USENIX Association

Proceedings of the General Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27-July 2, 2004

THE ADVANCED COMPUTING §YSTEMS ASSOCIATION

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Transport Layer Approach for Improving End-to-End Performance and
Robustness Using Redundant Paths

Ming Zhang, Junwen Lai
{mzhang, lai } @cs.princeton.edu

Abstract

Recent work on Internet measurement and overlay net-
works has shown that redundant paths are common be-
tween pairs of hosts and that one can often achieve better
end-to-end performance by adaptively choosing an alter-
nate path [8, 28]. In this paper, we propose an end-to-end
transport layer protocol, mTCP, which can aggregate the
available bandwidth of those redundant paths in parallel.
By striping one flow’s packets across multiple paths, mTCP
can not only obtain higher end-to-end throughput but also
become more robust under path failures. When some paths
fail, mTCP can continue sending packets on other living
paths and the recovery process normally takes only a few
seconds. Because mTCP could obtain an unfair share of
bandwidth under shared congestion, we integrate a shared
congestion detection mechanism into our system. It allows
us to dynamically detect and suppress paths with shared
congestion so as to alleviate the aggressiveness problem.
mTCP can also passively monitor the performance of sev-
eral paths in parallel and discover better paths than the path
provided by the underlying routing infrastructure. We also
propose a heuristic to find disjoint paths between pairs of
nodes using traceroute. We have implemented our system
on top of overlay networks and evaluated it in both Planet-
Lab and Emulab.

1 Introduction

Recent work on Internet measurement and overlay net-
works has shown that redundant paths are common be-
tween pairs of hosts [28]. One can often achieve better
end-to-end performance by adaptively choosing an alter-
nate path other than the direct Internet path [8]. At the
same time, stub networks are increasingly turning to mul-
tihoming to improve the reliability of their network con-
nectivity [5]. The reliability is usually achieved by hav-
ing sufficiently disjoint paths to the destinations of interest.
Moreover, with the rapid growth of wireless coverage, mo-
bile users can often have access to multiple communication
channels simultaneously [17, 21]. All of the above means
redundant paths are quite common between pairs of hosts.

Our goal is to design an end-to-end transport layer proto-
col (mTCP) which can not only aggregate the bandwidth on
several paths concurrently but also enhance the robustness
under path failures by taking advantage of those redun-
dant paths. Compared with the conventional single-path

Arvind Krishnamurthy
arvind@cs.yale.edu

Larry Peterson, Randol ph Wang
{Ilp, rywang} @cs.princeton.edu

TCP flows, mTCP stripes a flow’s packets across several
paths. It can be viewed as a group of single-path subflows,
with each subflow going through a separate path. We ad-
dress a number of challenges in our attempt to develop such
transport layer protocol based on TCP. First, the traditional
congestion control mechanism in TCP needs to be modi-
fied to fully exploit the benefits that mTCP has to offer. A
TCP flow does congestion control on the whole flow. If a
flow happens to use a heavily congested path, severe packet
losses on that path will keep the throughput of whole flow
small so that it cannot make use of the available bandwidth
on other better paths. mTCP does congestion control on
each subflow independently so as to minimize the negative
influence of subflows on poor paths.

Second, paths may fail during data transmission. mTCP
should not stall as long as there exists one living path. It
should be able to quickly detect failed paths and continue
sending or retransmitting packets on living paths.

Third, when subflows of a mTCP flow share congested
links, the whole mTCP flow can obtain an unfairly larger
share of bandwidth than other single-path TCP flows, be-
cause each subflow behaves the same as a single-path TCP
flow. To alleviate the aggressiveness problem, we inte-
grate a shared congestion detection mechanism into our
system so as to identify and suppress subflows that traverse
the same set of congested links. Although in today’s In-
ternet, many congested or bottleneck links lie at the edge
of the network which could limit the performance benefit
of mTCP, this is likely to change with the growing pop-
ularity of high speed Internet access. In [6], Akella, Se-
shan and Shaikh measured a diverse set of paths traversing
Tier-1, Tier-2, Tier-3 and Tier-4 ISPs. They found about
50% of the paths have bottleneck links located within ISPs
or between neighboring ISPs. The available capacity of
those bottleneck links are less than 50Mbps, well below
100Mbps Ethernet speed. Many of these paths have al-
ready limited the performance of well-connnected nodes.
Even when congestion does occur on edge links, using re-
dundant paths can still improve the end-to-end robustness
under path failures as described above.

Finally, there might exist many alternate paths between
a pair of source and destination nodes. We want to select
a small number of candidate paths for mTCP flows since it
is impractical to use all the paths simultaneously. We use
a heuristic to identify and select disjoint paths using tracer-

oute. This can minimize the possibility of shared conges-
tion and concurrent path failures.

To the best of our knowledge, we are the first to imple-
ment and evaluate such a transport layer protocol, which
can utilize redundant paths concurrently, in real systems.
We try to provide a comprehensive design that addresses
the inter-related issues of sub-flow congestion control, un-
fair use of congested links, path selection, and recovery
from path failures. We believe that it is beneficial to
tackle all of these issues in a single tightly-coupled system.
For instance, suboptimal decisions from the path selection
mechanism could be corrected by a mechanism that detects
the use of shared congested links. Alternately, shared con-
gestions could be detected easily by monitoring TCP events
(such as fast retransmits) without requiring separate probe
messages. Furthermore, the system could quickly recover
from failures by maintaining and transmitting along mul-
tiple paths. Finally, a mTCP flow can passively monitor
the performance of several paths in parallel and estimate
their available bandwidths. The bandwidth estimates are
typically more accurate than the estimates provided by the
underlying overlay routing mechanisms. This in turn can
help select better paths.

In this paper, we focus on improving the performance
and robustness for large data transfers. Although most
flows on the Internet are small, most of the traffic on
the Internet is contributed by a small percentage of big
flows [35, 13]. Therefore, improving the performance of
such big flows is very important. Additionally, small flows
can also benefit from mTCP because it can quickly detect
and recover from path failures.

The rest of the paper is organized as follows: Section 2
will describe related work. Section 3 will discuss the spe-
cific design problems of mTCP in detail. Section 4 briefly
describes the implementation of our system. Section 5
demonstrates the results from experiments conducted on
PlanetLab [26] and Emulab [2]. Finally, Section 6 con-
cludes.

2 Rdated Work

The general idea of using multiple paths in a network to
obtain better performance has been explored in a number
of different research efforts. We briefly discuss how our
work relates to previous research in this area.

One area of related work is the use of striping [33] or
inverse-multiplexing in link-layer protocols to enhance the
throughput by aggregating the bandwidth of different links.
Adiseshu et al [4], Duncanson et al [12] and Snoeren [30]
provide link-striping algorithms that address the issues of
load-balancing over multiple paths and preserving in-order
delivery of packets to the receiver. These efforts propose
transparent use of link-level striping without requiring any
changes to the upper layers of the protocol stack.

Another area of related work is the use of multiple

paths by transport protocols to enhance reliability [10,
24, 20, 9]. Banerjea [10] proposed the use of redundant
paths in his dispersity routing scheme to improve reliable
packet delivery for real-time applications. Nguyen and Za-
khor [24] also propose the use of multiple paths to reduce
packet losses for delay-sensitive applications. They employ
UDP streams to route data whose redundancy is enhanced
through forward error correction techniques.

