
Design and Implementation of Netdude,

a Framework for Packet Trace Manipulation

Christian Kreibich

University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

christian.kreibich@cl.cam.ac.uk

Abstract

We present a framework for inspection, visualiza-
tion, and modification of tcpdump packet trace files.
The system is modularized into components for dis-
tinct application purposes, readily extensible, and
capable of handling trace files of arbitrary size and
content. We include experiences of using the system
in several real-world scenarios.

1 Introduction

In today’s computer networks, traffic varies greatly
in content and volume, making network analysis a
difficult process. Researchers, developers, and sys-
tem administrators use traffic capturing tools (snif-
fers) to obtain traces of network traffic to gain bet-
ter understanding of traffic characteristics. Storing
traffic flows in a standardized form allows them to
investigate the effects of misconfigurations and pro-
gramming errors, to process traffic using appropri-
ate tool chains, and most importantly, to make the
occurrence of observed phenomena reproducible.

Among the plethora of tools available for this pur-
pose, three freely available ones constitute the de-
facto standard: the libpcap library1 provides a low-
level application programming interface (API) to fil-
ter and intercept packets, tcpdump presents these
packets in textual format, and ethereal2 provides
a graphical user interface (GUI) for capturing, fil-
tering, and inspecting packets, supporting a large
number of networking protocols and sniffers.

Interestingly, tools that also allow the user to edit
captured traffic have so far been limited to problem-
specific solutions. The current state of the art is
disappointing: developers create repositories of typ-

1http://www.tcpdump.org
2http://www.ethereal.com

ically unreleased, purpose-specific, throw-away pro-
grams, inconveniently written at the libpcap level.
Yet many of these tools would be useful to a larger
audience. This practice violates a number of well-
accepted software engineering principles, such as
component reuse and the avoidance of cut-and-paste
practices, code redundancy, and duplication of ef-
fort.

To improve this situation, we present Netdude, the
network dump data displayer and editor, a frame-
work designed to support different packet manipu-
lation paradigms (from APIs to convenient GUIs),
emphasizing code reuse, extensibility, and scalabil-
ity. All components presented in this paper are fully
implemented and publicly available.

The rest of this paper abstract is structured as fol-
lows: Section 2 presents the architecture of frame-
work, including design goals and implementation de-
tails. Section 3 gives examples of using the frame-
work, followed by a description of our experiences
using the system in real-world scenarios in Section
4. Finally, Section 5 summarizes the paper.

2 Architecture

We first present our design goals for the framework
and then describe how these goals lead us to the
architecture we eventually implemented. In the re-
mainder of this section, we illustrate how the frame-
work components can be used in selected scenarios.

2.1 Design Goals

1. Multiple usage paradigms

The user must be able to manipulate trace files
at the desired level of interactivity and abstrac-
tion. We neither want to enforce only an API,



User Space

Kernel

Filesystem

libpcap

libnetdude

libpcapnav

tcpdump I/O

Netdude

GTK

NavigationTrace LifecycleFiltering

Preferences Feature Plugins

Packet Iteration

Protocol Plugins

GUI Event Handling Trace/Packet
Event Handling Protocol PluginsFeature Plugins

Ether IP TCP

Ether IP TCP

Statistics Capture

BPF

Figure 1: Architecture of the Netdude Framework.

thus asking all users of the framework to be-
come developers, nor a GUI, forcing developers
to use a graphical interface that may not be
flexible enough. Programmers must find the
framework usable at a convenient level of ab-
straction that allows them to focus on relevant
aspects of their algorithms without getting dis-
tracted by details of packet reading & writing,
trace file navigation, etc. The framework must
eliminate the need to hand-write trace file ac-
cess, filtering, iteration and protocol demulti-
plexing code anew for every application.

