
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Creating a Multimedia Extension for Tcl
Using the Java Media Framework

Moses DeJong, Brian Bailey, and Joseph A. Konstan
University of Minnesota

Creating A Multimedia Extension for Tcl Using the Java Media
Framework

Moses DeJong, Brian Bailey, and Joseph A. Konstan
University of Minnesota

Computer Science and Engineering Department
{dejong, bailey, konstan}@cs.umn.edu

Abstract
As multimedia capable computers become cheaper
and more pervasive in the consumer and corporate
markets, and as the availability of digital information
increases, the need for low-cost, cross-platform
multimedia applications will steadily rise. However,
because Tcl lacks native support for continuous
media streams, such as audio, video, and animation,
it is not well suited for this emerging application
domain. At the same time, Java now provides a set of
class libraries, called the Java Media Framework
(JMF), which provides the multimedia support that
Tcl lacks. With the recently introduced integration of
Tcl and Java, Java can now be used to provide the
cross-platform multimedia support required by Tcl;
whereas Tcl can be used to provide the easy-to-use
programming environment required for building
multimedia applications. In this paper, we introduce a
Tcl extension that provides a high-level scripting
interface to the Java Media Framework. In addition,
we will highlight some interesting problems in the
current Tcl/Java package as well as suggest some
potential solutions. This paper will benefit Tcl
programmers who would like to learn more about
using Tcl to build multimedia applications,
integrating Tcl and Java, or the multimedia support
provided by the JMF.

Keywords
Multimedia, Tcl extension, Synchronization, Jacl,
TclBlend, Java, Java Media Framework

1 Introduction

Tcl [9] has never directly supported continuous
media streams, such as audio, video, or animations.
Tcl programmers wanting to include these types of
media objects in order to create desktop conferencing
applications, electronic manuals, voice activated
interfaces, or even simple multimedia presentations,
have had to rely on fellow Tcl developers to build,
distribute, and support multimedia extensions. Due to
the huge variety of media formats, transport
protocols, playout devices, and synchronization

models in use today, it is no wonder the core Tcl
group has shied away from attempting to directly
provide multimedia support. One of the more popular
multimedia extensions for Tcl is the Continuous
Media Toolkit (CMT) [10] developed at California-
Berkeley by the Plateau project group. CMT is a
flexible, low-level multimedia toolkit supporting a
variety of media formats, transport protocols, and
playout devices. Although CMT has proven to be
very useful in our research, it suffers from the same
problems as other Tcl extensions:

• Portability. Designing extensions that are
portable across multiple flavors of Unix,
Windows, and the Macintosh is a non-trivial
task. In fact, most extensions available today,
including CMT, do not provide this level of
cross-platform portability.

• Compatibility. With each new release of the
Tcl/Tk core, an extension developer must update
and test their extension to ensure that it still
functions properly. Unfortunately, this has not
been easy as Tcl/Tk has changed substantially in
at least the following core areas; file I/O, image
support, sockets, event handling, and object
APIs, to name just a few. For some extensions,
such as CMT, this has caused a lag of at least 6
months behind new releases of Tcl/Tk.

• Configurability. Extensions cannot easily access
the configuration information Tcl uses for its
own compilation. Extension writers must
effectively recreate this same information, which
is why almost every Tcl extension comes with its
own set of configuration scripts.

• Dependencies. Many Tcl extensions are not
standalone; i.e., they require other extensions in
order to function properly. For example, CMT
requires the Tcl-Dp [12] extension in order to
leverage distributed services. As the number of
extension dependencies increases, so does the
difficulty of upgrading an extension to support
the latest release of Tcl/Tk.

Within the last year, JavaSoft has introduced the Java
Media Framework (JMF) [4]. The JMF is a Java [1]
package that provides support for the local playback
of a wide variety of audio (AIFF, AU, DVI, MIDI,
and MPEG-1), video (H.261, H.263, MJPEG,
MPEG-1, AVI, QuickTime), and animation formats
(Apple Animation). As the JMF evolves, it promises
to also support audio recording, audio mixing, video
capture, streamed playback, and emerging
multimedia standards such as MPEG-4. The JMF
already provides roughly the same functionality
offered by CMT, but without many of the problems
inherent in Tcl extensions as described above. Thus,
the JMF deserves serious consideration as the
underlying toolkit used in commercial multimedia
applications or even research projects. However,
building multimedia applications in pure Java code
using the JMF has several drawbacks:

• Complexity. The JMF currently supports only
primitive media events such as notification of a
playback rate change. Exactly how these events
affect the rest of the application must be defined
by the developer in low level Java code.

