
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Dynamic C++ Classes
A lightweight mechanism to update code in a running program

Gísli Hjálmtÿsson
AT&T Labs - Research

Robert Gray
Dartmouth College

Dynamic C++ Classes

A lightweight mechanism to update code in a running program

Abstract

Techniques for dynamically adding new code to a run-
ning program already exist in various operating sys-
tems, programming languages and runtime environ-
ments. Most of these systems have not found their way
into common use, however, since they require pro-
grammer retraining and invalidate previous software
investments. In addition, many of the systems are too
high-level for performance-critical applications. This
paper presents an implementation of dynamic classes
for the C++ language. Dynamic classes allow run-time
updates of an executing C++ program at the class level.
Our implementation is a lightweight proxy class that
exploits only common C++ features and can be com-
piled with most modern compilers. The proxy supports
version updates of existing classes as well as the intro-
duction of new classes. Our language choice and proxy
implementation is targeted towards performance-critical
applications such as low-level networking in which the
use of C++ is already widespread.

1. Introduction

Every modern organization has software systems that
are critical to its mission and must operate continuously.
A network provider, for example, loses both revenue
and customer goodwill if its switches or service con-
trollers are temporarily unavailable. Because of the
need for continuous operation, planned downtime is
hard to schedule, and unplanned downtime can have
cataclysmic effects. When a new service or security
threat makes changes unavoidable, the changes are de-
signed to minimize downtime, reducing system mainte-
nance to repetitious patching. Such patching breaks the
program’s data abstractions and encapsulation, reduces
modularity and increases coupling. At the same time,
ignoring needed maintenance and development leads to
an outdated system, one that eventually will become an
obstacle to organizational development.

Complicating the situation is that, as network computing

has transformed many industries, continuous change has
become just as important as continuous operation.
Rapid introduction of new functionality and dynamic
adaptation to volatile needs is essential. Systems, par-
ticularly telecommunications systems, must be custom-
ized on a very fine time scale, either due to user demand
or to load and usage fluctuations.1

An effective way to allow both continuous operation
and continuous change is through dynamic code up-
dates. New code is added to a running program without
halting the program, thus introducing new functionality
but avoiding downtime. The idea of adding new code
to a running program dates back to the earliest elec-
tronic computers, and dynamic linking [1,2,3,4,5,6,7,8]
is now available for nearly all operating systems and
programming languages. However, since languages
such as C++ do not directly support the creation of dy-
namically loadable modules, preserving program-level
abstractions across the dynamic-linking interface is dif-
ficult. In particular, current dynamic linkers break the
type safety of C++,2 since they are oriented towards
functions rather than types and classes.

Recently, new environments and languages have been
designed to dynamically download and execute pro-
grams [9,10]. In particular, Java [9,11] has become
extremely popular and is in widespread use. However,
although a Java class loader can lazily load the classes
that make up an application, it has no knowledge of
class versions and can only load each class once. In
addition, the relatively poor performance of Java makes
it impractical for low-level applications.

Here we propose dynamic classes. Dynamic classes
allow new functionality to be introduced into an exe-

1 This work was done at AT&T Labs – Research.
2 We recognize that C++ is not “type secure” since the programmer
can break any type abstraction through explicit casts. Current dy-
namic linkers, however, break type abstractions even if the program-
mer does not perform explicit casting.

Gísli Hjálmtýsson
AT&T Labs – Research

180 Park Avenue
Florham Park, NJ 07932
gisli@research.att.com

Robert Gray
Thayer School of Engineering1

Dartmouth College
Hanover, NH 03755

rgray@cs.dartmouth.edu

cuting C++ [12] program without sacrificing type
safety, performance or the object-oriented paradigm.
Replacing an entire class, rather than individual func-
tions, honors the semantic integrity of the program and
minimizes interference between the update and the on-
going computation. Although comparable techniques
exist in interpreted languages and agent-based environ-
ments, our objective is to use these mechanisms in tele-
communication (and other) systems where performance
is the primary concern. We outline a C++ proxy-based
implementation that requires only existing features of
the language and is usable with any complete C++ com-
piler.

Section 2 presents related work. Section 3 introduces
dynamic classes. Section 4 describes our proxy-based
implementation. Section 5 examines system perform-
ance. Section 6 presents several applications in which
we are using dynamic classes. Sections 7 and 8 con-
sider future work and our overall conclusions. Finally,
the appendix contains psuedocode for our proxy class.
The psuedocode is discussed in Section 3.

2. Related work
The idea of adding new code to a running program
dates back to the earliest electronic computers, but per-
haps the first structured approach can be found in the
rudimentary dynamic linking of the Multics system [1].
Since then some form of dynamic linking has found its
way into a wide range of programming languages, dis-
tributed-computing environments and even operating-
system kernels. Since we are targeting the C++ lan-
guage, we first consider various ways to add code to an
executing C or C++ program, and then examine a few
approaches that have been used in other languages and
environments.

2.1 C and C++
Incremental linking, or runtime linking of code that was
available to the compile-time linker, achieves lazy
loading of the code and avoids resource allocation for
code segments that are never used [13,14]. Conceptu-
ally, however, incremental linking is identical to tradi-
tional compile-time linking.

Dynamic linking, or runtime linking of code that was
not available to the compile-time linker, truly supports
the introduction of new functionality into a running
program [2,3,4,5,6,7]. However, the C++ language
does not directly support the creation of dynamically
loadable modules, making it difficult to preserve pro-
gram-level abstractions across the dynamic interface. In
particular, current dynamic linkers break the type safety
of C++, since they are oriented towards functions rather
than classes. For example, to create an instance of a

previously unknown derived class, the program must
search a shared library for the desired constructor via a
tedious C interface (e.g., dlfind on many systems),
and then cast the resulting function pointer to the con-
structor type. In addition, some dynamic linkers do not
allow a previously loaded code module to be replaced
later unless every call into the module is made via the
same tedious C interface. Even when the dynamic
linker allows the relinking described in [15], there is no
support for replacing a module that is in use or having
multiple versions of a module coexist within the same
program.