The most directly relevant related work is the use of
multiple paths for improving the throughput or robustness
of end-to-end connections. Several application-layer ap-
proaches have been proposed to improve throughput by
opening multiple TCP sockets concurrently [7, 14, 19, 29],
but the multiple TCP connections utilize the same physi-
cal path. These approaches obtain an unfair share of the
throughput of congested links and seem to primarily ben-
efit from increased window sizes over long-latency con-
nections. SCTP [32] is a reliable transport protocol which
supports multiple streams across different paths. However,
it does not provide strict ordering across all the streams,
and it cannot utilize the aggregate bandwidth on multiple
paths as we do. The systems that are closest to what is de-
scribed in this paper is R-MTP [21] and pTCP [16]. R-MTP
provides bandwidth aggregation by striping packets across
multiple paths based on bandwidth estimation. It estimates
the available bandwidth by periodically probing the paths.
As a result, its performance greatly relies on the accuracy
of the estimation and the probing rate. It could suffer from
bandwidth fluctuation as shown in [16]. pTCP uses mul-
tiple paths to transmit TCP streams and describes mecha-
nisms for striping packets across the different paths. They
however assume the existence of a separate mechanism that
identifies what paths to use for their pTCP connections, and
they also do not address the issues of recovering from path
failures or obtaining an unfair share of the throughput of
congested links if the paths are not disjoint. Their study is
also limited to simulations using ns[3].

3 Design

The design of our system seeks to satisfy three goals. First,
given several paths, mTCP should be able to make full use
of the available bandwidth on those paths. Second, when
mTCP uses paths with shared congested links, it should be
able to alleviate the aggressiveness problem by suppressing
some of the paths. Third, when some paths fail, mTCP
should quickly detect and recover from the failures.

3.1 Transport Layer Protocol

mTCP provides the same semantics to applications as TCP.
It preserves properties such as reliability and congestion
control. Because mTCP uses several paths in parallel, it
has to decide how to stripe packets across the paths and
how to manage congestion control for each subflow.

3.1.1 Congestion Control

In mTCP, all subflows share the same send/receive buffer.
Packets are assigned sequence numbers in the same way
as in TCP. But it does congestion control independently on
each subflow. Each subflow maintains a congestion win-
dow as in TCP. The congestion window changes indepen-
dently as the subflow adapts to the network state. When
there are no packet losses in the subflow, it linearly in-
creases. Upon detecting packet losses, it is halved. When
timeout occurs, it is reset to one and the subflow enters
slow-start.

mTCP strives to keep all subflows independent from
each other. Suppose we had used only one global conges-
tion window for the entire flow. The packet losses on any
one of the paths will cause the global congestion window
to be halved, thereby affecting the subflows on all paths. If
one subflow happens to traverse a heavily congested path, it
can keep the global congestion window small, and the other
subflows will not be able to utilize the available bandwidth
on other good paths. In certain situations, this can cause
the throughput of the whole flow to be even lower than that
of a single-path TCP flow on a single good path. This phe-
nomenon was also studied in [16].

3.1.2 Estimating Outstanding Packets

TCP uses (sndnxt — snduna) to estimate the number of out-
standing packets in the network. (For convenience, we as-
sume packets are of the same size and use packets instead
of bytes for discussion.) Here sndnxt is the next packet to
be sent and snduna is the next packet for which an ACK is
expected. It should be no more than the congestion window
(cwnd). In mTCP, since packets are striped across differ-
ent paths, we need to keep track of how many outstanding
packets are in each path to ensure that the number does not
exceed the cwnd of that path.

Our mTCP is based on TCP SACK [22], which is an ex-
tension of TCP Reno. In Reno, the receiver only reports the
greatest packet number that arrives in-order. But in mTCP,
different paths have different latencies. Many packets can
arrive at the receiver out-of-order. We want to accurately
know which packets have been received, no matter they ar-
rive in-order or out-of-order. Hence, we can compute the
number of outstanding packets on each path, which is cru-
cial to our congestion control. In SACK, sender maintains
a scoreboard data structure to keep track of which pack-
ets have or have not been received. An acknowledgement
(ACK) packet may carry several SACK blocks, where each
SACK block reports a non-contiguous set of packets that
has been received. The first SACK block reports the most
recently received packet and additional SACK blocks re-
peat the most recently reported SACK blocks. The SACK
blocks allows the sender to identify what packets have been
newly received irrespective of whether or not the data pack-
ets arrive in-order.

We augment the scoreboard data structure so that it
records the path over which each packet is transmitted or
retransmitted. For each path;, we maintain a pipe to rep-
resent the number of outstanding packets on path;. pipg is
incremented by 1 when the sender either sends or retrans-
mits a packet over path;. It is decremented when an incom-
ing ACK indicates that a packet previously sent on path;
has been received. New packets are allowed to be sent over
path; only when pipe < cwnd;. Retransmitted packets re-
quire special handling. Suppose the original packet is sent
over path; and the retransmitted packet is sent over path;.
When the retransmitted packet is ACKed, the sender decre-
ments both pipe and pipe;j by 1, because it represents two
packets having left the network: the original one on path;,
which is assumed to be lost, and the retransmitted one on
pathj, which has been received. We want to emphasize
that the original and retransmitted packets do not have to
be sent over the same path. We will discuss this in more
detail in Section 3.1.4. Finally, if path; times-out, pipe
will be reset to 0.

3.1.3 Fast Retransmit

Since mTCP sends packets along several paths with dif-
ferent latencies, packets can arrive at the receiver out-of-
order. This can cause duplicate acknowledgement packets
(dupack), which will trigger fast retransmits. These fast
retransmits are caused by packet reorderings and not by
packet losses, therefore we want to avoid them. Although
packets sent through different paths can be received out-
of-order, packets within each subflow will still mostly ar-
rive in-order. Each path; therefore maintains the following
path-specific state: dupack;, the number of dupack along
that path and snduna;, the next packet requiring an ACK.
If an incoming ACK indicates the receipt of a packet sent
through path; and if that packet is snduna;, this packet is
considered to be in-order within that subflow. If that packet
is greater than snduna;, dupack; is incremented by 1. When
dupack; reachs dupthresh = 3, path; will enter fast retrans-
mit and fast recovery.

3.1.4 Sending Packets

MTCP separates the decisions of when to send a packet,
which packet to send, and which path to use to send the
packet. The sender is allowed to send a new packet when
there exists at least one path; satisfying pipe < cwnd;. The
packet to send is usually determined by sndnxt, which rep-
resents the next packet to send as in TCP. But if there is a
path; with packets to retransmit, i.e. path; is in fast recov-
ery, the sender has to retransmit those packets inferred to
be lost before sending any new data packets. Once again
the scoreboard is consulted to determine whether there are
any such packets that need to be retransmitted. Otherwise,
a new data packet referenced by sndnxt will be sent.

Next, the sender needs to decide the path over which the
packet will be sent. There may be several candidate paths.
We associate a score; = pipe /cwnd; with each path;. We
choose the path with the minimum score. This form of
proportional scheduling results in a fair striping of packets
and avoids sending a burst of packets on one path.

Because mTCP separates the decisions about when to
send, which to send and which path to use for sending, it
has more flexibility in striping packets. By postponing the
decision about which path to use until just before sending
out the packet, it can quickly adapt to dynamic variations
in path characteristics. If a path encounters congestion or
fails, its cwnd will be reduced. The mTCP flow does not
have to wait for the re-opening of the cwnd on that path to
retransmit the outstanding packets. It can retransmit those
outstanding packets on other paths. We want to emphasize
that, unlike the re-striping scheme used in pTCP [16], our
scheme will not retransmit packets that have already been
received, because we can precisely infer missing packets
from the scoreboard data structure. In pTCP, such re-
striping overhead becomes more significant when fast re-
transmit occurs more frequently.