• Lack of higher-level synchronization models.
Without higher-level synchronization support,
building complex multimedia applications
becomes difficult. This is roughly equivalent to
building user interfaces by invoking low level X
routines instead of using a higher-level toolkit
like Tk.

• Edit/Compile/Debug cycle. Strongly typed,
compiled languages like Java are great for
developing low level systems, but they make
poor tools for rapid prototyping and development
of high-level multimedia applications.

Because of these drawbacks, we argue that the JMF
would benefit from a scripting interface that would
increase the usability and decrease the development
effort required to build complex multimedia
applications. Thus, the goal of this project was to use
the Tcl/Java package [5, 6, 13] to provide a scripting
interface to the JMF called TJMF (Tcl/Java Media
Framework). This paper describes our experiences
and lessons learned from building this Tcl interface
to the JMF. In section 2, a general overview of the
features already provided by the Tcl/Java package is
presented. Section 3 outlines the utility packages that
provide the foundation for the TJMF extension. In
Section 4, an example of using the TJMF extension
to playback a MPEG movie as well as a detailed
discussion of the extension is provided. In Section 5,
we reflect on our experiences and lessons learned
from using the Tcl/Java package. In the remaining

sections of the paper, we present our conclusions and
the results of recent work to improve the Tcl/Java
package.

2 The Tcl/Java Package

To better integrate Tcl and Java, several key
technologies have been developed. Jacl [6] is an
implementation of a Tcl interpreter written entirely in
the Java language. Jacl currently provides most of the
functionality of the Tcl 8.0 interpreter. TclBlend [5]
provides a native code library that accesses the Java
Virtual Machine (JVM) using the Java Native
Interface (JNI). The Java Package [5] is a set of Tcl
commands providing access to the Java Reflection
system. The Java Package provides commands that
allow a Tcl interpreter to both allocate and invoke
methods on Java objects. Tcl code using these
commands will run seamlessly in either the TclBlend
or Jacl implementations. In addition, extensions
written in Java using the Java Package can be
accessed in either Jacl or TclBlend, and are instantly
portable to a wide variety of systems without
configuration or recompilation. For the purposes of
this paper, we use the term Tcl/Java package to
collectively refer to Jacl, TclBlend, and the Java
Package.

3 Integration Utilities
Before describing our multimedia extension for the
Java Media Framework in detail, several
supplemental packages need to be introduced. These
utility packages provide the underlying support
required by our multimedia extension and consist of
the following:

• Object-oriented support. The lack of object-
oriented support in Tcl makes modular
development difficult. For several reasons that
will be explained shortly, none of the current
object-oriented extensions were usable in this
project, and thus a Tcl-only object-oriented
package was created.

• Event mapping system. A package to map Java
events to Tcl callbacks was created so that events
from the JMF components could be managed in
user-defined Tcl code.

• Pack geometry manager for the Java AWT. The
existing Java layout managers are inflexible and
difficult to use. In response, a new layout
manager, based upon the pack geometry manager
of Tk, was created for Java AWT components.

• Package command for Jacl. Initial versions of
Jacl did not provide an implementation of the Tcl

package command, but since our project
required this functionality, the Jacl interpreter
was extended with an equivalent Java
implementation.

3.1 Object-Oriented Support

From our experience, the most severe impediment to
modular development in Tcl is the lack of object-
oriented support. Tcl has no built-in support for
aggregate data types, other than lists and arrays, and
also lacks support for encapsulation of data. [incr
Tcl][8], an extension that provides object-oriented
support, could not be used in this project for two
reasons. First, [incr Tcl] requires patches to the Tcl
core and its own C level libraries, and thus cannot be
run in Jacl. Second, TclBlend requires the use of
Tcl8.0 which is not yet supported by [incr Tcl].
Although several Tcl-only object-oriented packages
exist within the Tcl community, we could find none
that would seamlessly work with both Tcl8.0 and
Jacl. In one case, the use of "::" within global
procedure names conflicted with the new namespace
feature of Tcl8.0. Because of these problems, we
designed a simple, Tcl-only, object-oriented package
that is compatible with all current Tcl releases,
including Jacl. The package provides basic support
for classes, encapsulation, and composition.