Dorward et al. [8] extend dynamic linking so that it pre-
serves the type safety of C++ and works at the class
level. Their solution allows a new derived class of a
known base class to be dynamically loaded into a pro-
gram. First, the shared library that contains the imple-
mentation of the new class is dynamically linked into
the program. Then, a standard factory mechanism [16]
is used to call into the library and create an instance of
the new class (a preprocessor automatically generates
the necessary factory routines). The instance is cast to
the type of the base class and can be used wherever an
instance of the base class is expected. Since all calls to
the base class are type checked statically, and the base
class constrains the derived class to have the same
function signatures, type safety is preserved even
though the program is actually invoking the operations
of the derived class. Our implementation uses much the
same mechanism to achieve type safety, but it extends
Dorward’s implementation by (1) allowing the replace-
ment of a previously loaded class with a new version
and (2) allowing multiple versions of a class to coexist
within the same program. In other words, our imple-
mentation adds versioning.

The techniques of Hamilton and Radia [17] and Gold-
stein and Sloan [18] do allow multiple versions of a
class to coexist within the same program. In the Ham-
ilton and Radia approach, the program must be recom-
piled to take advantage of a new version (and hence
stopped and restarted). Goldstein and Sloan, on the
other hand, allow the new version to be dynamically
added to the running program, but their solution is
meant for distributed systems in which programs com-
municate by passing objects to each other. Since the
libraries that the programs use might be upgraded at
different times, a program might receive an object for
which it does not contain the corresponding library ver-
sion. When this happens, the program dynamically
loads the appropriate library version and directs all ac-
cesses to the received object into this library. Their
solution is intended to be completely transparent and
does not provide application-level control over the ac-
tive version (although it could be extended to provide

such control). In addition, their solution requires non-
trivial compiler support and does not allow an instance
of an old class version to be passed to code that was
compiled against a newer class version.

2.2 Other languages and environments
Java is of particular interest due to its widespread
popularity and availability. Java is an object-oriented
language that is syntactically similar to C++ [9]. A Java
program is made up of one or more classes. Rather than
load each class into the Java virtual machine at program
startup, a class loader dynamically loads each class at
the time of first reference. Although the built-in class
loader has no knowledge of class versions and will only
load each class once, it would be possible to write a
custom class loader that took versioning into account.
This custom class loader might need help from (1) Java
interfaces to cleanly separate interface and implementa-
tion, (2) a preprocessor to enforce a version-naming
scheme, and (3) some proxy-like class. Java, however,
simply does not provide sufficient performance for the
low-level applications of interest. It will be worthwhile
to reconsider Java once effective just-in-time compila-
tion brings its performance closer to that of C++. If
Java becomes an attractive choice for our target appli-
cations, the same dynamic-class mechanism presented
in this paper could be reimplemented in Java.

The Limbo language, which is part of the Inferno sys-
tem from Lucent technologies, is intended for the same
type of distributed applications as Java [10]. A Limbo
program consists of one or more modules. Each mod-
ule consists of a public interface and a private imple-
mentation. The public interface can include functions,
variables, data types and constants. These modules can
be dynamically loaded, unloaded and reloaded at run-
time. Although versioning support would need to be
added at a higher level, this dynamic loading capability
would play a large role in a dynamic-class implementa-
tion for Limbo. Like Java, however, Limbo is not in
widespread use for the applications in question and does
not yet provide the desired performance.

Many other languages - such as Eiffel, Lisp, Perl, Py-
thon [19], Scheme, SmallTalk [20], Standard ML and
Tcl [21] - support some form of dynamic linking or
loading. Depending on the language, the dynamic up-
date can be as small as a single procedure, a single class
or a single compilation unit. Unfortunately, many of
these languages are interpreted and are too inefficient
for performance-critical systems. None of them directly
provide the necessary versioning support. Most impor-
tantly, none of them are in widespread use in our appli-
cation environment.

Most agent-based environments – which include mo-

bile-code systems [22,23], cooperative processes [24],
and intelligent interfaces [25] - allow the dynamic in-
troduction and removal of individual process entities or
agents. There is little support, however, for replacing an
existing agent while preserving ongoing agent conver-
sations. In addition, many agent systems use interpreted
languages that are not efficient enough for low-level
processing. Finally, due to the communication over-
head in current agent systems, an application is often
implemented as a few large agents rather than many
small agents. These large agents are too coarse of a
replacement unit for many applications.3

Many distributed programming systems such as
CORBA [26] and Argus [27] also allow the dynamic
introduction and removal of individual processing enti-
ties. In CORBA this entity is a single process. In Ar-
gus this entity is a collection of objects and processes
called a guardian. Both systems provide limited support
for replacement. As in the agent case, however, a proc-
ess or guardian is too coarse a replacement unit for
many applications, particularly since a guardian is un-
available during the replacement process (i.e, all ongo-
ing conversations are blocked). Bloom, however, does
make the notable contribution of analyzing when it is
safe to replace one implementation of a guardian with
another [27], an analysis that could be applied directly
to dynamic C++ classes.

Finally, Microsoft’s component object model (COM)
[28] allows the programmer to define components,
which have an interface and a separate implementation.
If the implementation changes, existing components will
continue with the old implementation, while new com-
ponents can use the new implementation. This ap-
proach is quite close to the approach that we use for our
dynamic classes. In addition, COM is efficient enough
that components can be used at the “class” level. On
the other hand, COM has many additional features that
we do not need; it has a longer learning-curve than our
simple proxy; and it is not widely used in non-Windows
applications. Like Java, however, COM will be worth
revisiting as it evolves.

3. Dynamic classes

A dynamic class is a class whose implementation can be
dynamically changed during program execution, allow-
ing the introduction of new functionality at the class
level. Of course, the main program must be able to
communicate with (invoke the methods of) the new im-

3 As we will see later, however, our dynamic classes can be used to
implement agent replacement (in systems where agent replacement is
sufficient).

plementation. Thus each implementation
must have an interface that is known to the
main program at compile time. Each new
implementation either updates an existing
class (a new version) or introduces a new
class (a new type) that uses the known in-
terface.

