
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The NetBSD Update System

Alistair Crooks, The NetBSD Project

9th April 2004

Abstract

This paper explains the needs for a binary patch and
update system, and explains the background and im-
plementation of NetBSD-update, a binary update fa-
cility for NetBSD. The implementation is then anal-
ysed, and some lessons drawn for others who may
be interested in implementing their own binary up-
date system using the NetBSD pkgsrc tools, which
are available for many operating systems and envi-
ronments already.

The NetBSD Binary Update Sys-

tem

Unix, Linux and the BSD operating systems have
traditionally been distributed in source format, and
users and administrators have had a long tradition
of compiling utilities and applications from source.
Over time, however, vendors have moved towards a
binary-only distribution mechanism, removing vari-
ous parts of the system in the process, such as the C
compiler, and other necessary tools. It is only over
the last decade that the rise of Linux and the BSD
operating systems have placed the emphasis back on
source code, and even then, most versions of the op-
erating systems are installed from a binary distribu-
tion.
This paper describes the NetBSD update sys-

tem, which has been implemented on and for the
NetBSD operating system http://www.netbsd.org/
using the packaging tools from the NetBSD Packages
Collection (pkgsrc) http://www.pkgsrc.org/.
Other vendors and operating systems have binary

update facilities in place - their existence is not the

driving force behind the use of pkgsrc or NetBSD
- rather, this is a description of a facility which is
used in NetBSD and which can be used on any other
operating system to augment the standard facilities
which are in place.

Driving Forces for a Binary Patch and

Update System

It is now common to �nd �rewalls in large and small
organisations, preventing malign access, and protect-
ing the organisation from intrusion and other attacks.
It would not be prudent to have a C compiler in-
stalled on such a machine - its use should be that of
a gatekeeper, as a bouncer with an attitude, keep-
ing anything suspicious out, and not allowing anyone
who does manage to penetrate the defences to use
any tools to break further into the infrastructure.
In addition to these instances, it is very unusual to

�nd users (as opposed to administrators, or people
who work in the industry) who would know what
to do with a source distribution. Email to various
mailing lists proves this point - to the majority of
users out there, the computer is a tool, not a thing
of beauty.
It is also common to �nd vulnerabilities in oper-

ating systems, libraries, and utilities which have al-
ready been deployed. To �ll such holes, a patching
system needs to be used - the vulnerable code is re-
placed by code which is not vulnerable. This must
be done by means of updating the binaries.
Embedded systems must also be examined in light

of the vulnerabilities found in MTAs, network time
servers, IP �ltering software, operating system soft-
ware, and anything else which is included as part of

1

the embedded system, and which can be used to facil-
itate an attack on an organisation or individual - the
whole infrastructure is only as strong as the weakest
link in the defences, and one breach renders the rest
of those defences useless.
It is not feasible to expect that all the vulnera-

bilities can be found and protected ahead of time -
new ones are being found every day - and so there
must be a mechanism available by which new bina-
ries can be used to overwrite vulnerable ones. This
paper examines all the issues involved in the design
and deployment of such a system.
It can take some time for an advisory to be re-

ceived, investigated, researched, �xed, and then pub-
licised - the binary update facility can be viewed as a
more reliable form of communication of the exploit or
vulnerability than reading the Bugtraq or Full Dis-
closure mailing lists.
Some vendors wish users and administrators to pay

for the added service which a binary update facility
provides. Whilst the NetBSD binary update system
is not intended to prevent vendors charging for this
service, some people are unhappy and unwilling to
pay for a binary update system.

Related Systems

The one immediate piece of software to which
everyone refers when talking about binary up-
dates is the Windows Update Facility http://v4.
windowsupdate.microsoft.com/en/default.asp.
It has three separate facilities - update check (for
new upgrades), update download, and update instal-
lation, and Windows XP computers can be set to
perform the check, the check and download, and all
three parts automatically. Windows Update is based
around a web front end - all the used has to do is to
specify (the �rst time Windows Update is run) how
they would like their system to check for updates -
and everything is very easy from an end-user point
of view.
Debian Linux http://security.debian.org/ has

a security update feature which uses its apt system
to provide binary patches for Debian Linux systems.
The FreeBSD project http://www.freebsd.

org/are working on their own binary update system.