3.1.5 Single Reverse Path

In our design, despite the fact that data packets are striped
over several paths, all ACKs return over the same path.
There are two reasons of using one path for ACKSs. First, it
is simple and it preserves the ACK ordering for all the sub-
flows. If ACKs return from different paths, this may intro-
duce ACK reorderings, which can further cause sender to
misinterpret reorderings as packet losses and falsely enter
fast retransmit on some path. Although using one reverse
path could cause the forward and reverse path of each sub-
flow to be asymmetric, it will not influence each subflow’s
normal operation. In fact, even for TCP flows between a
source-destination pair, the forward and reverse path can be
different because Internet routing is asymmetric. In [25],
Paxson found 49% of the measured node pairs have asym-
metric forward and reverse paths that visited at least one
different city. We need to mention that the round trip time
(RTT) of each subflow will be the latency of the corre-
sponding forward path plus the latency of the single reverse
path. Second, striping ACKSs across different paths makes
our system more complicated. Receiver has to maintain
additional states about which ACKs going through which
paths. We try to keep the receiver side as simple as pos-
sible, following the design principle of TCP. Besides that,
using several reverse path will introduce ACK reorderings,
which in turn will increase the burstiness of the sender.
The disadvantage of using one reverse path is the reverse
path could be heavily congested or even fail. Although
ACKSs are small and normally do not cause congestion, we
try to avoid congestion on the reverse path by selecting the
best path among all the candidate paths with the help of
underlying overlay router. This will be described in more

details in Section 3.3. We will discuss how to recover from
path failures in Section 3.5.2.

3.1.6 Comparison with Multiple TCP sockets

We could have avoided implementing mTCP congestion
control by opening separate TCP sockets for each path and
then striping packets over different paths at the application
layer [29]. We choose to modify TCP directly because it
gives us more flexibility on striping data streams across
multiple paths. mTCP can decide, for each packet, an ap-
propriate path the packet should traverse and this decision
is made just before the packet is sent out. This is espe-
cially useful for retransmitting packets on alternate path
when the quality of paths changes dynamically or during
path failures. Striping at the application layer across mul-
tiple sockets cannot adapt to changes in path quality. The
pTCP study [16] has shown that such a scheme cannot fully
utilize multiple paths when the number of paths exceeds
two.

3.2 Shared Congestion Detection

When mTCP uses paths that are not completely disjoint
and if some of the shared physical links are congested, the
whole mTCP flow will obtain more bandwidth than other
single-path TCP flows along those congested links, since
each of the subflows behaves as a TCP flow. mTCP tries
to alleviate the aggressiveness problem by detecting shared
congestion among its subflows and suppressing some of
them. Previous work [27, 15, 18, 34] on shared congestion
detection is based on the observation that if two single-path
flows share congestion, packets from two flows traversing
a congested link at about the same time are likely to be ei-
ther dropped or delayed. Rubenstein et al. [27] actively in-
ject probing packets through the two paths to compute the
correlation of packet losses or packet delays and thereby
identify shared congestions.

Certainly, we can directly use one of the above ap-
proaches in our system since shared congestion detection
is quite independent from other parts of the system. We
however take a simpler approach based on the following
observations. mTCP transmits a steady stream of pack-
ets through different paths. In this setting, there is no
need to send probing packets. Instead, one can passively
monitor the subflows by studying the behavior of the data
packets.Furthermore, since individual packet drops will re-
sult in fast retransmits along the corresponding subflows,
the sender can detect shared congestions by examining the
correlations between the fast retransmit times of the sub-
flows. Since data packets also double as probe packets and
since there are a large number of data packets transmitted
through a subflow, our passive monitoring strategy requires
little overhead and generates a continuous stream of infor-
mation resulting in fast detection of shared congestion.

3.21 Detecting Shared Congestion using Fast Re-
transmits

Let us focus on detecting shared congestion between a pair
of subflows. For more than two subflows, we need to detect
shared congestion between every pair of them. For abbre-
viation, if two subflows or paths share congestion, we say
that they are correlated, otherwise, they are independent.
We first assume that two paths have the same latency so
that we do not have to worry about the time synchroniza-
tion problem between them. Later, we will extend our algo-
rithm so that it can deal with paths with different latencies.
Each time that a subflow enters fast retransmit, the
sender records a timestamp in the subflow’s list of fast re-
transmit events. After some time, we have two lists of
timestamps, Sand T, from two flows: (s1,%,...,Sm) and
(t1,t,...,tn). Each timestamp represents a fast retransmit
event. Then we try to match atimestamp s; in Switht; in T.
If |s —tj| <interval, we call (s,t;) a match. Intuitively, a
match means the two subflows enter fast retransmit around
the same time. This also means packets from the two flows
are dropped at about the same time, so it is likely they share
the same congested link. We define match(S,T) to be the
maximum number of pairs (s;,t;), such that 5 matches t;.
Please note that each 5 cannot be matched with multiple t;.
Finally, two subflows are considered to be correlated if:

Match(S,T)

min(m, n) >0

ratio=

ratio is intended to identify what fraction of fast retrans-
mits occur at about the same time in the two subflows.
Since some of the fast retransmits are due to congestion
on disjoint links, ratio reflects the level of shared conges-
tion. We consider two subflows to be correlated when ratio
is greater than some threshold &.

Our method uses fast retransmits instead of individual
packet losses to infer shared congestion. This is because
when a data flow encounters congestion, there normally
will be a burst of packet losses. All these losses are caused
by one congestion period at some link. Therefore, the con-
gestion period corresponds more directly to a fast retrans-
mit other than any individual packet loss. We would like
to declare (s,tj) to be a match only when packets from
two subflows are dropped at one link during the same con-
gestion period. So interval cannot be too small, other-
wise even if 5 and tj occur in the same congestion pe-
riod, the system will not detect the match. On the other
hand, interval cannot be too large, otherwise the system
would consider (s,t;) to be a match even when they are
not due to shared congestion. Although the shared con-
gestion detection may not work well under active queue
management schemes, most routers on today’s Internet use
drop-tail queues, which lead to periods of bursty losses dur-
ing congestion. In [36], the authors find that 95% of the
duration of bursty losses are less than 220ms. So interval

should be on that time scale. We will study how to choose
interval and o in more detail in Section 5.4.

3.2.2 Estimating Convergence Time

We need to emphasize that our goal is to suppress corre-
lated subflows in order to alleviate the aggressiveness prob-
lem. We need to detect shared congestion as quickly as pos-
sible. Other efforts focus more on the accuracy of shared
congestion detection, and they may take several hundred
seconds to reach a decision. This does not work well for
our purpose, because a mTCP flow could have ended be-
fore shared congestion is detected.

Our algorithm works as follows. After some number of
fast retransmit events have been observed, we will check
for shared congestion between the two subflows. If there
is shared congestion, we can suppress one of them. Other-
wise, we will wait until the occurrence of the next fast re-
transmit to check for shared congestion again. The question
we now address is determining the number of fast retrans-
mit events that we need to observe before we start checking
for shared congestion.

We use a heuristic to estimate the probability of two
fast retransmit events from two independent flows acciden-
tally occurring within a small period of time. Suppose
the fast retransmit events of two subflows, S and T, are
completely independent when two subflows are indepen-
dent, we compute the average interval of two consecutive
fast retransmit events in S: intervals = %N where now is
the current time when shared congestion detection is in-
voked. intervaly is computed in a similar way. Then we
define p = %. Suppose n > m, we have
interval; < intervals, and interval = g x interval;. For
each s, if there exists a match tj, 5 must be in the (t; —
interval,tj 4 interval). Because we assume s and t; are
independent events, the probability that s matches some
tj is roughly p. So the total expected number of matches
is roughly E(Match(ST)) = pm. Because min(m,n) =
m, we will misinterpret S and T to share congestion if
Match(S, T) > dm. According to Chernoff bound [11]:

= Prob[(Match(S,T) > dm] < e ™@IP),

where D(9||p) = 8In % +(1-9)In }7;3. So we need to wait

for m= —% fast retransmit events to ensure that the

probability of a false positive is less than {. We will see in
Section 5.4 the convergence time is mostly within 15 sec-
onds in our Emulab and PlanetLab experiments. We want
to emphasize that even if false positive does occur, it will
only degrade a mTCP flow into a single-path flow.

This heuristic might encounter problems when
min(intervals,interval) < 2 x interval. Because interval
is small (200ms in our experiments), this can only occur
when a path is so heavily congested that fast retransmit
happens almost every 400ms. The mTCP flows will try

to suppress such paths, because using them will not bring
much benefit. This is discussed in Section 3.4.1.