2. Openness & Extensibility

To programmers, we want to provide maximum
flexibility in making their code interact with
our framework. Since networking code is typ-
ically rather low-level, the programming lan-
guage must not limit the usability of the frame-
work to a certain language or execution envi-
ronment. Both programmers and GUI users
must have a means to extend the framework
using components that they develop themselves
or obtain from other developers.

3. Small-scale Editing

The framework must allow the manipulation of
packets at a fine-grained level of detail, down
to individual bits in the protocol headers and
byte sequences in packet payloads. It also must
provide the user with means to delete, move,
swap, duplicate and erase packets, and to allow
easy saving of changes made to a trace file.

4. Large-scale Editing

The framework must allow the manipulation

of arbitrarily large trace files (subject to the
maximum allowable file size on the operating
system used), particularly files that are much
larger than the system memory capacity. Traf-
fic trace files easily reach sizes in the Gigabyte
range, thus simply loading files into memory at
startup is not an option.

The first goal excludes library-only or application-
only designs since either would exclude one of the
desired user groups. The second goal demands a
widely used system programming language; we have
decided to implement all library components in the
C language to facilitate easy binding to other lan-
guages and to provide a largest-possible common
denominator. The remaining two goals suggest con-
centrating the packet manipulation code in a library
that can then be used by other programs.

2.2 Implementation

These goals lead to a layered architecture, illus-
trated in Figure 1. In the bottom layer, libpcap
handles elementary trace file operations: opening
and saving traces, sequential reading and writing of
packets.

libpcapnav is a thin wrapper around libpcap that
removes the limitations of sequential read access to
packets stored in a trace. Between packet reads,
users can jump to arbitrary locations in the trace
file, identified by packet timestamps or fractional
offsets in the file (e.g., 0.5 identifies the middle of the



file). This library works similarly to tcpslice3, but
features a more robust algorithm for packet stream
synchronization.

libnetdude is the core of the framework, where
most of the packet editing functionality is imple-
mented. It provides abstract data types and APIs
for handling trace files, regions of trace files, pack-
ets, filters, and packet iterators. libnetdude can
handle arbitrarily large traces: it never loads more
than a configurable maximum number of packets
into memory at any time. Since one of our design
goals was the ability to perform arbitrary packet in-
sertions and deletions, simple mmap()ing of regions
of the trace file is not an option. Rather, trace files
are edited at the granularity of trace areas, whose
borders are defined using timestamps or fractional
offsets understood by libpcapnav. The layers of
modified trace areas are carefully maintained by
libnetdude, always providing a consistent view of
the trace file to the user. The modified trace ar-
eas are stored in temporary storage, as trace parts.
Figure 2 illustrates these concepts.

When accessing a packet, the library always uses
the trace part in the uppermost layer at the cur-
rent offset. When a trace file is saved, the trace
area layers are flattened onto the original trace file,
honoring any inserted or removed packets, to yield
the trace file the user created. The process is il-
lustrated in Figure 3. Note that packet insertion
and deletion are straightforward in this approach:
the actual composition of packets in a trace area
can change but trace parts are still aligned on their
original boundaries.

libnetdude provides a number of other features:

• Its plugin architecture enables extensibility in
two ways: protocol plugins allow interpretation
of arbitrary protocol data, whereas feature plu-
gins provide building blocks (e.g., anonymizers,
statistical analyzers or flow demultiplexers) in
a reusable fashion.

• Packet initialization turns raw packet data into
structured protocol headers, as much as the in-
stalled protocol plugins permit. After that, it is
easy to obtain, say, the TCP header of a packet.
Nested protocols (such as IP tunnels) are sup-
ported. Developers thus need no longer write
their own protocol demultiplexers in each ap-
plication.

3http://www.tcpdump.org/other/tcpslice.tar.Z

Base Trace

Trace Part 1

Trace Area 1

Trace Area 2

Trace Area 3

Trace Part 3

Trace Part 2

Trace Part 4

Figure 2: Editing different trace areas causes result-
ing trace parts to be layered on top of the original
trace file.