The RedHat network http://www.redhat.com/
provides a commercial service for RedHat Linux sys-
tems.
Sun Microsystems http://www.sun.com/ provides

a number of binary updates via its SunSolve facility
for its Solaris operating environment.
The NetBSD Packages Collection http://www.

pkgsrc.org/ has an �audit-packages� package which
is used to notify the user when packages which are
installed on the host system have been found to have
security exploits or vulnerabilities. A central list
is maintained by the security-o�cer and other de-
velopers, and stored on one of the NetBSD project
servers. The user is encouraged to run the �download-
vulnerability-list� as part of the periodical jobs on
a host system by means of the crontab(8) facility.
This script will download the list of vulnerabilities
from the central server. Output from the �download-
vulnerability-list� script looks is reproduced in the
Figure download-vulnerability-�le output.
A separate script, called �audit-packages� simply

runs through each of the entries in the list of vulnera-
bilities, and checks against each of the vulnerabilities
for an installed package on the system with a version
number that is vulnerable. If there is, then a warning
message will be printed, with relevant information, as
shown in Figure audit-packages.
The vulnerabilities �le is split into 3 columns. Each

line of the �le describes a new vulnerability. Com-
ments start with the '#' character. The �rst column
is the vulnerable package versions; the second column
is the type of vulnerability, and the �nal column is a
URL related to the vulnerability.
Some typical entries from the vulnerabilities list

are shown in the Figure pkg-vulnerabilities �le.
The audit-packages package works very e�ectively

in practice, having ironed out a few loose ends in its
implementation. From the start, the vulnerability list
has been advertised that it will only grow - old vul-
nerabilities will be retained �just in case�. This has
proved di�cult to implement - occasionally URLs will
be found to be out of date, or better ones identi�ed.
Once a user with a shorter username �xed two trans-
posed characters in a comment, thereby causing the
size of the vulnerabilities list to decrease. In time,
it was found better to have an embedded SHA1 di-

2

gest, which is used to ascertain correct tranmission
of the vulnerabilities list, and that no truncation has
occurred in transit, as well as ensuring that the �le
has not been modi�ed in any way.
NetBSD also has �ne-grained �system packages�,

which can be used as an alternative to the traditional
BSD sets method of installing or upgrading systems.
System packages are usually made up of three sub-
packages:

• the binaries,

• the manual pages,

• and any example or support �les.

The NetBSD Update System does not use any of the
facilities of system packages - on non-NetBSD sys-
tems, it is likely that system packages would clash
with traditional methods of installing and updating
systems, and so a separate mechanism was used to
implement the NetBSD Update System.

The Design of the NetBSD Update Sys-

tem

The audit-packages package, and the experience
gained from it, proved to be a major in�uence in the
design of the NetBSD update system. By using a sin-
gle list of vulnerable packages which was downloaded,
signi�cant useful information could be retrieved very
simply and in a relatively secure manner.
The utility and ease-of-use of the Windows Update

system proved to be the inspiration for the actual
operation of the system. In addition to the ease of
use, the three stages of protection in the Microsoft
utility were considered to be the correct approach.
In some countries, users must opt-in to any service
which holds information, and the binary update fa-
cility was designed with this in mind.
Security and integrity were two more considera-

tions - security in the transit of information which
could be potentially damaging to a system if the up-
date were modi�ed in any way during transit. For
this reason, digital signatures of the update itself are
considered absolutely essential.

The author has some experience with the pack-
aging tools as used in the NetBSD packages collec-
tion, and certain facilities used in these tools would
be needed in the binary update facility itself. Using
version numbers which could be compared rationally
with each other, and using the tools themselves to
add, backup and delete �les, directories and other
�le system entries are essential in providing a useful
utility which does not try to do any more than it
needs to do.