Finally, when two paths have different latencies, there
is a time-lag, L, between them. We estimate L by shift-
ing one sequence, say T, by dt in time and calculating
Matchg: (S, T) on sequences (S1, S, ..., Sm) and (t1 + dt,
to +dt, ..., ty + dt) as described before. Because the L be-
tween two paths can be at most one RTT (RTT is the larger
round trip time of the two paths), we go through all possible
value dt in (—RTT,RTT) incrementally using some funda-
mental step X, then choose dt that maximizes Matchg: (S, T)
as L. This is similar to calculate the correlation between
two signals.

3.3 Path Sdlection

In the previous sections, we assumed that flows have a
number of candidate paths. Now we describe how they
obtain such information. We use Resilient Overlay Net-
works (RON) [8] as our underlying routing layer. RON is
an application-layer overlay.When mTCP starts, it queries
RON to obtain multiple paths between a source-destination
pair. For each pair, RON provides the direct Internet path
and alternate single-hop indirect paths through other RON
nodes. With a RON of n nodes, there are totally m=n—1
paths between each pair. RON uses a score to represent the
quality of each path based on latency, loss rate or through-
put. RON can effectively bybass performance failure or
path faults by using an alternate path with higher score. In
the following, we only use the throughput score.

Since m can be large (greater than 10 in our experi-
ments), mTCP will only select at most k (5 in our exper-
iments) paths from them. A single-path flow will normally
select the path with the best score, which we call the RON
path. mTCP could select the k best paths. But this sim-
ple strategy may select paths with many overlapping phys-
ical links. This leads to two disadvantages: First, paths
are more likely to fail simultaneously, which is bad for the
robustness. Second, paths are more likely to share conges-
tion, which is bad for performance. To avoid these prob-
lems, we want to select sufficiently disjoint paths.

We use a heuristic based on traceroute to estimate the
disjointness of paths. Using traceroute, we can obtain the
IPs of the routers along a path and the latency of each phys-
ical link. Due to IP aliases, the same router might have
different IPs in different paths. We use “Ally”, a tool from
Rocketfuel [31], to resolve IP aliases and assign a unique IP
to each router. Although some routers may not respond to
traceroute probes and the alias resolution may not be com-
pletely accurate, we only use the traceroute information as
a hint to estimate path disjointness and eliminate many of
the significantly overlapping paths. We also rely on the
techniques described in Section 3.2 to further detect shared
congestion.

After alias resolution, suppose we have the IPs of two
paths X = (xg,X1,...,%m) and Y = (yo,V1,...,¥n). LetL

1 \/J/—tfj/»k" T T

0.9 e : ¢ -
08 e —_—

07
06
05
0.4
03
0.2
0.1

0 i 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

number of disjoint paths

percentage of node-pairs

Figure 1: CDF of number of disjoint paths between node-
pairs

be the set of overlapping links of X and Y, we define the
overlapping between X and Y as: Overlapping(X,Y) =
YieLlatency(l). An alternative is to use the size of L to
quantify the degree of overlap. We use latency instead
because we hope to distinguish among different types of
link. Most nodes on PlanetLab are connected through eth-
ernet links to backbones. Those ethernet links usually have
smaller latency than backbone links. Because the sharing
of the local ethernet links are almost unavoidable, we focus
on finding disjoint paths that traverse different backbone
links. By using link latencies, Overlapping(X,Y) will be
mostly determined by the shared backbone links instead of
ethernet links. This argument might not be true if nodes are
connected through modem or wireless links that have high
latency. Using traceroute to find disjoint paths is only suit-
able for small-scale overlay networks. As the number of
nodes increases, we need a more scalable way to discover
disjoint paths. In [23], Nakao, Peterson and Bavier propose
to use BGP information to find disjoint Autonomous Sys-
tem (AS) paths, which incur little cost. Athough disjoint
AS paths are not as fine-grained as disjoint router-level
paths, it would greatly simplify disjoint path search by pro-
viding a small set of promising candidate paths which we
can further verify using traceroute.
Finally, we estimate the disjointness of X and Y by:

B Overlapping(X,Y)
Min(Latency(X), Latency(Y))

Disjoint(X,Y) =1

We say that X and Y are disjoint if Disjoint(X,Y) > f.
Using the disjointness metric between each pair of paths,
we select at most k paths from m paths using a greedy al-
gorithm as follows: (1) Initialize the set of selected paths
to be empty. (2) Pick the path with the highest score from
the set of mpaths and check if it is disjoint from all the pre-
viously selected paths. (3) If so, select this path, otherwise
pick the path with the next highest score and repeat step (2)
until we find k paths or we have tried all m paths. The first
selected forward path and the reverse path will always be
the RON path, which is optimized for throughput in RON.

Figure 1 plots the cumulative distribution function
(CDF) of the number of disjoint paths between 630 node
pairs based on traceroute among 36 PlanetLab nodes that
are used in our experiments. When [3 decreases, the number
of disjoint paths between node-pairs increases. We want

a 3 such that there are sufficient number of disjoint paths
which we can choose from while eliminating most signif-
icantly overlapping paths. When 3 = 0.5 (the value used
in our experiments), 90% of node-pairs have more than 4
disjoint paths but less than 16 disjoint paths. If we use a
larger 3, many node pairs will not have enough candidate
disjoint paths.

3.4 Path Management
3.4.1 Path Suppression

In mTCP, a subflow f; on path; may be suppressed because
of one of the three reasons: First, f; shares congestion with
another subflow f; and its throughput T(f;) is lower than
T(fj). This is because we want mTCP not to be too ag-
gressive to other single-path TCP flows. Second, suppose
fj has the highest throughput among all the subflows and
T(fi) < % This is because path; is too poor and using
it does not bring much benefit. Third, path; fails.

We define a family of mTCP flows, called MPy flows.
An MPy flow will try to use at least d (d > 1) paths, which
means we will not suppress any path because of shared
congestion when the number of paths being used is less
than or equal to d. For example, this avoids all paths get-
ting suppressed in MP; flows. The value of d is a tradeoff
between performance/robustness and friendliness. With a
larger d, mTCP can obtain more bandwidth because it uses
more paths. And it is more reliable because the probabil-
ity that d paths fail simultaneously normally gets smaller
as d increases. But it can be more aggressive to single-
path flows under shared congestion. The aggressiveness
problem can be alleviated by suppressing some subflows.
But when there are only d subflows, no subflow would be
suppressed. The actual value of d should be decided by
the application. Applications that want higher performance
and more reliability should choose a larger d. Applications
that care more about friendliness should choose a smaller
d. In our experiments, we choose d = 1 to demonstrate how
much performance improvement mTCP can obtain without
being too aggressive to other TCP flows.

3.4.2 Path Addition

An MPy flow can dynamically add new paths because of
two reasons: First, some paths that are not being used be-
come better than those paths being used. Second, it is us-
ing less than d paths because some paths are too bad or
have failed. mTCP will periodically update the informa-
tion about all the paths by querying RON. If an unused path
has much higher a score than a path being used, it can start
using the new path. Then it runs the path suppression algo-
rithm on all the paths to suppress any possible paths with
shared congestion. By doing this, mTCP can gradually re-
place bad paths with good ones. This is especially useful
for long-lived flows.

3.5 Path Failure Detection and Recovery
3.5.1 FailureDetection

mTCP may encounter path failures during transmission. If
all the paths fail simultaneously, we call it a fatal path fail-
ure, otherwise we call it a partial path failure. We will
focus on partial failures in this section. To recover from
fatal failures, mTCP rely on the routing layer to establish
new paths just like single-path flows.

When a path fails, the data packets sent over it will no
longer be acknowledged (ACKed) because the packets have
been dropped. We maintain one failure detection timer,
timer;, for each path;. When a data packet sent over path;
is ACKed, timer; is reset. path; is considered to have failed
when timer; expires.