3.1 Version Update Semantics
A basic problem when updating an existing
dynamic class is what to do with existing
objects. There are at least three ap-
proaches as shown in Figure 1. One ap-
proach (a) is to raise a “barrier,” blocking
object creation until all existing objects of older ver-
sions have expired. Then the new version takes over
and object creation resumes. This approach is concep-
tually equivalent to halting, modifying and restarting the
system. Another approach (b) is to recreate all existing
objects using the new version. This approach retains a
crucial property of raising a barrier, namely that at any
time all objects of a particular class are of the same ver-
sion. On the other hand, since different class versions
can have different internal data structures, copying each
object’s state requires an understanding of the object’s
semantics.

The last approach (c) is not to take any action at all. All
new objects are created with the new version, and ex-
isting objects continue with their current versions.
Once the existing objects finish their tasks and are de-
stroyed, only the new version will be in use. We adopt
this last solution since it is the most basic, is sufficient
in all the cases that we have considered, and can be im-
plemented efficiently. However, we also include a
method that an object can use to determine if its version
is the most recent version, allowing the programmer to
explicitly migrate objects of a particular class. The
programmer would need to write state-capture and res-
toration routines for each class version. These routines
would produce and accept version-independent repre-
sentations of an object’s state.

3.2 The Interface Semantics

To allow “hot” updates, an interface monitor screens
every message that passes through the dynamic class
interfaces. This monitor is conceptually a class proxy.
For each dynamic class, the monitor maintains a map
that associates the class name with the current imple-
mentation version (and its location on external storage).
A dynamic class is invalid if the running program does
not contain any implementation version for that class.
All dynamic classes start out as invalid. When a mes-
sage is sent to an invalid class, the monitor locates and

loads the current implementation version, updating the
internal map as needed. The monitor then passes the
message on to the newly loaded version.

The interface monitor provides three methods to ma-
nipulate the current version: activate, invalidate and
activate-and-invalidate. The activate method registers
a new version as the current version. Objects of older
versions remain in existence. Once all old objects have
expired normally, the older versions are removed from
the system. The activate-and-invalidate method regis-
ters a new version as the current version but also invali-
dates (destroys) all objects of older versions. Conver-
sations4 in which these objects were engaged are bro-
ken. The surviving participants must recover and retry.
The invalidate method invalidates (destroys) all objects
of a given version. Invalidating the current version is
an error. With these semantics, the three methods
maintain the invariant that each dynamic class has a
unique current version.

4. Implementation

We had three design goals for our C++ implementation
of dynamic classes: (1) efficiently find and invoke the
correct version of each method, (2) hide the dynamic
class mechanism as much as possible from the end pro-
grammer, and (3) use only standard C++ features. The
implementation should not require special preprocessor
or compiler support, nor depend on compiler-specific
details. These design goals led us to proxy classes. In
this section, we first present our proxy-class implemen-
tation, and then discuss the tradeoffs involved.

4 We use the term conversation for a sequence of message exchanges
(or method invocations) between two objects. In our implementation,
if one of the objects is dynamic and is invalidated, the other object
will receive an exception when it attempts to invoke the invalidated
object’s methods. This other object must then perform some appli-
cation-specific recovery, such as constructing a new object of the
same class as the invalidated one. Clearly the programmer should
think carefully before using invalidation.

Version 1 Version 2

t

a)

b)

c)

Version 1 Version 2

Version 1 Version 2Barrier

Figure 1: Three approaches to version updating

The core of our implementation is a generic template
class. The template, which is shown in the appendix,
uses only standard C++ features and can be compiled
with any complete C++ compiler. The template serves
as a proxy (or smart pointer) for each dynamic class.
As with any proxy, a program creates a dynamic class
instance by creating a proxy instance instead.

Each dynamic class is written as two separate parts: (1)
an abstract interface class that is known to the program
at compile time and (2) one or more implementation
classes that inherit from the interface class. There is
one implementation class for each version of the dy-
namic class. The abstract interface class specifies the
public operations that remain constant across all ver-
sions of the dynamic class. These operations are de-
fined as pure virtual functions so that each derived im-
plementation class is forced to provide them. In addi-
tion, although each implementation class can have any
additional methods and data members that it needs to
perform its task, only the operations defined in the inter-
face class can be called from other program modules.
This only makes sense since otherwise a program mod-
ule might become dependent on a particular version of
the dynamic class. Each implementation class is com-
piled into a separate shared library.

To use a dynamic class, the template is instantiated on
the interface class. At run-time, the template locates the
shared library that contains the most recent implemen-
tation class and loads this library into the program’s
address space. The template calls into the library to
create an instance of the implementation class, and casts
the instance to the type of the interface class. Finally,
the public interface operations are accessed through the
template using standard pointer redirection.

The template also provides static methods that imple-
ment active, invalidate and activate-and-invalidate.
Most software systems will provide an external inter-
face through which an administrator, developer or
automated management tool can invoke these methods.

As an example, consider a dynamic class whose job is
to receive packets sent across a network connection.
For simplicity, the dynamic class interface provides
only a single operation.

class Receiver {
 public:
 virtual Packet receivePacket (void) = 0;
}

The programmer might write two implementation
classes, the normal production version and later, after
the discovery of an unexpected problem, a debugging
version that contains new debugging code.

class ReceiverImp: public Receiver {
 public:

 Packet receivePacket (void) {…}
}

class ReceiverDebuggingImp: public Receiver {
 public:
 Packet receivePacket (void) {
 logDebuggingInfo(); …
 }
}

Each of these two implementation classes is compiled
into its own shared library, say imp.so and debugimp.so
respectively. Using the dynamic class is now straight-
forward (dynamic is the name of our proxy template as
shown in the appendix).