Implementation of the NetBSD Update

System

The implementation of the NetBSD update system
is done as in the Windows and Debian updates - the
binary updates can be set to inform of new updates,
to inform and download, and to inform, download
and install the updates automatically.
The NetBSD packages collection tools are used

to perform the binary update work - these tools
have been enhanced from the original tools to add
such features as �Dewey decimal� number compar-
ison, digitally-signed package checks and addition,
and package replacement in place. There is also
a facility for a binary package to be speci�ed by
URL on the command line, downloaded automati-
cally, and added via pkg_add(1), but that facility is
not used by the NetBSD binary update system - in-
stead, ftp(1) isused to download the binary package,
and pkg_add(1) is used in �local� mode. This is be-
cause we prefer the binary packages which are being
downloaded to be protected by a digital signature,
and that mode of binary package addition is, unfor-
tunately, not yet available when specifying a URL on
the command line.
For a long time, the NetBSD pkgsrc system has in-

cluded a package called �pkg_install� - it consists of
the latest version of the pkg_install tools. This was
derived from the original FreeBSD pkg_install(1)
tools (and is also included in the base NetBSD oper-
ating system), but has been considerably enhanced,
including speci�cally such such features as

• the recognition of packages by means of relative
version numbers

3

• the addition of a callout to gpg and pgp to au-
thenticate the provenance of a binary package
by means of a digital signature related to the bi-
nary package. This had to be implemented as
a callout as gpg is distributed under the GPL,
and it is not desirable to have any part of this
system distributed under a more restrictive or
onerous licence than the BSD licence. The im-
plication of this is obvious - the BSD operating
systems need a BSD-licensed utility for privacy,
compatible with gpg and pgp. One example of
an addition of a signed binary package is shown
in Figure Addition of a signed binary package.

The recognition of packages by comparitive ver-
sion numbers is essential for any binary update sys-
tem. For example, it is imperative that we can tell
whether an installed package is vulnerable to an ex-
ploit. There are a number of ways this could be done

• circulate digests of �les that are vulnerable, but
that is not practical in an environment such as
the BSD operating systems where most packages
are built by the user, and binary packages, whilst
still being used by many people, are not as pop-
ular as the �build it for myself� attitude. The
author su�ers from this a�iction as well, and
does not consider it a weakness, more the signs
of knowing exactly what is on any given system
at any one time.

• by hardcoding the package names which are vul-
nerable, but this does not scale well, or would
even be practical

• by using a system package name and version
number (but, as we have already seen, this is
not portable to operating systems other than
NetBSD)

The NetBSD packages collection has also long had a
number of �meta-packages� - these are packages which
include no �les or directories of their own, but which
require pre-requisites of other packages, and thereby
ensure that all of the parts can be manipulated as
one whole package. Examples of meta-packages are:

• edesktop

• gnome

• gnome2

• gnustep

• kde3

• netbsd-www

• etc

The First Implementation

As it was �rst implemented, the NetBSD binary up-
date system was actually a fairly simple shell script
which used o�-the-shelf tools to perform its work.
Some thought had been placed into making it into a
standalone compiled program, since that is the vehi-
cle which would most readily bene�t embedded sys-
tems vendors, and that is left as future work.
The system itself consisted of two parts:

• an $opsys-$osversion-$architecture-update
meta-package

• the individual updates in the form of binary
packages

The netbsd-update facility �rst checked the directory
on the NetBSD ftp server to see if there was a more
recent meta-package than the one currently installed
on the host machine. If there was, this was noti�ed
to the user.
Then, when the time came to download the new

updates, the new meta-package was downloaded, as
well as any binary packages which were necessary.
Whilst it was usual for an update to include one bi-
nary package for that architecture and version, more
may be needed. It's also possible that a binary pack-
age may itself have been updated, in which case the
newer version of that was downloaded, along with the
updated meta-package.
The operating system version and architecture are

used in the package name to ensure that the correct
binaries are downloaded (the architecture), and that
the binary package was linked with the correct system
libraries (operating system version).