Base Trace

Trace Part 1

Trace Part 3

Trace Part 2

Trace Part 4

Trace Part 2Trace Part 4 Trace Part 3

Sync

Figure 3: When saving a trace file, the layered parts
are flattened onto the original trace file.

• Access to the familiar tcpdump output:
libnetdude can associate each open trace file
with its own tcpdump process. The user can
then obtain tcpdump output at the granularity
of individual packets with a single function call.
As usual, details of the output can be controlled
using tcpdump’s command line options. Since
libnetdude can be configured to use any lo-
cally installed tcpdump binary, changes made to
tcpdump remain visible inside the framework.

• An observer/observee API for objects like trace
files, packets, packet iterators, and trace parts
allows seamless integration of the library into
the surrounding application, without exposing
unnecessary internal state. Users can register
callbacks that are invoked when certain events
occur in the monitored items.

Finally, the Netdude framework provides a GUI ap-
plication that uses all components described above.
The main window is shown in Figure 4. The appli-
cation allows non-developers to open and save trace
files, jump to arbitrary locations in the trace files,
modify protocol header fields and payload content
in configurable trace areas, and access the installed
feature plugins.



Figure 4: Main window of the Netdude GUI, with three trace files opened and the TCP header of the
selected packet displayed. The red highlighting indicates that the TCP checksum in this packet is incorrect.

3 Framework Usage

We illustrate the usage of the framework in two
examples: packet iteration and accessing selected
protocol headers in a packet. Figure 5 shows
libnetdude code for these scenarios.

3.1 Packet Iteration

Using libnetdude, packet iteration is done in two
steps: first the area of the trace that the user wants
to iterate is specified, then an iterator instance is
used in a for()-loop. Using the GUI, the user
defines the trace area conveniently using a dialog.
The iteration is then done implicitly when the user
performs an action that can be applied to multi-
ple packets (e.g., setting a header field to a certain
value, or fixing checksums).

3.2 Accessing Protocol Data

Using libnetdude, the user obtains a handle for
the desired protocol by specifying the layer in the
network stack and the identifier of the protocol com-
monly used at that layer (e.g., IPPROTO xxx values
at the network layer). Then the user requests a
pointer to this protocol’s header data in a packet at
the desired nesting level. Using the GUI, the user
first selects a packet from the list of packets cur-
rently loaded into memory. The GUI then provides
access to the individual protocol headers contained
in that packet. The user selects the desired proto-
col header and directly manipulates the header bit
fields as visualized by the responsible plugin (e.g.,

using pull-down menus for fixed-range values, or en-
try fields for variable fields).

#include <libnd.h>

#include <netinet/in.h>

#include <netinet/tcp.h>

void iterate_tcp_dports(const char *tracefile)

{

LND_Trace *trace;

LND_PacketIterator pit;

LND_TraceArea area;

LND_Protocol *tcp;

struct tcphdr *tcphdr;

/* Obtain handle to TCP protocol */

if (! (tcp = libnd_proto_registry_find(LND_PROTO_LAYER_TRANS, IPPROTO_TCP))) {

/* Protocol not found -- handle accordingly. */

}

/* Open the trace file: */

if (! (trace = libnd_trace_new(tracefile))) {

/* Didn’t work -- appropriate error handling. */

}

/* Set the trace’s active area to the second half of the file. */

libnd_trace_area_init_space(&area, 0.5, 1.0);

libnd_trace_set_area(trace, &area);

for (libnd_pit_init(&pit, trace); libnd_pit_get(&pit); libnd_pit_next(&pit)) {

/* Request the TCP header of the current packet. */

tcphdr = (struct tcphdr *) libnd_packet_get_data(libnd_pit_get(&pit), tcp, 0);

if (tcphdr)

printf("Dest. port: %u\n", ntohs(tcphdr->th_dport));

}

}

Figure 5: A libnetdude example, iterating the sec-
ond half of a trace and printing out the destination
ports of all TCP packets in that area.