// normal program operation – create and use
// normal packet receivers
dynamic<Receiver>::activate (“imp.so”);
dynamic<Receiver> receiver;
Packet packet = receiver.receivePacket();
…
// switch to debugging mode in response to
// some external event (library name would
// be included in the external event)
dynamic<Receiver>::activate (“debugimp.so”);
// now all new packet receivers will contain
// the debugging code
dynamic<Receiver> otherReceiver;
…

Thus new debugging functionality is introduced without
stopping the running program. In addition, once the
bug is identified, the developer can create a third ver-
sion of Receiver, one that contains the necessary fix.
The fixed version can then be activated, again without
stopping the running programming. Of course, we do
not intend to suggest that all bugs can be fixed without
stopping the program, but at least some bugs can be.
For example, our Receiver might simply be mistrans-
lating a particular kind of packet.

4.1 Implementation details
Construction and invocation. Since there can be
multiple versions of a dynamic class within a program,
there can be multiple implementations of each method
within the program’s address space. The correct im-
plementation must be called when a method is invoked
on a particular object. The problem is to have a method
invocation that is version-dependent, but that can be
resolved at compile time by a C++ compiler that (1) is
oblivious to versioning and (2) has access to only to the
interface class. The solution is a two-level indirect
method resolution at runtime. The first level is the ver-
sion-dependent mapping, which we implement our-
selves inside the dynamic class proxy; the second level
is the method mapping within a version, which we can
achieve with standard C++ virtual methods (and the
associated vtables).

In our approach, the version of each object remains
unchanged for the lifetime of the object. Therefore, the
version mapping can be resolved during object creation

and stored in the instance of the proxy. In fact, once the
object is created, the needed mapping is just a single
pointer to the new object (namely the object pointer
that appears in the template definition in the appendix).

The method mapping is achieved in C++ by defining all
methods in the interface class as virtual. C++ adds a
vtable to each derived implementation class, and re-
solves all method calls through the vtables [12]. Figure
2 illustrates the two-level mapping. The proxy contains
a pointer to the object; the object contains a pointer to
the vtable; and the vtable contains pointers to the meth-
ods of the object’s implementation version.

Since the vtable is not used when invoking a construc-
tor, the problem of how to actually construct the object
remains. Since each implementation class has (1) its
own constructors and (2) possibly a different size, nor-
mal C++ constructor syntax can not be used. Instead
we use the standard factory pattern and require each
class version to provide a static method, createInstance,
which the proxy calls instead of the constructor. A side
effect of this approach is that each dynamic class essen-
tially has only one constructor, namely the one that cre-
ateInstance chooses to invoke. Additional initialization
must be done through other methods.

External map. Each version of a dynamic class is
compiled into its own shared library. At runtime, the
activate and activate_and_invalidate methods must be
able to locate the correct library given some symbolic
name for the desired class version. There are several
ways to accomplish such a mapping, but we found that
the easiest approach for the end programmer was to
simply use the library name (without its path) as the
symbolic name. The two methods then search all
known library directories for the given library.5 Of
course, the library name does not need to be known to
the program at compile time; it can be passed to the
program at runtime during the version-update process.

We have also extended our proxy so that the symbolic
name can be an arbitrary URL, both to support network
applications and to use Web technology for the storage
of dynamic class libraries. If the URL refers to a library
on the local machine, the library is immediately loaded
into the program’s address space. If the URL refers to a
library on a remote machine, the library is first down-
loaded onto the local machine. A further description of
our network support is beyond the scope of this paper.
Relevant issues include caching the libraries on the lo-
cal machine, handling different machine architectures,

5 How library directories are specified is platform dependent. On
most Unix machines, library directories are listed in the environment
variable LD_LIBRARY_PATH.

checking the security credentials of the downloader, and
imposing a consistent, meaningful naming scheme.

Template versions. The dynamic class system pro-
vides three versions of the proxy template. One version
has restricted functionality but high performance; an-
other has full functionality but slightly lower perform-
ance; and the third falls between the first two on both
functionality and performance. The full-functionality
version allows different dynamic classes to share the
same interface class, and therefore allows the introduc-
tion of new dynamic classes into the system. For exam-
ple, a programmer could write a NetworkConnection
interface class, and then write the dynamic classes
TcpipConnection, RpcConnection, etc., which all use
NetworkConnection as their interface. TcpipConnec-
tion, RpcConnection, etc., could all have multiple ver-
sions. Thus this version of the template provides two
“mappings’’. For each dynamic class, there is a list of
the class versions that are currently present inside the
program, and for each interface class, there is a table
that associates each dynamic class name with the cor-
rect version list. This full-functionality version of the
template is shown in the appendix. Note that activate,
invalidate and activate_and_invalidate take two pa-
rameters, the name of the dynamic class and the name
of the library that contains the desired version of that
class. Note also that activate and activate_and_inval-
idate return a unique handle for the dynamic class,
which is passed to the template constructor to identify
the desired dynamic class. Handles make the construc-
tor much faster, since looking up a handle is much more
efficient than looking up a class name.

The medium-functionality template requires each dy-

m0

m1

…

mn

vtab
bvars
...

it

m1:

m0:

mn:

Proxy

Object

Table

pr
og

ra
m

 c
o

de

Figure 2: Method invocation

namic class to have its own interface class (and thus
supports version updates only). The template still
maintains a version list for each dynamic class, but
eliminates the class-name to version-list mapping,
avoiding (1) the string lookup in the activate, invali-
date, and activate_and_invalidate methods and (2) the
handle lookup in the constructor. In this template, the
three methods take only the library name as a parame-
ter, and the constructor takes no arguments. The class
name, which is needed to invoke the constructor, is ob-
tained from a special function in the shared library (i.e.,
a static function that returns the class name as a const
char *). The medium-functionality template is the
most commonly used template. Its performance is dis-
cussed in Section 5.

Finally, the low-functionality template does not support
the invalidate and activate_and_invalidate methods.
New versions can be introduced, but old versions can
not be invalidated. Since each version remains valid as
long as objects of that version exist, the redirection op-
erator does not need to check for invalid versions.
More importantly, the redirection operator no longer
throws exceptions, which allows C++ compilers to
inline the operator and eliminate one function call. To-
gether these two things make method invocation much
faster as will be seen in Section 5. All three versions of
the template can be freely used in the same program.