We need to decide a timeout value |; for timerj. On one
hand, we want a small I; so that failures can be detected
quickly. On the other hand, I; cannot be too small, oth-
erwise it may misinterpret good path to have failed. The
retransmission timeout (RTO;) provides a good base for
computing l;. First, during timeout, the sender will go into
idling and no packets will be ACKed in that period. So I;
should be at least greater than RTO;. Second, several con-
secutive timeouts means either the path has failed or it is
heavily congested. In either case, we would like to aban-
don path;. So we choose I; = xRTO;. Here X reflects how
many consecutive retransmission timeouts mTCP is will-
ing to tolerate before it consider a path to have failed. In
our experiments, we choose X = 2, because we have ob-
served that consecutive retransmission timeouts rarely oc-
cur on good paths. We should emphasize that even if a good
path is misinterpreted as a failed one, it will only degrade
the performance of mTCP to that of a single-path flow in
the worst case. The path addition technique described in
Section 3.4.2 allows us to reclaim a path if it had been pre-
viously misinterpreted to be a failed path.

3.5.2 Failure Recovery

We now describe how to recover from failure after timer;
expires. Since all ACKSs return over the same path, we call
that path a primary path. The other paths are auxiliary
paths. We need to distinguish between primary and auxil-
iary path failures. When an auxiliary path; fails, the sender
will mark path; as failed and retransmit the outstanding
packets of path; over other paths. When a primary path
fails, the situation is more complicated. Because all the
ACKs are lost, it may appear to the sender that all paths
have failed. To deal with this problem, sender records the
time 15 when path; is detected to have failed. Suppose at
time now, the primary pathy, is also detected to have failed
and let the timeout of timer, be I,. We know that pathp
must have failed at some point between now — |, and now.
For an auxiliary path;, if now— I, < 11, its failure is pos-
sibly due to the failure of pathp. In this case, we will
change the status of path; to be active and the status of

pathy to be failed. After doing this for all the paths, the
sender starts to send packets over all active paths. During
this period, these data packets serve as “probing” packets
that solicit ACKs from the receiver. All timers are stopped
to prevent any auxiliary path from being misinterpreted as
failed due to the lack of an active primary path during this
period. The receiver will also detect the primary path fail-
ure because it no longer receives any data packets over that
path. Then it elects a new primary path and sends ACKs
along that path in response to those “probing” packets from
sender. It chooses the best path (based on the path score in
RON) among all the active paths to be the new primary
path. Later, when the sender receives the ACKs and knows
that a new primary path has been elected, it restarts all the
timers and proceeds as normal.

Typically, RTO; is one second, therefore the I; is two
seconds. The total detection and recovery time will be be-
tween two and three seconds in most cases. The interrup-
tion due to partial path failures will be fairly short. Fur-
thermore, partial path failure does not cause mTCP to stall
since packets will continue to be transmitted through liv-
ing paths. Since mTCP uses several paths concurrently and
since it typically employs disjoint paths, the probability of
fatal path failures is much lower than that of single-path
failure. mTCP is therefore more robust than single-path
flows.

4 Implementation

Our system is implemented at the user-level and is com-
posed of a Portable User-Level TCP/IP stack (PULTI) and
an overlay router/forwarder modified from RON. RON is
an application-layer overlay on top of the Internet. PULTI
and RON run in two separate processes and we change
RON so that it can communicate with PULTI using UDP
sockets and export the multiple paths between a source-
destination pair. The whole system does not require any
root privilege, which can easily be deployed on shared dis-
tributed platforms such as PlanetLab. Currently, it runs on
Linux, NetBSD and FreeBSD.

PULTI is a full user-level TCP/IP stack based on
FreeBSD 4.6.2. We extract the network-related code from
the kernel source and wrap it with some basic kernel en-
vironment support, such as timing, timer, synchronization
and memory allocation. We do not modify any network-
related code. Because FreeBSD 4.6 does not support
SACK, we also add SACK-related code in PULTI which is
required by our system. OS dependent information is hid-
den by device drivers. With different device drivers, PULTI
can send or receive through UDP socket, IP_.QUEUE in
Linux or divert socket in FreeBSD. PULTI provides stan-
dard socket interface and supports multiple applications
through multithreading. It can query RON to learn about
multiple paths between a source-destination pair. The
mTCP code only affects a few files in PULTI. It can be

Figure 2: Topology of multiple independent paths on Em-
ulab

easily moved into FreeBSD kernel.

5 Evaluation

5.1 Methodology

In this section, we validate our protocol in both emulation
and real-world deployment. The emulations are run on Em-
ulab [2], which is a time- and space-shared network emula-
tor. Emulab consists of several hundred PCs, which can be
configured to emulate different network scenarios. Users
can specify parameters such as packet loss rate, latency,
and bandwidth. While an experiment is running, the exper-
iment gets exclusive use of the assigned machines. While
Emulab provides a controlled environment for our exper-
iments, we further conduct experiments on PlanetLab, a
wide-area distributed testbed for running large-scale net-
work services [26]. The experiments on the PlanetLab al-
low us to study our protocol for Internet settings, where la-
tency, bandwidth and background traffic are more realistic
and unpredictable.

5.2 Untilizing Multiple Independent Paths

In this experiment, we study whether mTCP can obtain the
total available bandwidth over multiple independent paths.
We use the topology in Figure 2 on Emulab. Because
each PC in Emulab has four Ethernet cards, each node can
have at most four links. There are six endhosts (H;) and
ten routers (R;). RON is running on the six endhosts to
construct an overlay network. All routers have drop-tail
queues. The source and destination nodes are Hp and Hs
respectively. Each of the remaining endhosts provides an
alternate path. For example, we can use Hj to construct
an alternate path (Ho, Ro, Rs, R1,H1,R1,Rs,Rs,Hs). So the
topology contains five independent paths, which include
one direct path and four alternate paths. We use the di-
rect path as the reverse path for ACKs. The capacity of all
the paths is 16Mbps and their RTTs vary from 52-147ms.
The figure annotates each link with its corresponding band-
width and latency. The arrows represent background flows.
We use Iperf [1] to generate 25 TCP and 25 1Mbps UDP

HCombined
| [EmSeparate
WEN x single-path flow

Figure 3: Throughput of mTCP flows with combined or
separate congestion control as number of paths increases
from1lto5

Path Intermediate node RTT(ms)
0 direct path 80.165
1 planetlabl.nbgisp.com 112.503
2 planet2.berkel ey.intel-research.net 71.639
3 planet2.pittsburgh.intel-research.net | 96.641
4 planet2.seattle.intel-research.net 90.305

Table 1: Independent paths between Princeton and Berke-
ley nodes on PlanetLab.

flows as background traffic, with 5 TCP and 5 UDP flows
on each path. Each experiment runs for 40 seconds and the
results are obtained by averaging three runs.

Figure 3 shows the results when the number of paths
used by mTCP increases from 1 to 5. In this figure, “com-
bined” represents mTCP flows with congestion control per-
formed on the entire flow, “separate” represents regular
mTCP flows with congestion control performed separately
on each subflow, and “NxSingle-path flow” is the through-
put of a single-path flow on one path multiplied by the
number of paths. Because each path has the same avail-
able bandwidth, “NxSingle-path” throughput represents the
ideal throughput of a mTCP flow. The results verify that
mTCP can effectively aggregate the available bandwidth
on multiple independent paths. The results also show that
higher throughput can be achieved only when congestion
control is performed for each subflow separately.

We conduct similar experiments on PlanetLab. We use
one node in Princeton and one node in Berkeley as source
and destination nodes. As shown in Table 1, the four Intel
nodes serve as intermediate nodes for the alternate paths.
We only use the four alternate paths in this experiment, be-
cause they do not share any congestion links. To verify
this, we examined the traceroute data to find that any pair
of the alternate paths only share the initial and final hops,
which are unavoidable. The capacity of these two links are
100Mbps, which is far greater than the total throughput of
the single-path TCP flows on these four paths. Therefore,

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) (2,3 4)

MEsingle-path C Msingle-path A Osingle-path B AmMTCP

Figure 4: Throughput percentage of individual flows

Path Intermediate node RTT(ms)
0 direct path 80.165
1 planetlab02.cs.washington.edu | 102.890

Table 2:; Paths used in the failure recovery experiment.

we conclude that the initial and final hops are not congested
and the four alternate paths are independent.