3.2 Event Mapping System

In order to script JMF components using Tcl, Java
events need to be mapped to Tcl callback procedures.
This type of mapping is similar to the way X events
are mapped to Tcl procedures using the bind
command from Tk. Such functionality would allow a
Tcl programmer to create JMF components; e.g., a
MPEG player along with a set of VCR controls, and
manage the component interaction in Tcl code. The
java::bind command included in the Tcl/Java
package already provides this type of Java to Tcl
event mapping, but could not be used because it only
supports JavaBean events, which the JMF does not
generate. In our TJMF extension, a Java class
receives JMF events, translates them into a
descriptive string, and invokes the appropriate Tcl
callback. Example 1 demonstrates how a Tcl callback
would be invoked when a Java event is received from
the JMF.

3.3 Pack Geometry Manager

Java’s Abstract Windowing Toolkit (AWT) provides
poor support for geometry management. The default
layout managers are lacking in functionality, error
prone, and difficult to use. On the other hand, Tk’s
pack geometry manager is powerful, easy to use, and

allows for rapid prototyping of user interfaces. In
order to gain these same advantages when developing
interfaces with the AWT, a pack geometry manager
was created by porting the packer layout algorithm to
the AWT 1.1 LayoutManager interface. Java
programmers can use this layout manager to gain
pack functionality for AWT components. Although
this functionality could be accessed from Tcl using
the Tcl/Java package, the layout manager would be
easier to use if wrapped in a Tcl command. For this
reason, a jtk::pack command was created that
accepts the same options as the pack command of
Tk. Use of this command can be seen in Example 1.

3.4 Package Command

Tcl’s package command provides a convenient
means for managing logically connected source files
within an application. Without it, managing which
source files have already been loaded into the
interpreter can become very complex. Unfortunately,
early versions of Jacl did not support the package
command. Initially, the Tcl/Java group was
contacted, but since they could not begin working on
unimplemented features until after the 1.0 release
date, the decision was made to implement the
package command ourselves. The implementation
was performed by translating the source code from
the C version of the package command into Java
source code. The Java version of the command was
then checked by running the regression tests from the
main Tcl distribution. Once stabilized, the code was
sent to the Tcl/Java group and has since been
included in subsequent releases of Jacl.

These packages provide the foundation on which the
TJMF extension is built. With each of these packages
in place, a detailed explanation of the TJMF
extension will now be provided.

4 The TJMF Extension

The motivation behind the TJMF extension began
while assisting another research project in the
University of Minnesota’s kinesiology department.
The kinesiology department was conducting research
involving a sports performance measuring system
that required a multimedia interface. While a number
of multimedia technologies are available, the decision
was made to use Java and the JMF. Writing Java
code requires much less time than a more complex
language like C or C++, but development was still
slow due to the edit/compile/debug cycle; especially
because restarting the application from scratch took a
long time. Although the project was a success, the
implementation effort could have been reduced by
eliminating the need to continually recompile and

restart the application. Having used multimedia
scripting tools in the past, it was clear that application
developers using the JMF would benefit from a
scripting front-end. Thus, the idea of providing a Tcl
scripting interface to the JMF was conceived.

4.1 TJMF Usage

The interface to our TJMF extension was designed
with two goals in mind. First, Tcl programmers
should be able to use the TJMF with minimal effort.
Second, Java programmers already familiar with the
JMF, but who desire a faster development cycle,
could use the TJMF without learning a whole new
multimedia toolkit. This should help convince Java
programmers using the JMF to switch to Tcl and the
TJMF. Example 1 demonstrates how a MPEG file
would be displayed with the TJMF extension.