4.2 Implementation tradeoffs
We chose the proxy approach since the ability to use
standard C++ development environments was a primary
design goal. If we had been willing to sacrifice this
goal, we would have had more implementation choices,
most notably a custom preprocessor. A sufficiently
complex preprocessor could (1) make dynamic classes
look more like normal C++ classes (i.e., multiple con-
structors per dynamic class and method access via se-
lection (.) rather than just deference (->)), and (2) pro-
vide better performance. A careful analysis of the
tradeoffs, however, indicates that the preprocessor ad-
vantages are not as great as they first appear, and do not
justify the additional complexity and development time.

Performance. The proxy approach involves two over-
heads. First, the proxy constructor must find and in-
voke the correct factory method. The factory method
then invokes the real constructor. Second, all method
accesses go through the proxy’s dereference operator,
which involves an extra function call (in the absence of
inlining) and a Boolean comparison to verify that the
class version has not been invalidated. Although cus-
tom preprocessor support could not eliminate this entire
overhead (i.e., there must be a mapping from an object
to its version), it would eliminate at least some levels of

indirection. Here, however, it is worth considering that
a typical dynamic class will not be the finest-grained
class in the system. It is unlikely that a programmer
will need a dynamic Point class if a Point is simply a
coordinate in two-dimensional space. It is more likely
that the programmer will need a dynamic Renderer
class that draws some figure given a set of Points. The
methods in Renderer would do significant processing,
and the extra time needed to just invoke the methods
would be insignificant. Our expectation is that most (if
not all) dynamic classes will fall into the same category
as Renderer and perform nontrivial processing in most
of their methods. All of the application work so far
confirms this view. For this reason, we feel that the
performance issues are minor, and do not justify any
custom preprocessor or compiler support. If our ex-
pectations are wrong, however, and programmers start
to make featherweight classes dynamic, we will need to
re-examine our proxy approach. We will say more
about performance in Section 5.

One technique that does not involve any custom support
is to re-map the vtable associated with a particular dy-
namic class version in response to certain events. For
example, the invalidate operation could make every
entry in the vtable point to a dummy method that throws
an exception. Then the dereference operator would not
need to check if the class version were still valid. The
proxy is still necessary, however, since the proxy pro-
vides additional functionality behind the scenes. For
example, the proxy maintains a count of all objects of a
particular version, so that the version code can be re-
moved from the program’s address space as soon as
those objects have been destroyed.6 Thus, given that
(1) the proxy is still necessary, (2) working with vtables
does introduce a few compiler dependencies, and (3)
the performance penalties without re-mapping are small,
we believe that vtable re-mapping will not provide suf-
ficient benefits to be worthwhile.

Abstraction hiding . The proxy approach means that
the program (and hence the programmer) must explic-
itly know about dynamic classes at some level. In addi-
tion, the proxy approach prevents the usage of some
standard C++ constructs. Most notably, a dynamic
class can have only a single constructor, and all method
access must take place through the dereference opera-
tor.7 Finally, our proxy implementation allows a pro-
grammer to obtain a direct reference to the embedded
object (through a perhaps atypical use of the derefer-
ence operator). The programmer could then access the

6 Removal occurs only if the version is no longer the active version.
7 Passing a reference to a dynamic class is fine, but method access
still involves the dereference operator.

object without going through the proxy class. Preproc-
essor and compiler support could address all of these
problems. However, it is a simple C++ programming
task to write a wrapper class that contains an embedded
instance of our dynamic-class proxy. This wrapper
class could (1) hide the existence of the proxy from the
rest of the program, (2) provide multiple constructors,
(3) support normal C++ access syntax, and (4) prevent
the client code from obtaining any direct reference to
the actual versioned object. For example, here is a
wrapper for our Receiver class (assuming that the inter-
face has been extended with an initialize method).

class ReceiverWrapper {
 private:
 dynamic<Receiver> *receiver;
 public:
 ReceiverWrapper (void) {
 receiver = new dynamic<Receiver>;
 }
 ReceiveWrapper (int packetType) {
 receiver = new dynamic<Receiver>;
 receiver -> initialize (packetType);
 }
 Packet receivePacket (void) {
 return (receiver -> receivePacket());
 }
}

The wrapper class looks like a normal class to the rest
of the program. The only exception is the program
module that accepts versioning instructions from exter-
nal sources (and passes these instructions on to the ap-
propriate proxies). Given the ease with which these
wrapper classes can be written, we again felt that cus-
tom preprocessor or compiler support was not justified.
Of course, the fact that a wrapper class can be written
does not mean that it will be written. The programmer
is free to bypass our proxy methods, breaking the dy-
namic-class abstraction. It is hard to imagine how the
programmer could do this accidentally, however, and no
programmer has done it accidentally so far. Thus we
are content to provide a flexible mechanism without
enforcing all usage requirements.

In a similar vein, existing programs cannot use our dy-
namic classes without modification. In a large software
system, however, it is likely that these modifications
would be confined to a particular subsystem, already
hidden behind an appropriate class. In addition, it is
difficult to imagine that an existing program could use
any dynamic class implementation without modifica-
tion. Unless we have a preprocessor or compiler that
essentially makes all classes dynamic, we must at least
add some syntactic markup and then recompile.

Finally, the behavior of static methods in a dynamic-
class interface is currently undefined. This is mainly an
implementation detail. The static methods must be
compiled only into the main program, not into any of

the shared libraries. Then all static method invocations
will be directed to the same code (which is what we
want since the methods will only make sense if they
perform version-independent processing). Compiling
the static methods only into the main program does not
require any special support, although some preprocessor
support would help the programmer avoid mistakes.

Inheritance. The proxy approach complicates inheri-
tance in several ways. First, the proxy approach de-
mands a clean separation between the interface and im-
plementation of a class, simply because the interface
and implementation must be separate classes. Unfortu-
nately, such a clean separation is not seen in many ex-
isting C++ programs. On the other hand, any dynamic
class implementation will require the same separation,
since a dynamic class must have a version-independent
interface. Otherwise client code would quickly become
dependent on particular versions.