Each experiment measures the throughput of flows last-
ing for 60 seconds. The average throughput of three runs
is reported. For convenience, we use T(i) to denote the
throughput of a single-path flow on path;. Similarly, T(i, j)
denotes the throughput of a mTCP flow using path; and
pathj. In Figure 4, (i,j) on the x-axis means path; and
path; are used in that experiment. We first run single-
path flows on path; and path; respectively, then run a
mTCP flow on both paths simultaneously. The correspond-
ing column compares the percentage that the throughput
of an individual flow, T (i), T(j) or T(i,j), contributes
to the total throughput of these flows. Ideally, we expect
T(i,j) =T(i)+T(j), so the percentage of T(i,j) should
be around 50%. With the exception of the experiment in-
volving pathy and pathg, which suffered from unexpected
bandwidth variations, the rest of the experiments indeed
provide the expected throughputs. The last column in Fig-
ure 4 shows the result of the experiment using path,, paths,
and paths. Again, the net throughput of T(2,3,4) is close
to the sum of T(2), T(3) and T(4). We have conducted
experiments between different source-destination pairs on
PlanetLab. The results are similar. We omit them due to
space constraints.

5.3 Recovering from Partial Path Failures

Now we will study whether mTCP can quickly recover
from partial path failures using experiments on PlanetLab.
Because path failures on the Internet are unpredictable, we
intentionally introduce failures by killing the appropriate
RON agent. The source and destination nodes are still the
Princeton and Berkeley nodes. The paths are shown in Ta-
ble 2.

The two graphs in Figure 5 show how the congestion
window (cwnd) of the primary and auxiliary paths changes
over time. As shown in the first graph in Figure 5, the pri-

400

cwnd
ssthresh
fast retransmit ~ +
timeout X

350

300 |

250

200

segment

150

100

50 |

second

400

cwnd
ssthresh
fast retransmit ~ +
timeout X

350

300 |

250

200

segment

150

100 -

50

0 7.5 15 225 30

second

37.5

Figure 5: cwnd of primary/auxiliary paths, primary fails

mary path fails at about 20s. It is quickly detected so that
the cwnd of the subflow on this path is reduced to 0. At the
same time, the cwnd of the subflow on the auxiliary path
also decreases to 0, because the auxiliary path was misin-
terpreted to have failed (as explained in Section 3.5.2). But
a few seconds later, the subflow on the auxiliary path re-
covers from this false decision by restoring its cwnd to the
previous value with slow start. Finally the auxiliary path
becomes the new primary path and the whole flow proceeds
using only one path. The behavior of mTCP during auxil-
iary path failures is similar, and we omit the corresponding
results.

The total recovery time of mTCP during partial path fail-
ures is only about 3s, which is negligible for most applica-
tions. In contrast, a TCP flow will completely stall when
its path fails, and it typically takes about 18s for RON to
establish a new path. RON is optimized for quickly recov-
ering from path failures. On wide area network that uses
BGP to detect failures, recovery could take several min-
utes. Hence, mTCP is more responsive and robust than
single-path flows.

5.4 Detecting Shared Congestion

In this section, we will evaluate shared congestion detec-
tion. We first use experiments on Emulab to study the be-
havior of our algorithm with different parameters in a con-
trolled environment. Then we further validate it using ex-
periments on PlanetLab. The topologies for the Emulab
experiments are shown in Figures 6 and 7. Between the
source node Hg and the destination node Ho, there is one

10

Figure 6: Two independent paths used in shared congestion
detection

Figure 7: Two paths that completely share congestion

direct path and one alternate path through the intermediate
node Hj.

In Figure 6, The two paths only share the initial and final
hops with link capacities of 100Mbps. We generate 12 TCP
flows and 18 1Mbps UDP flows as background traffic, with
2 TCP flows and 3 UDP flows on each link between each
pair of neighboring routers. With this scheme, we ensure
that congestion only occurs on the links between pairs of
routers and not on the links between endhosts and routers.
As a result, the two paths (Ho,H2) and (Ho,H1,Hy) are in-
dependent.

In Figure 7, The two paths share the four links between
Ho and Rs. We generate 8 TCP flows and 8 1Mbps UDP
flows as background traffic, with 2 TCP and 2 UDP flows
on each of the four shared links. By doing this, we ensure
that congestion only occurs on the four shared links. As
a result, paths (Ho,H2) and (Ho,H1,H2) share congested
links.

We run mTCP flows for 300s using the two paths in Fig-
ure 7. The results in Figure 8 compare the estimated ratio
of shared congestion with different interval values of 5ms,
10ms, 25ms, 50ms, 100ms, 200ms, and 400ms. Each data
point represents the average of five runs. As interval in-

1

0.8

0.6

ratio

0.4

0.2

0

0 0.05 0.1 0.15 0.2 0.25

interval(second)

0.3 0.35 0.4 0.45

Figure 8: On two paths with shared congestion, ratio in-
creases as interval increases

interval=0.005s
interval=0.025s
interval=0.100s
interval=0.200s
interval=0.400s

ratio

0 50 100 150

second

200 250 300

Figure 9: On two independent paths, ratio decreases faster
when interval is smaller

creases from 5 to 100ms, ratio increases quickly from 0.4
to 0.8 as expected. When interval increases beyond 100ms,
ratioonly increases slightly. When interval is 400ms, ratio
reaches 0.96. The ideal ratio is 1 because the two paths
share all the congestion.

We next run mTCP flows for 300s on the two paths in
Figure 6. The results are shown in Figure 9, which plots
ratio over time for different interval values of 5ms, 25ms,
100ms, 200ms and 400ms. As explained in Section 3.2,
a smaller interval will lead to smaller estimated values of
ratio. At the end of the experiments, ratio drops quickly
from 0.39 to 0.28 when interval decreases from 400 to
200ms. When interval deceases further, ratio drops more
slowly until it reachs 0.14 when interval = 5ms. The ideal
ratio is O because the 2 paths are independent. We also
notice that the ratio curve for a smaller interval value de-
creases faster than that for a larger interval.

According to the above experiment results, an interval
value between 100 and 200ms seems to balance the goal of
minimizing both false negatives and false positives. Con-
sequently, the ratio threshhold & should fall between 0.3
and 0.8. If it is less than 0.3, it is very likely to cause false
positives when the interval is 200ms. If it is greater than
0.8, it can easily cause false negatives when the interval is
100ms. By setting interval = 200msand 6 = 0.5, we suc-
cessfully detect shared congestion between the two paths in
all five runs for the topology in Figure 7. For the topology
in Figure 6, no shared congestion is detected and the two
paths are determined to be independent as expected.

Next, we go on to evaluate the shared congestion detec-
tion on PlanetLab. As explained in Section 3.2, by set-
ting interval to be no less than the congestion period dur-
ing which bursty losses occur, we can avoid false nega-
tives. In [36], the authors find that 95% of the duration
of bursty losses on the Internet are very short-lived (less
than 220ms). By choosing an interval around that value,
we should be able to avoid most false negatives. At the
same time, the average time between consecutive fast re-
transmits is mostly on the order of several seconds or more,
much greater than 220ms. (Otherwise, mTCP will suppress
such path because the path is too lossy.) Therefore, this
interval value will also allow us to avoid most false posi-

11

Path | Run1l | Run2 | Run3
12 No No No
13 No No No
14 No No No
23 No No No
24 N/A Yes No
34 No No No

Table 3: Shared congestion detection for independent
paths.