4

When the time came to install the binary updates,
the normal pkg_add(1) tool was used, working from
a local copy of the package. The �-s� switch was used
to ensure that the digital signature (in the form of a
separate ASCII-armoured �le) for the binary package
veri�ed the update's authenticity (much as a signed
RPM package is used in Linux).

An overview of the NetBSD Update Fa-

cility

Building on the prototype building blocks outlined
above, the NetBSD Update facility has to perform
the following steps:

1. ascertains the current operating system name
and version

2. downloads a list of the binary packages available
for the operating system and version of the op-
erating system

3. evaluate whether any binary packages are needed
- the same process which is undertaken by audit-
packages takes place here. The list of available
binary packages is processed, using pkg_info(1)
to work out whether the binary package is in-
stalled on the system or if it needs to be.

4. if the user has speci�ed that they just want to
be informed of the existence of an update (which
is not recommended), then this takes place by
means of mail to root, and no further actions
take place.

5. the necessary available packages are downloaded
from the ftp server, along with their digital sig-
natures.

6. if the user has speci�ed that they just want the
available binary packages downloaded, then they
are informed by mail (to root) that this has hap-
pened, and no further actions take place

7. the �les which will be overwritten (if any) by ex-
tracting �les from the available binary packages
are preserved by means of a simple tar(1) com-
mand, using the �le list from the available binary

packages, and made into a binary package of its
own. This also facilitates rollback, should an un-
successful binary package addition take place, or
the new behaviour with the update in place is
not working as intended

8. the binary package is fed to the pkg_add(1)
utility, which �rst checks the digital signature
on the binary package and veri�eds it It is
possible to specify that any signatories which
match a regular expression will be allowed -
for example �security-o�cer@netbsd\.org�, or
�.*@pkgsrc\.org�

9. the binary package is added to the system by
means of pkg_add(1).

Consequences of these steps:

• the user is able to specify in advance whether
they want the binary package noti�cation, auto-
matic download, or applied to the system. This
is the same system as the Windows Update facil-
ity, and has been found by numerous people from
small users to large enterprises to work very well.

• digital signatures protect the user by assuring
them of the provenance of the binary package.
Without this assurance, it would be risky or
downright dangerous to apply third-party binary
packages to any system, far less one which may
be in production use.

• the ability to rollback from an update is simply
the deletion of the downloaded binary package,
and the re-application of the preserved binary
package.

• people must be running a GENERIC kernel for
the update system to be of any use. This is not
really a problem in reality, since very few peo-
ple tailor or customise their kernel con�gurations
(usually, the only people that do that are devel-
opers)

Feedback from Initial Usage

• The user interface was originally clunky, and
needed to be made smoother

5

• Problems with Firewall-1 and interaction with
NetBSD's ftp server mean that http may well be
a better vehicle for binary update downloading

• The digital signature and automatic updates do
not co-exist very well together. It is anticipated
that the pkg_install tools will be modi�ed to use
a con�guration �le for trusted signatures.

• Operating systems which are not NetBSD were
not catered for very well. Having said that, there
was nothing to preclude their use on other oper-
ating systems, although duplication of updates
from Sunsolve, for example, are not useful in
themselves; what is useful, however, is a coher-
ent set of packages for a given release of Solaris,
for relevant architectures and machines. It has
been the author's experience in the past, when
managing networks of Solaris machines, that Sun
provide the updates, but do not group them to-
gether particularly well, and that the numerical
nature of the updates names are not the easiest
to remember or inform others.

• The quality of the binary updates is only as good
as the port-masters for NetBSD who have to
build the binary packages.

• Making meta packages for each individual archi-
tecture is onerous and time-consuming. Some
knowledge of package creation is needed.