Second, the proxy restricts how dynamic classes are
inherited. In general, interface classes inherit from
other interface classes; an implementation class inherits
from other implementation classes; and a normal class
that wants to extend the functionality of a given dy-
namic class contains an instance of the appropriate
proxy. Preprocessor or compiler support could cer-
tainly relax this strict separation. In the same light as
some of the other issues, however, it is questionable
whether such a relaxation should be allowed. Imagine,
for example, if a dynamic class inherits from a particu-
lar version of some other dynamic class. Then, when-
ever the system constructs an instance of the subclass, it
must identify and use the correct version of the super-
class (and of the superclass of the superclass). Al-
though there are programmers who could keep the re-
sulting dependencies straight, the same inheritance ef-
fect can be achieved much more cleanly and easily with
separate interface and implementation hierarchies (and
without complex compiler or preprocessor support).

Third, our proxy does have undesirable consequences
for interface polymorphism. Even if one interface in-
herits from another, the proxy class instantiated on the
derived interface is not related to the proxy class in-
stantiated on the base interface. Therefore, contrary to
the intent of the interface inheritance, the proxy of the
derived interface cannot be used where a proxy of the
base interface is expected. Our solution is to provide a
template function that performs an explicit cast; the
template function succeeds (at compile time) only if the
respective interfaces are related through inheritance.
Although our solution is sufficient, simple preprocessor
support would be useful here.

Finally, the full implementation of any superclasses
must be compiled into the same library as the dynamic

class version to ensure that all superclass references are
resolved correctly (at compile time). Although this
means that the superclass code might appear in multiple
libraries, it simplifies our implementation significantly
and involves minimal extra work for the programmer.
Again some preprocessor support would be useful here.

Summary. In contrast with a preprocessor- or com-
piler-based approach, our proxy solution is much sim-
pler, but has lower performance, does not fully hide the
dynamic class abstraction, and restricts inheritance.
However, the performance penalty is almost always
small relative to the processing that the dynamic classes
are performing; the proxy can be hidden completely
with a straightforward wrapper class; and any dynamic-
class implementation will likely restrict inheritance so
that inheritance remains understandable.

5. Performance Evaluation

5.1 Time Complexity
We ran two tests, one measuring the time to construct
and destroy an object (the class had no data elements
and its constructor had no arguments), and the other
measuring the time to invoke an object method (the
method had no arguments and no return value). Each
test involved three cases: (1) a standard stack-allocated
class that does not have virtual methods, (2) a standard
heap-allocated C++ class that has virtual methods and
(3) a dynamic class created through our medium-
functionality template. We considered both case (1)
and (2) since a dynamic class always involves virtual
functions and heap allocation. Each test was compiled
with the SGI C++ compiler and was performed ten mil-
lion times per run for ten runs on an SGI Indy.

When the constructor is empty, the construction over-
head of dynamic classes is 80% versus the heap-
allocated class, and 1091% versus the stack-allocated
class. When the constructor zeroes out a 128-byte
block of static memory, the overheads drop to 14% and
160% respectively. In a multi-threaded environment,
the time to acquire a lock (to prevent corruption of the
version lists) dominates the construction process, and
the overheads increase to 650%/119% (empty/non-
empty constructor) versus the heap-allocated class, and
4872%/160% versus the stack-allocated class.

When the method is empty, the invocation overhead of
dynamic classes is 240% versus the heap-allocated
class, and 611% versus the stack-allocated class. When
the method defines three local variables, increments the
value of these variables by one, and performs three in-
teger comparisons (that evaluate to false), the overheads
drop to 110% and 175% respectively. In addition, if
invalidation is not required, the low-functionality tem-

plate can be used instead of the medium-functionality
template. The low-functionality template has much
better performance, since its redirection operator does
not throw an exception and can be inlined by the com-
piler.8 With this template, the overheads are 39%/18%
(empty/non-empty method) versus the heap-allocated
class, and 191%/55% versus the stack-allocated class.

The performance penalty of making an existing C++
class dynamic is high if its methods are (nearly) empty.
The penalty is quite low, however, if its methods do any
nontrivial processing. Thus our dynamic-class imple-
mentation is not appropriate for a low-level class such
as Point, since Point is (1) computationally trivial (each
method does little more than a single assignment) and
(2) small enough to allocate on the stack. In addition, if
Points are used throughout the system, they will be cre-
ated and destroyed constantly, leading to a severe per-
formance penalty since the proxy constructor takes
much longer than the simple Point constructor. How-
ever, our dynamic-class implementation is appropriate
for most higher-level classes such as the Renderer, es-
pecially if the class objects (1) are allocated on the heap
anyway, (2) are created and destroyed infrequently, or
(3) do nontrivial processing in their constructors and
other methods. As discussed above, we expect that dy-
namic classes will be used only with high-level classes
anyway. Our implementation provides excellent per-
formance for these classes. In all of the applications
that we have implemented at AT&T, for example, the
dynamic-class methods do far more processing than the
test cases presented in this section, and the overheads
are insignificant.

5.2 Space Complexity
The space requirements of dynamic classes are low.
For each class, the proxy maintains a version list, a
pointer to the active version (so that it does not have to
search the list during construction), and a synchroniza-
tion lock (in a multi-threaded environment only). The
version list has one entry per version. Each entry con-
tains the associated class and library names, a flag that
indicates whether the version is the active version, and a
count of the number of objects of the version. For each
object, the proxy maintains two pointers, one to the ac-
tual object and one to the object’s version information
inside the version list. In addition, since a dynamic
class always has virtual functions, the actual imple-
mentation object has a pointer to the appropriate vtable.

Thus the per-object space overhead of dynamic classes
is three pointers (including the vtable pointer), and dy-

8 Most C++ compilers will not inline a method that can throw an
exception.

namic classes can be used only if this overhead is ac-
ceptable. For the Point class, the overhead is probably
unacceptable, since the three pointers might take up
more space than the Point’s actual data. For the Ren-
derer class, the overhead is probably acceptable. In the
applications that we discuss below, the three pointers
are less than 10% of the total object size.

