provements to failure rates are limited to about an
order of magnitude for these traces because if the
network is down when a service is first accessed or
during the first install_time of accesses, no code and
data is available to mask the failure. These “compul-
sory misses” also limit the prefetching line in these
graphs. If compulsory misses and initialization times
are ignored, prefetching could provide improvements
in failure rates of up to 3.7, 9.7, 4.7, and 12.2 and
replication of active objects and their data could, in
principal, provide at least degraded service 100% of
the time.

The available benefits fall gradually as installa-

tion time increases and compulsory misses become
more expensive. At a 10,000 second installation time
the upper bound on availability improvements are
11.0, 11.1, 2.0, and 4.2 for the four workloads. This
result is promising: it suggests that services that need
to download significant amounts of state to provide
acceptable disconnected service may have the oppor-
tunity to do so.

Next, we examine the sensitivity of our results to
the underlying network failure rate. Figure 6 shows
session results for Squid-P as we vary network failure
rates by reducing the time between failures and leav-
ing the failure duration distribution unchanged. The
other workloads (not shown) are qualitatively similar.
These data suggest the improvement in session failure
rates provided by caching, prefetching, and replicas of
active objects are relatively insensitive to the under-
lying network failure patterns between failure rates
of .0125% and 12.5%.

The experiments above suggest that to signif-
icantly improve overall service availability, services
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may need to resort to prefetching and mobile exten-
sions rather than relying on caching alone. Unfortu-
nately, these techniques can dramatically increase the
demand for resources at a client, proxy, or network.
A key limiting factor, therefore, may be how many
resources a cache can devote to each hosted service
and how many services a cache can simultaneously
host. Figure 7 shows session results when the BU-P
proxy maintains only a finite number of local copies of
prefetched services and mobile extensions and evicts
the rest using an MFU policy (results for LRU re-
placement and exponentially decaying average MFU
are similar but not shown.) For the other workloads
(not shown), the results are qualitatively similar, but
the cache size needed for full benefits is larger for the
Squid-P workload and smaller for the Squid-C and
BU-C workloads due to the differing number of ser-
vices accessed by each of these workloads.

These experiments suggest that to take full ad-
vantage of client independence for improving avail-
ability, client and proxy virtual machines must be
scalable to handle hundreds or thousands of simulta-
neously downloaded extensions in order to replicate

a significant fraction of accessed sites. We examine
the resource management challenges posed by such a
workload in a separate study [4].

4.2 Network routing

In this section, we evaluate strategies that route
around network failures. To simplify the analysis, we
classify strategies into two broad categories: network
re-routing and server replication and selection.

1. Re-routing. Techniques of this category still
send requests to the service’s origin server, but
they may use alternate routes when failures
occur. Examples of re-routing techniques in-
clude dynamic routing [15] and overlay net-
works [26]. In the terminology of this paper,
these techniques address in-middle failures, but
will be ineffective against near-source and near-
destination failures.

2. Server replication and selection. This cat-
egory of techniques directs requests to replicas
of the origin servers when the origin servers
are unreachable. Several file systems [25] and
databases [19] provide replicated servers to han-
dle failures in distributed environments. In the
context of the Web, mirror site with “man-
ual failover”, as well as replicated servers with
anycast [2, 8, 35] can support server replica-
tion. This class of techniques can resolve near-
destination and in-middle failures but is ineffec-
tive against near-source failures.

As in our analysis of client independence
techniques, we abstract implementation details of
routing-based techniques and focus on bounding im-
provements that they may provide. Several factors
may limit these improvements in practice. For re-
routing strategies, overheads include the failure de-
tection time and route switching time. For server
replication and selection, there are costs to main-
tain extra replicas and overheads to select alterna-
tive servers. These overheads vary for different imple-
mentations and may vary for different services (e.g.
depending on failures, consistency, and semantics).
Therefore, as with client-independence techniques,
clients may experience sessions handled by re-routing
or server replication as “degraded” with the signifi-
cance of the deterioration varying on a service-by-
service and implementation-by-implementation basis.

Workload and methodology. We use the same
workloads and similar methodology as for the client-
independence experiments. We group requests into
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(BU-P trace).

sessions, and classify each failure by its network loca-
tion: near-source, in-middle, or near-destination. We
run each experiment 25 times and plot the mean with
90% confidence intervals.

Results. In our first set of experiments, we vary the
fraction of failures in each location category. These
graphs are omitted due to space limits. Across a
wide range of ratios, the findings are as expected:
the fraction of failures that each class of techniques
can handle varies in proportion to the fraction of fail-
ures assigned to a particular location category. For
example, when in-middle failures account for 50% of
all failures, techniques that avoid in-middle failures
but not others can improve failure rates by about a
factor of two. Given that experiments found signif-
icant fraction of failures at each location, Amdahl’s
Law limits improvements from routing based strate-
gies that do not address failures in all three locations.
Figure 8 shows the sensitivity of these results as
we vary the network failure rate. As for the client-
independence strategies, the relative improvements
to failure rates provided by these techniques remains
stable over a wide range of underlying failure rates.

4.3 Combined Techniques

Client-independence techniques are limited by com-
pulsory misses and installation time, and re-routing
techniques are limited by near-source failures. Since
these techniques fail in different circumstances, they
may be combined to reduce system unavailability.
For example, Figure 9 shows session failure
rates under a combined scheme in which failures are
masked by caching, prefetching, and active objects
and in which prefetching and installation of active
objects use anycast to access replicated servers. This
combined approach thus masks all failures except
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near-source failures during prefetching or active ob-
ject installation time. Due to a bug in the simula-
tor, Figure 9 shows results for install_time = 1; Fig-
ure 5 suggests that these results will be relatively
insensitive to increases in install_time. Overall im-
provements for this combined scheme are factors of
117, 100, 18.2, and 24.5 for network failure rates
of 0.0125%, 0.125%, 1.25%, and 12.5%, respectively.
This relatively wide improvement range appears to be
due to experimental variation magnified by the small
number of failure events observed in the simulations.

5 Conclusions

Although Internet services can deploy highly avail-
able servers, deploying highly available services re-
mains problematic due to connectivity failures. A
typical client may not be able to reach a typical server
for 15 minutes per day.

In this paper, we develop a network failure model
and an evaluation strategy for studying broad classes
of techniques for coping with connectivity failures.
Both client-independence and routing-based tech-
niques can significantly improve availability, and the
techniques can be combined to improve availability
by as much as one to two orders of magnitude.
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