Path Intermediate node RTT(ms)
0 direct path 80.165
1 planetlab2.cs.duke.edu 96.138
2 planetlab2.cs.cornell.edu | 100.382
3 vn2.cs.wustl.edu 92.267

Table 4: Paths with shared congestion on PlanetLab.

tives, as long as we wait for enough number of fast retrans-
mits. In the following experiments, we report the results
using interval = 200msand 6 = 0.5.

We first need to choose paths such that we can be reason-
ably sure as to whether they share congestion or not. Then,
we can compare the measured results with the expected re-
sults. We conduct two sets of experiments. The mTCP flow
is running on a pair of paths for 60 seconds® in each exper-
iment. Each experiment is repeated three times. We use the
Princeton and Berkeley nodes as source and destination in
all experiments, but we choose different pairs of paths in
different sets of experiments.

In the first set of experiments, we use the four alternate
paths in Table 1, where we know that all these paths are
independent. The results are in Table 3. The first column
shows the pairs of paths used by the mTCP flows. The re-
maining three columns show the results. A No means two
paths are independent, a Yes means they share congestion,
and N/A means one of the subflows is suppressed because
its throughput is much lower than the other subflow before
the end of the experiment. All the results in Table 1 con-
form to our expectation except the one false positive for
using path, and paths. As explained before, a false posi-
tive will only degrade the performance of the mTCP flow
to that of a single-path flow.

The second set of experiments use the paths in Table 4.
From traceroute, we know the underlying physical links
of any pair of these paths are mostly overlapping, so they
should share congested links. The results are shown in Ta-
ble 5. The first column gives the pairs of paths used in the
experiments. The following three columns give the time
in seconds when shared congestion is detected in each run.
The last column gives the average detection time. Shared

1As explained in Section 3.2, the probability of false positive decreases
very fast as the number of fast retransmit increases. We find that a 60
second period is long enough for our algorithm to converge.

Path | Runl | Run2 | Run3 | Average
01 7.000 9.975 4.266 7.080
02 | 4276 | 3223 | 6.011 4.503
03 6.847 3.263 | 14.214 8.108
12 | 12.184 | 8906 | 16.804 | 12.631
13 4478 | 10.101 | 13.131 9.237
23 | 12380 | 9.873 | 17.845 | 13.366

Table 5: Shared congestion detection for correlated flows.

[
50Mb R 50Mb
20ms 0 20ms

Figure 10: All paths share congestion in this topology

congestion is correctly detected in all cases.

Unlike other shared congestion detection algorithms, our
algorithm seeks to minimize the detection time while main-
taining a low false positive rate. In the second set of ex-
periments, shared congestion is correctly detected mostly
within 15 seconds. At the same time, such early decisions
do not cause too many false positives in the first set of ex-
periments.

55 Alleviating Aggressiveness with Path
Suppression

In this section, we demonstrate mTCP can be more friendly
to other single-path flows by suppressing its subflows that
share congestion. We construct the topology of Figure 10
on Emulab. The source and destination nodes are Hg and
Hs. There are one direct path and four alternate paths pro-
vided by the remaining four endhosts. Their RTTs are from
124ms to 133ms and they share the three links between Rg
and Hs. We generate 12 1Mbps UDP flows as background
traffic, with 4 UDP flows on each of the three shared links.
By doing this, we ensure that all five paths share conges-
tion. Each experiment runs for 300 seconds and the results

1.8
1.6 4
1.4 4
1.2 4

MB/s

0.8
0.6
0.4
0.2 {

MP1

Figure 11: MPy flows are less aggressive than other mTCP
flows

12

100%
90% A
80% A
70% A
60%
50%
40% A
30% A
20% A
10% A

0% -

OmTCP
M single-path 1
Hsingle-path 2

(1,1/2) (1,14 (1,1/8) (1,1/1000) (1, 1/1000)
no suppress

suppress

Figure 12: Path suppression helps avoid using bad paths.

are obtained by averaging three runs.

In Figure 11, the first five columns give the through-
put of the flows when the number of paths being used in-
creases from one to five. The first column is the through-
put of single-path TCP flows. Under shared congestion,
the mTCP flows become more aggressive as they use more
paths. The sixth column shows the throughput of the mTCP
flow with path suppression. Although it uses five paths in
the beginning, it quickly detects shared congestion and sup-
presses all but one path. So its throughput is very close to
that of a single-path flow and less aggressive than the flow
using all five paths without suppression.

5.6 Suppressing Bad Paths

In this experiment, we demonstrate that mTCP can effec-
tively aggregate the bandwidth of multiple paths with suf-
ficiently differing characteristic, and path suppression can
help avoid the penalty from using bad paths. We use the
same topology as in Figure 2. The bandwidth of direct path
is still 16Mbps. But the bandwidth of four alternate paths
is 1/2, 1/4, 1/8 and 1/1000 of the bandwidth of the direct
path. In Figure 12, (1,1/n) on the x-axis means the di-
rect path and alternate path with 1/n bandwidth are used in
that experiment. We first run a single-path flow on each
path respectively, then run a mTCP flow on both paths.
The corresponding column compares the percentage that
the throughput of an individual flow contributes to the total
throughput of these flows. Ideally, the throughput percent-
age of mTCP flows should be 50%. Figure 12 shows mTCP
can efficiently utilize the aggregate bandwidth of two paths
even when one path has only 1/8 the bandwidth of the other
path. The mTCP flows in the last 2 columns use the direct
path and the alternate path with 1/1000 bandwidth. Such
a scenario could occur when a path becomes heavily con-
gested or even temporarily fails. Using such bad paths can
bring no benefit but impair the performance of the whole
flow. Because most packets are lost along that path, it per-
sistently causes timeouts. While packets can still be sent
over the other path for some time, the flow will finally stall
when the send/receive buffer is exhausted. As explained in
Section 3.4.1, mTCP will suppress the paths with too low a
throughputto avoid such penalty. (We choose w= 10 in our

Host Name Host Name
planetlab2.millennium.berkeley.edu | planetlab2.postel.org
planetlab02.cs.washington.edu planetlab2.Ics.mit.edu
planetlab-2.cs.princeton.edu planetlab2.cs.ucla.edu
planetlab2.cs.uchicago.edu planet.cc.gt.atl.gaus
planetlab2.cs.duke.edu pl2.cs.utk.edu

Table 6: The 10 endhosts used in the experiments that com-
pare mTCP with single-path flows.

experiments.) This is confirmed by the last two columns
which represent the throughput of mTCP flows with and
without suppression.

5.7 Comparing with Single-Path Flows

We are going to compare three types of flows: single-path
flows using direct Internet path (INET), single-path flows
using RON path optimized for bandwidth (RON) and MPy
flows. MPy flows will use multiple paths when there is
no shared congestion. We use MP; flows to demonstrate
how much performance improvement mTCP can obtain
without being too aggressive to other TCP flows. Table 6
shows the 10 nodes that serve as endhosts in an overlay
network for this experiment. (We actually use a total of 24
nodes to form the overlay network, with the remaining 14
nodes only serving the role of packet forwarders.) For each
source-destination pair, we transfer data for 40 seconds us-
ing each of the three types of flows. Each experiment is
repeated three times and we report the average throughput.

The available bandwidth of the paths between the pairs
of endhosts can be very high, because nine of them are con-
nected to Internet2. We bypass those pairs with very high
available bandwidth on the corresponding direct paths be-
cause: First, these paths are between pairs of nodes that ex-
hibit shared congestion/bottleneck at the initial and/or final
hops. Second, the bandwidth-delay products of the paths
between such pairs of nodes are very large. The maximum
send/receive buffer size of our user-level TCP implemen-
tation is IMB and is not large enough to utilize the band-
width on other alternate paths besides the direct path. We
estimate the available bandwidth of a direct path between a
source-destination pair by running a TCP flow for 10 sec-
onds. If the measured throughput is less than 12 Mbps, we
will use that pair for our experiments. Among the 90 pairs,
we got 15 pairs that satisfy the above condition. We want
to emphasize that we are not trying to study the popularity
of independent paths with distinct points of congestion be-
tween node-pairs on the Internet; such topic has been stud-
ied by others [6].Instead, we focus on demonstrating that
mTCP can achieve better performance by taking advantage
of such redundant paths.