Iterative Development

Learning from the experience gained from the pro-
totype implementation, it was decided that some
changes would bene�t everyone:

• rather than having a separate meta-package for
each operating system, and operating system
version, and architecture, a single vulnerabilities
�le was used, mirroring the vulnerabilities �le in
the �audit-packages� package

• the vulnerabilities �le can also use an embedded
digest, as a further check that correct transmis-
sion has taken place - although this is not as
useful or protective as:

• a digital signature of the vulnerabilities �le can
be added in a trivial manner, to protect the in-
tegrity of the information

• using a simple vulnerabilities �le means that
there is no confusion of di�erent �les per archi-
tecture or operating system, no duplication of
information

The re�ned binary update facility now performs the
following steps:

• download the vulnerabilities �le from the
NetBSD ftp server

• ensure its integrity and provenance by calling out
to gpg to verify the digital signature

• if there is a vulnerability on the host system, this
will be �agged by a down-level update package
(from a previous vulnerability �x), or by the up-
date package not existing on the host machine.

• if the update package is to be downloaded, use
ftp(1) to download the binary package from the
NetBSD ftp server. At the same time, the digital
signature will be downloaded. Typically, they
will both be downloaded together as one entity,
to try to minimise any spoo�ng attacks, or man
in the middle attacks, since ftp is hardly the most
secure of protocols

• if the update package is to be installed automat-
ically, if there are any �les to be preserved (so
that rollback can take place), then the package
tools are used to create a binary package of the
preserved �les. The list of �les to be preserved
will be included with the update package itself
as part of its meta data.

• if the update package is to be installed, use
pkg_add(1) with its �-s gpg� argument to ver-
ify the package's integrity, and to add it

• the root user will be informed of all of the above
steps by email. It is believed by the author that
it is better to err on the side of too much infor-
mation, especially where far-reaching changes to

6

the system could be taking place. Update pack-
ages can have their information displayed using
the normal pkg_info(1) interface.

Conclusions

The binary update system is a useful piece of work,
which has shown positive bene�ts.

• The ability to provide better security warnings
and recovery is an enormous bene�t

• even if a �x is not available, the binary update
system can be used to publicise an exploit in
the wild, thereby making the administrator's job
easier (assuming that information about the ex-
ploit is available). Even being aware that a vul-
nerability has been found in a widely-used piece
of software is a valuable service

• the use of digital signatures to protect and dis-
seminate the information has proved to be of im-
mense bene�t

There are certainly areas for development and
improvement, but the cross-platform and cross-
environment nature of the NetBSD packages collec-
tion can aid other operating systems and environ-
ments as well as simply the BSD operating systems.

Future Work

The NetBSD packages collection (pkgsrc) runs on the
following operating systems:

• AIX

• BSDOS

• Darwin (Mac OS X)

• FreeBSD

• Interix (Microsoft's Services for Unix)

• IRIX

• Linux

• NetBSD

• OpenBSD

• SunOS (Solaris)

whilst more - HP/UX, the Hurd, Digital Unix - are
planned. We would like to extend the binary update
facility to run on as many of those operating sys-
tems as possible, as the bene�ts are measurable. It
is certainly the case that duplication of work would
be inadvisable, but the binary update facility o�ers
a real bene�t to end users.
It would be bene�cial to investigate using a pro-

tocol that is more secure than ftp to download the
vulnerabilities �le, update packages, and digital sig-
natures. Some form of anonymous secsh could be
useful for this project.
A BSD-licensed gpg utility, perhaps based on

openssl, would mean that callouts to gpg could be
avoided, and that the whole binary update system
would be licensed with a less restrictive licence than
the GPL.

References

1. The NetBSD Operating System -
http://www.netbsd.org/

2. The NetBSD Packages Collection -
http://www.pkgsrc.org/

3. The Microsoft Windows Update Facility -
http://v4.windowsupdate.microsoft.com/en/default.asp

4. Debian Linux Security Update -
http://security.debian.org/

5. The FreeBSD Project - http://www.freebsd.org/

6. The Red Hat Network -
http://www.redhat.com/

7. Sun's SunSolve database -
http://sunsolve.sun.com/

7

Figure 1: download-vulnerability-�le output

8

Figure 2: audit-packages

9

Figure 3: pkg-vulnerabilities �le

10

Figure 4: Addition of a signed binary package

11