6. Applications

Our main motivation for this work is network-control
and service-management applications that (1) demand
the high performance of C++ but (2) must operate con-
tinuously. We have used dynamic classes in three such
applications at AT&T, namely mobile agents, control-
on-demand and connection management. The mobile-
agent application is a building block for the control-on-
demand application, but also demonstrates the viability
of native code in a heterogeneous environment. The
control-on-demand application uses agents to inject
application-specific control policies into a router. Fi-
nally, the connection-management application uses dy-
namic classes to inject handlers for new connection
types into a running connection manager.

6.1 Mobile Agents
A mobile agent is an executing program that can mi-
grate at times of its own choosing from machine to ma-
chine in a heterogeneous network [22]. Mobile agents
are attracting growing attention as a means to easily
realize complex, distributed applications, and are being
used at AT&T in several prototype network-
management applications. We have implemented an
efficient mobile-agent system on top of our dynamic-
class mechanism. Each agent is a version of the same
dynamic class. The interface class defines the opera-
tions that are common to all agents, most notably mi-
grate, captureState, restoreState and run. Unlike most
dynamic classes, the interface class implements the mi-
grate operation. The agent implements the other three.
Like all dynamic classes, each agent is compiled into its
own shared library.

A mobile agent starts executing when a bootstrap pro-
gram loads the agent (via the dynmic-class mechanism)
and calls its run method. The run method performs the
agent’s task. If the run method decides that the agent
should migrate to another machine, it calls the migrate
method. The migrate method calls the captureState
method to package up the agent’s current state, and then
transmits the state image and the URL of the agent’s
shared library to a server on the target machine. The
server downloads the shared library, loads the agent
(again via the dynamic-class mechanism), calls the re-
storeState method to restore the agent’s state, and fi-

nally calls the run method. The run method continues
with the agent’s task, checking the agent’s current state
to decide what to do next.9

6.2 Control on demand
Control-on-demand [29] is flow-oriented active net-
working. Applications inject customized control poli-
cies for each flow into the network routers. These poli-
cies exploit strategic positioning, local network knowl-
edge and application semantics to improve the perform-
ance or perceived quality of the flow. They may act
both in the control plane and the data plane. The for-
mer supports connectivity control, such as floor man-
agement for a teleconference or advanced group man-
agement for a multicast. Applications of the latter in-
clude (1) stream thinning at a branch point in a varie-
gated multicast, (2) discarding less important packets
during congestion (e.g., discarding B and P frames to
protect I frames in
an MPEG stream),
or (3) monitoring
packet loss and
retransmitting lost
packets from inside
the network.

Figure 3 shows a
control-on-demand
network node. The
two major parts are
a forwarding en-
gine (below) and
controllers (above) separated by an opaque interface.
The meta-controller accepts, installs and runs new con-
trollers on demand, using dynamic classes in the same
way that they were used for mobile agents.

6.3 Service/connection management
To experiment with dynamic classes in service-
management applications, we have built a prototype
connection manager. Before transmitting, an applica-
tion issues a connection request to the connection man-
ager. The manager creates a connection instance, per-
forming admission control and other “book-keeping” in
the process. On disconnect, the instance is destroyed,
and resources allocated to the connection released.
While the connection is active, the instance is responsi-
ble for ensuring service quality.

9 Since different machine architectures cannot use the same shared
library, the agent must be pre-compiled for all machine architectures
on which it might find itself. Each machine inserts its architecture
“name” into the URL before downloading the library. This naming
scheme, as well as other issues such as security and fault-tolerance, is
beyond the scope of this paper.

Forwarding engine

Interface

Control
on

demand

Data-path

Meta Meta
ControlControl

Figure 3: A node supporting
control-on-demand

The static part of the connection manager (the main
program) recognizes only a general interface to connec-
tion objects. Type-specific implementations of this
interface are introduced dynamically (using the full-
functionality version of dynamic classes). Figure 4 de-
picts a hierarchy of connection types that is dynamically
constructed during the execution of the connection
manager. The manager is an event processor that han-
dles events of the form: {connection-type name, data
(initial state), code reference (URL)}. If the connection
type is not known, the code is introduced as a new type.
If the type is known, but the code reference has
changed, the code is introduced as a new implementa-
tion version. In either case, the new code is retrieved
and installed using the dynamic-class mechanism.

7. Future work

The first area of future work is to add security mecha-
nisms to our dynamic-class implementation so that a
program can verify the origin of the dynamic classes
that it is instructed to load.

A second area of future work is to handle the case
where several dynamic classes must undergo a version
update as an atomic unit. Potential solutions include a
simple transaction mechanism or a constraint definition
language (i.e., new versions can be loaded at any time,
but become active only when all constraints are met).

Finally, we are working with other groups at AT&T to
identify additional applications for dynamic classes.
We also plan to provide a dynamic-class implementa-
tion for Java. Although Java is unsuited for low-level
control software, it can be used to implement higher-
level components in telecommunications systems.

8. Conclusion

Dynamic classes provide powerful support for the
maintenance and extension of mission-critical and other
long-running applications. New implementations of a
class can be dynamically added to and removed from a
running program, eliminating the need to bring down
the program when fixing bugs, enhancing performance,
or extending functionality. The implementation dis-
cussed in this paper provides an easy-to-use dynamic-
class library for the C++ language. The implementation
preserves type safety and the class abstraction. It does
not require special compiler support, and is efficient
enough for use in low-level software.

We have already used dynamic classes in a mobile-
agent application and as part of a larger programmable-
network effort. In our experience, dynamic classes are
efficient, easy to use and sufficient for most tasks.

9. Availability

Our dynamic-class implementation is available for Irix,
Solaris and Windows 95/NT. It is known to compile
under Irix with release 4.0 of the AT&T C++ compiler,
under Solaris with release 4.2 of the Sun C++ compiler,
and under Windows 95/NT with release 4.2 of the Mi-
crosoft C++ compiler. Porting to another platform is
simple, as long as the platform has (1) a C++ compiler
with exception and template support and (2) dynamic-
linking facilities comparable to those of Irix. Interested
readers should contact the second author.

10. Acknowledgments

Many thanks to the anonymous reviewers and our shep-
herd, Benjamin Zorn, for their excellent feedback, and
to the AT&T programmers who have put our dynamic-
class implementation through its paces.