Example 1

#Add TJMF packages to this interpreter
package require Media

#Create a MPEG player
set player \
[MediaPlayer .play file:/C:/mpegs/movie.mpg]

#Create the event consumer object
set con [Consumer .con]

#Subscribe to events produced by MPEG player
$con subscribe $player

#Register an event handler
$con handler Media.PrefetchComplete \
ready_callback

#Allocate Java Frame (toplevel in Tk)
set frame [java::new java.awt.Frame]
$frame setSize 300 300

#Callback for Media.PrefetchComplete event
proc ready_callback { player } {
 global frame

 #Get window that MPEG will be displayed in
 set child [$player getVisual]

 #Pack MPEG video window in the Frame
 jtk::pack $child -in $frame -padx 10

 #Map the Frame object
 $frame show

 #Start playback of the MPEG video
 $player start
}

#Start fetching MPEG data
#Generates Media.PrefetchComplete when done
$player prefetch

4.2 MediaPlayer Implementation

The majority of the TJMF functionality is contained
within the MediaPlayer class. The MediaPlayer class
can be used to playback a number of different media
types such as audio, video, and animation. This class
is implemented with our object-oriented package and
provides an API that programmers can use to
manipulate the underlying media streams. The
MediaPlayer class encapsulates three key
components that work together to provide the
functionality of the TJMF extension.

The first component is an instance of the JMF class
javax.media.Player. An instance of this class is
created by invoking the Java method
javax.media.Manager.createPlayer() and
passing in the URL argument supplied to the
MediaPlayer constructor. The MediaPlayer
constructor returns a command procedure used to
access that particular instance. When this command
is invoked, the MediaPlayer translates it into the
corresponding method invocation on the
javax.media.Player object.

The second component encapsulated by the
MediaPlayer is a Java class called an
EventTranslator. The EventTranslator class
implements the javax.media.ControllerListener
interface so that it is able to receive events generated
by the JMF. The EventTranslator is responsible for
receiving a JMF event, and then translating it into a
Tcl string that represents the event. For example, if
the JMF generates a javax.media.StopEvent then
the EventTranslator object will output the string
Media.Stop. This output string is then used by the
third component to generate a Tcl event.

The third component of the MediaPlayer is an
instance of the Producer class which was
implemented in Tcl code with our object-oriented
package. When the JMF generates an event, the
MediaPlayer uses the output of the EventTranslator
as the input to the Producer object. The Producer
contains a table that uses the event string to lookup a
list of Consumer objects registered for that particular
event. Each consumer registered for the event will
then invoke its own user-defined callback.

Together, these three components make up the
MediaPlayer implementation and define the process
by which JMF events trigger user-defined Tcl
callbacks.

4.3 Designing a Thread Safe Extension

When implementing the TJMF extension, one issue
that needed to be addressed was that the JMF creates

an additional thread to fetch, decode, and display the
specified media stream. This separate thread
generates asynchronous state update events which are
received by the EventTanslator of the MediaPlayer
(see section 4.2). After the event is translated, a
procedure will need to be evaluated within the Tcl
interpreter. However, because the Tcl interpreter is
executing in a different thread, calling
interp.eval() from the JMF thread could corrupt
the interpreter. The problem is that the
interp.eval() method is not thread-safe. The only
safe way to evaluate a Tcl command from a separate
thread is to place that command into a thread-safe Tcl
event queue. To do this, the synchronized method
interp.getNotifier().queueEvent() should
be invoked. This method uses the synchronization
primitives provided by the JVM to ensure thread-
safety within the Tcl event queue. The Tcl interpreter
will then remove the event object from the queue and
invoke its processEvent() method from the
interpreter’s main thread. Example 2 demonstrates
how to safely evaluate a procedure from a separate
thread.

Example 2

String cmd = "string length hello";
EventProcessor ep = new EventProcessor(cmd);
interp.getNotifier().queueEvent(ep,
TCL.QUEUE_TAIL);

class EventProcessor extends TclEvent {
 private String script;
 EventProcessor(String s) {script = s;}

 public int processEvent(int flags) {
 try {
 interp.eval(script,flags);
 } catch (TclException e) {}
 return 1;
 }
}

4.4 Adding Higher Level Synchronization Support

Multimedia presentations are a common type of
application that programmers may want to create
using the TJMF extension. However, building these
types of applications is not simple as several different
approaches exist [2]. The Nsync toolkit [2] simplifies
the creation of interactive multimedia presentations
by providing a high-level, declarative interface. To
increase the usability of the TJMF extension, we have
produced a small compatibility layer so that the
Nsync toolkit can be used on top of TJMF. By using
the Nsync APIs, underlying details of the TJMF
extension are hidden from the application
programmer. We believe this adequately
demonstrates the flexibility of the TJMF extension as
scripts that were originally written for Nsync and

CMT can be used with TJMF without significant
modification.