4 Real-world Use Cases

The original catalyst for the creation of Netdude
was our work on TCP/IP network traffic normaliza-
tion [HKP01]. This was a typical scenario for small-
scale editing. In order to test our normalizations, we
needed to create very specific packet constellations,
for example specific values for the IP TTL field, the



TCP flag bits, and IP fragments with valid and in-
valid fragment offsets. Using the Netdude GUI, we
gave individual packets the desired features and re-
played the manipulated trace files through the nor-
malizer.

The second use case was in the domain of high-
speed network monitoring equipment. The sub-
ject of study was Nprobe, a scalable multi-protocol
network monitor [MHK+03]. The goal was to
evaluate system performance under various traffic
loads. We used libnetdude to create traffic pat-
terns that triggered different hotspots in the sys-
tem. We then wrote an IP address mapping plugin
for libnetdude, that maps those traces to disjunct
IP address ranges so that we could replay multi-
ple instances of the traces in parallel to expose the
probe to high volumes of traffic.

At the moment we are using Netdude in order to
test intrusion detection system (IDS) signatures.
The classic approach is to experiment with a signa-
ture for a network-based IDS [Pax98][Roe99], test-
ing whether the IDS reacts correctly when replaying
a trace file. It is often more straightforward to ma-
nipulate the traffic itself and not the signature, par-
ticularly when testing the resilience of a new signa-
ture against variation in traffic patterns and corre-
sponding false positive rates. Netdude’s small-scale
editing capabilities have proven most helpful in this
scenario.

5 Summary

Netdude is a framework for tcpdump packet trace
inspection, visualization and modification. Its mod-
ular design allows users to interact with the frame-
work at different abstraction levels: a low-level
trace navigation wrapper for libpcap, a high-level
API with convenient types for performing common
packet manipulation tasks in libnetdude, and a
GUI application that allows both small- and large-
scale editing previously impossible without writing
code.

The system has been in development for three years
now. The use cases that allowed us to apply the
framework so far have confirmed our goals of simpli-
fying the development of packet manipulation code
and encouraging the re-use of components devel-
oped in other projects. We have implemented a
number of plugins for purposes such as IP address
translation, TCP flow demultiplexing, and statisti-

cal analysis. One of the main goals for future re-
leases is a scripting interface to libnetdude.

We hope that the authors of networking code con-
sider using the Netdude framework for their fu-
ture packet manipulation needs, and provide useful
functionality in the form of plugins for libnetdude
or the Netdude GUI as a benefit to the commu-
nity. Netdude is provided with a BSD license,
hosted on SourceForge, and can be obtained at
http://netdude.sf.net.

Acknowledgments

We would like to thank Vern Paxson and Mark
Handley for inspiration and helpful feedback. We
also thank the Netdude user community for valu-
able ideas, comments, and contributions, particu-
larly Daniel Stodden and Euan Harris, who also
provided valuable comments on the paper. Thanks
also to the Castle Pub in Cambridge for hosting our
brainstorming sessions.

References

[HKP01] Mark Handley, Christian Kreibich, and
Vern Paxson. Network Intrusion De-
tection: Evasion, Traffic Normalization,
end End-to-End Protocol Semantics. In
Proceedings of the 9th USENIX Security
Symposium, August 2001.

[MHK+03] Andrew Moore, James Hall, Christian
Kreibich, Euan Harris, and Ian Pratt.
Architecture of a network monitor. In
Passive and Active Measurement Work-
shop Proceedings, pages 77–86, La Jolla,
California, April 2003.

[Pax98] Vern Paxson. Bro: A System for
Detecting Network Intruders in Real-
Time. Computer Networks (Ams-
terdam, Netherlands: 1999), 31(23-
24):2435–2463, 1998.

[Roe99] Martin Roesch. Snort: Lightweight
Intrusion Detection for Networks. In
Proceedings of the 13th Conference on
Systems Administration, pages 229–238,
1999.