Among the 15 pairs, MP; flows achieve significantly
higher throughput in 6 pairs, as shown in Figure 13. They
achieve 33% to more than a factor of 60 better performance

13

ORON
WINET
BMP1

MBytes/s

Figure 13: mTCP flows achieve better throughput than
single-path flows

25

ORON
BINET
BMP1

MBytes/s

Figure 14: Throughput of mTCP and single-path flows is
comparable

than single-path flows. We have to mention that MP; flows
only try to aggregate the available bandwidth on multi-
ple paths when there is no shared congestion. Other MPy
(d > 2) flows would obtain better performance, but they are
potentially more aggressive.

The performance improvement of mTCP does not solely
come from bandwidth aggregation on multiple paths, it is
also because mTCP can help select better paths than those
provided by the routing layer, such as the direct path or the
RON path optimized for throughput. RON estimates the

available bandwidth of a path using score = rﬁ. Here p
is the packet loss rate and rtt is the round trip time, both of
which are obtained by active probing. Although it can help
RON distinguish paths with significant performance differ-
ence and select better alternate path, this estimate may not
be accurate; a path with high score may actually have low
available bandwidth [8]. In mTCP, the sender can monitor
the performance of several paths in parallel. The through-
put of each subflow provides a fairly good estimate of the
available bandwidth on that path. This does not require any
active probing because the data packets serve as probing
packets. This can help mTCP discover and utilize better
paths than the suboptimal RON path or direct path. We ex-
amined the paths in those 6 pairs and found that MP; flows
do take paths different from either the direct paths or the
RON paths. The achieved throughput of on those paths are
higher than that of direct path or RON path.

Figure 14 shows the results of the remaining 9 pairs. By
examining the paths, we find that all MP; flows degrade
to single-path flows because of shared congestion, and the
RON/INET/MP;. flows all take the same single path for the
whole transfer. Hence, the throughput of MP; flows should
be comparable to that of INET/RON flows, as shown in
Figure 14. In three pairs, MP; flows obtain slightly lower
performance than RON/INET flows, this is because differ-
ent types of flows are run sequentially and there is minor
fluctuations in the available bandwidth of a path over time.

6 Conclusions

In this paper, we present mTCP, a transport layer proto-
col, for improving end-to-end throughput and robustness.
mTCP can efficiently aggregate the available bandwidth on
several paths in parallel. To address the aggressiveness of
mTCP during shared congestion, we integrate a shared con-
gestion detection mechanism into our system so that corre-
lated subflows can be suppressed. mTCP flows are more
robust to path failures than TCP flows, because they will
not stall even when some paths fail. The failure detection
time is within several seconds. We also propose a heuristic
to find disjoint paths based on traceroute. We have imple-
mented our system on top of overlay networks and evalu-
ated it on PlanetLab and Emulab.

References

(1]
[
31
(4]

http://dast.nlanr.net/projects/iperf/.
http://www.emulab.net.
http://www.isi.edu/nsnam/ns.

H. Adiseshu, G. M. Parulkar, and G. Varghese. A reliable and scal-
able striping protocol. In Proceedings of ACM SGCOMM, 1996.

A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman. A
measurement-based ananlysis of multihoming. In Proceedings of
ACM SIGCOMM, Aug. 2003.

A. Akella, S. Seshan, and A. Shaikh. An empirical evaluation of
wide-area Internet bottlenecks. In Proceedings of ACM Internet
measurement conference, Oct. 2003.

M. Allman, H. Kruse, and S. Ostermann. An application-level so-
lution to TCP’s satellite inefficiencies. In Proceedings of WOSBIS
Nov. 1996.

D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
silient overlay networks. Proceedings of ACM SOSP, Oct. 2001.

J. Apostolopoulos, T. Wong, W. Tan, and S. Wee. On multiple de-
scription streaming with content delivery networks. In Proceedings
of IEEE INFOCOM, 2002.

A. Banerjea. Simulation study of the capacity effects of dispersity
routing for fault tolerant realtime channels. Proceedings of ACM
S GCOMM, Aug. 1996.

B. Chazelle. The discrepancy method: randomness and complexity.
Cambridge University Press, 2000.

J. Duncanson. Inverse multiplexing. In [EEE Communications Mag-
azine, volume 32, pages 34-41, 1994.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True. Deriving traffic demands for operational IP networks:
methodology and experience. Proceedings of ACM SSGCOMM,
Aug. 2000.

(5]

(6]

(71

(8] Re-

(9]

[10]

[11]
[12]

[13]

14

[14]

[15]

[16]

[

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Hacker, B. Athey, and B. Noble. The end-to-end performance
effects of parallel TCP sockets on a lossy wide-area network. In
Proc. of IPDPS 2002.

K. Harfoush, A. Bestavros, and J. Byers. Robust identification of
shared losses using end-to-end unicast probes. Proceedings of IEEE
ICNP, Oct. 2000.

H. Hsieh and R. Sivakumar. ptcp: An end-to-end transport layer
protocol for striped connections. In Proceedings of IEEE ICNP,
2002.

H. Hsieh and R. Sivakumar. A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts. In Proceedings
of ACM MOBICOM, 2002.

D. Katabi, I. Bazzi, and X. Yang. An information theoretic approach
for shared bottleneck inference based on end-to-end measurements.
In Class Project, MIT Laboratory for Computer Science, 1999.

J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan,
and S. Tuecke. Applied techniques for high bandwidth data transfers
across wide area networks. In Proceedings of CHEP, Sept. 2001.

Y. Liang, E.G.Steinbach, and B. Girod. Real-time voice communi-
cation over the Internet using packet path diversity. In Proceedings
of ACM Multimedia, 2001.

L. Magalhaes and R. Kravets. Transport level mechanisms for band-
width aggregation on mobile hosts. In Proceedings of ICNP, Nov.
2001.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective
acknowledgement options. RFC 2018, Oct. 1996.

A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay
networks. In Proceedings of ACM SSIGCOMM, Aug. 2003.

T. Nguyen and A. Zakhor. Path diversity with forward error correc-
tion (pdf) system for packet switched networks. In Proceedings of
IEEE INFOCOM, 2003.

V. Paxson. End-to-end routing behavior in the Internet. Proceedings
of ACM SGCOMM, Aug. 1996.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the Internet. Proceedings of
ACM HOTNET, Oct. 2002.

D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared con-
gestion of flows via end-to-end measurement. Proceedings of ACM
S GMETRICS June 2000.

S. Savage, A. Collins, and E. Hoffman. The end-to-end effects of In-
ternet path selection. Proceedings of ACM SGCOMM, Aug. 1999.

H. Sivakumar, S. Bailey, and R. L. Grossman. PSockets: The case
for application-level network striping for data intensive applications
using high speed wide area networks. In Supercomputing, 2000.

A. Snoeren. Adaptive inverse multiplexing for widearea wireless
networks. In Proc. of IEEE Conference on Global Communications,
1999.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with rocketfuel. Proceedings of ACM SGCOMM, Aug. 2002.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, 1. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream
control transmission protocol. In RFC 2960, Oct. 2000.

B. Traw and J. Smith. Striping within the network subsystem. In
|EEE Network, volume 9, pages 22-32, 1995.

O. Younis and S. Fahmy. On efficient on-line grouping of flows with
shared bottlenecks at loaded servers. In Proceedings of IEEE ICNP,
Nov. 2002.

Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the character-
istics and origins of Internet flow rates. Proceedings of ACM S G-
COMM, Aug. 2002.

Y. Zhang, N. Duffield, V. Paxson, and S. Shenkar. On the constancy
of Internet path properties. Proceedings of Internet Measurement
Wobrkshop, Nov. 2001.