5 Lessons Learned

In this section, we reflect on some of the issues faced
during the development of the TJMF extension.
While the Tcl/Java package has many useful features,
it contains some problems that made development of
the extension more difficult than it needed to be. The
most serious problem in the Tcl/Java package is a
design flaw that discards a Java object’s type when
reflected inside a Tcl interpreter. Java method
invocation is also more difficult than is should be
because the Java method resolver used in the
Tcl/Java package is currently lacking needed
functionality (see Section 5.2). In addition, problems
exist when mapping some Tcl constructs to Java code
and vice versa. These problem areas will be
illustrated in the following subsections through a
number of source code examples along with
suggestions for improving the Tcl/Java package.

5.1 Java Objects Have No Class

Within the Tcl/Java package, all Java objects
reflected in the Tcl interpreter lose their type
information. Type information for Tcl objects is
unimportant because "everything is a string";
however, this type information is important to the
proper use of Java objects. Consider an example
involving polymorphism. In Java, polymorphism is
expressed through inheritance and allows a single
object to be referenced as two distinct types (classes).
In this situation, the type of the reference determines
which methods can be invoked on the object. As
shown in Example 3, the current Tcl/Java package
discards the returned object’s type by incorrectly
casting it to the most derived type. By doing so, the
user can now invoke methods that would ordinarily
not be permitted.

Example 3

public class Hashtable2 extends
java.util.Hashtable
{
 public static java.util.Hashtable get() {
 return new Hashtable2();
 }
 public String foo() {
 return "CALLED";
 }
}

% set h [java::call Hashtable2 get]
% java::info class $h
Hashtable2
% $h foo
CALLED

This example demonstrates that the type information
for the Java object is lost when it is reflected inside a
Tcl interpreter. The type of the returned Java object
should have been java.util.Hashtable, not
Hashtable2. To fix this problem, the Tcl/Java
reflection system must record the class (type)
information for each Java object referenced. This
modification would also allow the use of Java
interface classes, which are currently inaccessible. To
completely resolve this issue, a command to cast a
Java object from one type to another would need to
be included. We suggest adding a java::cast
command as described in Example 4.

Example 4

#using Hashtable2 class from Example 3
% set h [java::call Hashtable2 get]
% java::info class $h
java.util.Hashtable
% $h foo
no such method "foo" in class java.util.
Hashtable
% set h2 [java::cast Hashtable2 $h]
% $h2 foo
CALLED

The behavior demonstrated in this example is
consistent with common object-oriented principles.

5.2 The Java Method Resolver

In Java, overloading occurs when two or more
methods have the same name but differ in the number
and/or types of arguments. In order to distinguish
among overloaded methods, a resolution algorithm
must be applied to the argument types. Applying this
algorithm is the responsibility of the Java method
resolver.

When Tcl code makes a call to an overloaded Java
method, the Java method resolver is invoked. In order
to function properly, the Java method resolver must
know the actual types of the arguments being passed.
This information must be explicitly passed by the Tcl
programmer using a special syntax. However,
continually specifying method argument types
quickly becomes tedious and error-prone. The Java
method resolver is supposed to employ heuristics in
order to disambiguate overloaded methods [6].
However, as demonstrated in Example 5, these
heuristics are not employed.

Example 5

public class A {
 void foo(int i) {}
 void foo(String i) {}
}

% set obj [java::new A]
% $obj foo 1
ambiguous method signature "foo"
% $obj foo abcd
ambiguous method signature "foo"

The method resolver ignores Java object type
information that could have been used to
disambiguate the method signature. In fact, the
reflection system already has this type information
stored internally, it is simply ignored by the resolver.
Example 6 demonstrates this problem.