Appendix

The following C++ code is a simplified version of the
full-functionality template. As discussed in the paper,
this template allows different dynamic classes to share
the same interface class. Other templates support ver-
sion updates only to achieve higher performance (by
eliminating a table lookup). The template methods all
throw C++ exceptions on error.
typedef list<DynamicVersion*> VersionList;
typedef int Handle;

template<class T> class dynamic {
 // the actual object, its version
 // information and its class handle
 T *object;
 DynamicVersion *dvPtr;
 Handle classHandle;
 public:
 // constructors, etc.

Phone IPIP

Connection

Phone IPT1 ATM

UBRCBR
t

Packetstream

IPv6

Bitstream

Figure 4: A hierarchy of connection types

 dynamic(Handle handle);
 dynamic(const dynamic<T>& proxy);
 ~dynamic();
 dynamic<T>& operator= (
 const dynamic<T>& proxy);
 // smart pointer
 T *operator-> (void);
 // activate a version
 static Handle activate (
 const char *libraryName,
 const char *className = NULL);
 // invalidate a version
 static void invalidate (
 const char *libraryName, Handle handle);
 // activate and invalidate
 static Handle activate_and_invalidate (
 const char *libraryName,
 const char *className = NULL);
 private:
 // static data (shared by all versions and
 // classes implementing the interface <T>)
 // 1. map: handles to version list
 static VersionList **versionMap;
 // 2. map: handles to active version
 static DynamicVersion **activeMap;
 // … more …

};

References

[1] F. J. Corbato and V. A. Vyssotsky, “Introduction and
Overview of the Multics System,” Proceedings of the AFIPS
Fall Join Computer Conference, 1965, pp. 185-196.

[2] R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks.
“Shared Libraries in SunOS.,” Proceedings of the USENIX
Summer Conference, 1987, pp. 375-390.

[3] James Kempf and Peter B. Kessler, “Cross-Address
Space Dynamic Linking,” Technical Report TR-92-2, Sun
Microsystems Laboratories, Inc., Mountain View, California,
1992.

[4] W. Wilson Ho and Ronald A Olsson. “An approach to
genuine dynamic linking,” Software-Practice And Experience,
volume 21, number 4, April, 1991, pp. 375-390.

[5] Donn Seeley. Shared Libraries as Objects. USENIX
Summer Conference Proceedings, 1990, pp. 25-37.

[6] March Sabaella. “Issues in Shared Library Design,”
USENIX Summer Conference Proceedings, 1990, pp. 11-23.

[7] Michael Franz. “Dynamic linking of software compo-
nents,” IEEE Computer, volume 30, number 3, March, 1997,
pp. 74-81.

[8] Sean M. Dorward, Ravi Sethi and Jonathan E. Shopiro.
“Adding New Code to a Running C++ Program,” Proceedings
of the USENIX C++ Conference, 1990, pages 279-292.

[9] “The Java Language: A White Paper,” Sun Microsystems
White Paper, Sun Microsystems, 1994.

[10] “Inferno: la Commedia Interattiva,” Lucent Technolo-
gies White Paper, Lucent Technologies, Inc., 1997.

[11] Mary Campione and Kathy Walrath. The Java Tuto-
rial: Object-Oriented Programming for the Internet,
Addison-Wesley, 1996.

[12] Bjarne Stroustrup. The C++ Programming Language
(3rd Edition), Addison Wesley, 1997.

[13] J. J. Puttress and H. H. Goguen, “Incremental Loading
of Subroutines at Runtime,” Technical Report, AT&T Bell
Laboratories, Murray Hill, New Jersey, 1986.

[14] R. W. Quong, “The Design and Implementation of an
Incremental Linker,” Technical Report CSL-TR-88-381,
Computer Systems Laboratory, Stanford University, 1989.

[15] David Keppel and Stephen Russell. “Faster Dynamic
Linking for SPARC V8 and System V.4,” Technical Report
93-12-08, University of Washington, 1993.

[16] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, Massachu-
setts, 1995.

[17] G. Hamilton and S. Radia. “Using Interface Inheritance
to Address Problems in System Software Evolution,” Pro-
ceedings of the ACM Workshop on Interface Definition Lan-
guages, 1994.

[18] Theodore C. Goldstein and Alan D. Sloane. “The Ob-
ject Binary Interface – C++ Objects for Evolvable Shared
Class Libraries,” Technical Report TR-94-26, Sun Microsys-
tems Laboratories, Inc., Mountain View, California, 1994.

[19] Mark Lutz. Programming Python. O’Reilly, 1996.

[20] A Goldberg. Smalltalk-80: The Interactive Program-
ming Environment. Addison-Wesley, Reading, Massachu-
setts.

[21] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, Reading, Massachusetts, 1994.

[22] James E. White. “Telescript Technology: The Founda-
tion for the Electronic Marketplace,” General Magic White
Paper, General Magic, Inc., 1994.

[23] Robert S. Gray. “Agent Tcl: A Flexible and Secure
Mobile-Agent System,” Mark Diekhans and Mark Roseman,
editors, Proceedings of the 4th Annual Tcl/Tk Workshop,
Monterey, California, July, 1996.

[24] Michael R. Genesereth and Steven P. Ketchpel. “Soft-
ware Agents,” Communications of the ACM, 37(7), July,
1994, pages 49-53.

[25] Yezdi Lashkari and Max Metral and Pattie Maes.
“Collaborative Interface Agents,” Proceedings of AAAI '94,
1994

[26] Jon Siegel, CORBA: Fundamentals and Programming,
Wiley, 1996. ISBN 0471-12148-7.

[27] Toby Bloom. Dynamic Module Replacement in a Dis-
tributed Pogramming System Ph.D. Thesis, Laboratory for
Computer Science, Massachusetts Institute of Technology,
1983.

[28] “The component object model (COM): A technical
overview,” Microsoft White Paper, Microsoft, Inc., 1996.

[29] Gísli Hjálmtýsson and Samrat Bhattacharjee. “Control
on Demand - Customizing Control for Each Application,”
AT&T Technical Memorandum, 1997.