Example 6

public class B {
 public void foo(java.util.Hashtable h) {}
 public void foo(java.util.Vector v) {}
}

% set hash [java::new java.util.Hashtable]
% set B [java::new B]
% $B foo $hash
ambiguous method signature "foo"

The only way to guarantee proper behavior by the
resolver is to fully qualify each parameter of the Java
method invocation. Using built-in Java objects, the
Tcl programmer would have to specify object names
like java.io.File or java.util.zip.ZipFile,
which is annoying but still doable. If one starts
working with classes that have longer names like
com.sun.java.swing.plaf.ToggleButtonUI,
the fully qualified syntax will quickly become tedious
and error prone.

5.3 Parameter Specification

Within the Tcl/Java package, method invocations
must be specified using the following format:
{method_name f1,f2,...,fn} a1,a2,...,an

where the f’s represent the formal argument types
and the a’s represent the actual argument objects. The
problem with this format is that every parameter type
must be specified, regardless if that parameter type is
required to resolve the method invocation. To
alleviate this requirement, a more Java-like argument
type specification could be used. Example 7
demonstrates an approach where only the parameter
types needed to distinguish one method from another
are supplied.

Example 7

public class C {
 public void foo (
 java.util.Hashtable h,
 java.util.Vector v,
 java.io.File f) {}

 public void foo(
 java.util.Hashtable h,
 java.util.Stack s,
 java.io.File f) {}
}

#This example assumes that h is a Hashtable
#v is a Vector, and f is a File object

% set C [java::new C] (a)
% $C {foo java.util.Hashtable (b)

java.util.Vector java.io.File} $h $v $f

% $C foo $h (java.util.Vector) $v $f (c)

The second command above (b) shows the required
method invocation format for the current Tcl/Java
package. The third command above (c) shows the
suggested notation in which only the necessary
parameter types are specified.

5.4 Exceptional Problems

Exception handling is a widely used mechanism for
raising, catching, and handling unexpected run-time
conditions. Both Tcl and Java support similar
exception handling mechanisms; however, a serious
distinction exists. In Java, unlike Tcl, more than one
type of exception can be thrown, and subsequently
caught based on its type. In Tcl, this is not possible.
As a result, handling Java exceptions in Tcl code is
more difficult than it would be in Java code. Example
8 demonstrates the problem.

Example 8

public class D {
 public static void foo()
 throws NumberFormatException,
 java.io.IOException {
 //throw one of the exceptions
 }
}

//Handling the exceptions in Java code
public class E {
 public static void callfoo()
 throws NumberFormatException {
 try {
 D.foo();
 } catch (java.io.IOException e) {
 System.err.println(
 "Fatal : IoException");
 System.exit(-1);
 }
 }
}

#Handling the exceptions in Tcl code
if [catch {
 java::call D foo
} err] {
 if {[string match "*java.io.IOException*"
 $err]} {
 puts stderr "Fatal : IoException"
 exit -1
 }
 if {[string match
"*java.lang.NumberFormatException*" $err]} {
 global errorCode
 java::throw [lindex $errorCode 1]
 }
}

As shown in Example 8, Java exceptions are difficult
to manage in Tcl code because Tcl inherently
recognizes only a single type of exception. The
situation becomes even more difficult when Tcl code
needs to catch Tcl errors as well as Java exceptions.
Every possible Java exception would need to be
handled individually. Also the Tcl catch command
does not provide a means to do local cleanup of
resources without actually catching the exceptional
condition. Java provides this functionality with the
try-catch-finally construct. A java::try
command would address this problem, but a better
long-term solution would be to replace the Tcl catch
and error commands with similar commands that
are able to manage multiple exception conditions.

5.5 Combining Tk And AWT

At some point in the future, the Tcl/Java package
must address the integration of the Java AWT and
Tk. Currently, support for putting Tk windows inside
Java windows, or vice versa, does not exist. This kind
of support was described in [5], but has yet to be
implemented.

5.6 Jacl

During this project, we discovered several problems
with Jacl. First, run-time performance is poor. Jacl
does not have a compiler like its C counterpart, so
each command must be re-evaluated for every
invocation, and Java code is generally about 10 times
slower than C code. Second, Jacl can not currently be
run inside of web browsers. The reason is that Jacl
requires Java Reflection support which is not yet
properly implemented in web browsers. Also, Jacl
defines its own class loader which violates the default
security policy for applets. Finally, Jacl contains a
number of unimplemented, or only partially
implemented commands, such as socket, exec, and
namespace.

6 Conclusion

The TJMF extension is a powerful tool for adding
multimedia capabilities to the Tcl programming
language, without the inherent problems associated
with C extensions. This was accomplished by using
the Tcl/Java package to provide a scripting interface
to the Java Media Framework. The TJMF extension
was constructed with a liberal mix of Java and Tcl
code:

Table 1: Lines of Tcl and Java code in the TJMF

Component Tcl code Java code
Media package 1000 500
Object package 1700 0
Event package 1300 0

Pack layout 100 1100
Other utilities 500 0

Total 4600 1600

The total implementation effort produced about 6200
lines of combined Java and Tcl code and was
accomplished over a period of about 6 months. Each
of the packages described in this paper are available
for downloading at

http://www.cs.umn.edu/~dejong/tcl

Also, the object type reflection system outlined in
section 5.1 and some of the method resolver
heuristics described in section 5.2 have been
implemented. These improvements will be made
publicly available so that others can make better use
of the Tcl/Java package.

By integrating Tcl and Java, each language can be
used to do what it does best. Java can be used to
provide the functional low-level components, while
Tcl can be used to build applications by “gluing”, or
scripting these components together. The integration
of Tcl and Java produces functionality that is beyond
what could be achieved by using either language
alone. With a few simple improvements outlined in
this paper, the integration would become even more
powerful and easier to use.

While much software has been created for Tcl/Tk, we
have yet to see a solution to the portability problems
inherent in using C as an extension language for Tcl.
With the arrival of the Tcl/Java package, we hope
that C extensions will become a thing of the past as
the number of portable extensions for both Tcl and
Java increase.

7 Acknowledgments

We are grateful for the help provided by the entire
Tcl/Java team. Bryan Surles was particularly helpful

in providing us with information about the proper use
of the Tcl/Java package APIs. We would also like to
thank Ray Johnson, Scott Stanton, Melissa Hirschl,
and Ioi Lam as their hard work made possible the
success of our project.

This work was supported by a grant from the
National Science Foundation (IRI 94-10470).

8 References

[1] K. Arnold and J. Gosling. The Java Programming
Language. Addison-Wesley Publishing Company,
1994.
[2] B. Bailey, J. Konstan, R. Cooley, and M. Dejong.
Nsync – A Toolkit for Building Interactive
Multimedia Presentations. Proceedings ACM
Multimedia, 1998.
[3] S. Iyengar and J. Konstan. TclProp: A Data-
Propagation Formula Manager for Tcl and Tk.
Proceedings of the 1995 Tcl/Tk Workshop.
[4] http://java.sun.com/marketing/collateral/jmf.html.
[5] R. Johnson. Tcl and Java Integration.
http://www.scriptics.com/java/tcljava.ps.
[6] I. Lam and B. Smith. Jacl: A Tcl Implementation
in Java. Proceedings of the 1997 Tcl/Tk Workshop.
[7] J. Levy. A Tcl/Tk Netscape Plugin. Proceedings
of the 1996 Tcl/Tk Workshop.
[8] M. McLennan. [incr tcl] – Object-oriented
Programming in Tcl. Proceedings of the 1993 Tcl/Tk
Workshop.
[9] J. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley Publishing Company, 1994.
[10] L. Rowe and B. Smith. A Continuous Media
Player. Network and Operating Systems Support for
Digital Audio and Video. Third Int’l Workshop
Proceedings, 1992.
[11] A. Safonov. Extending Traces with OAT: an
Object Attribute Trace package for Tcl/Tk.
Proceedings of the 1997 Tcl/Tk Workshop.
[12] B. Smith, L. Rowe, and S. Yen. Tcl Distributed
Programming. Proceedings of the 1993 Tcl/Tk
Workshop.
[13] S. Stanton and K. Corey. Tcl/Java: Toward
Portable Extensions. Proceedings of the 1996 Tcl/Tk
Workshop.
[14] J. Swartz and B. Smith. A Resolution
Independent Video Language. Proceedings ACM
Multimedia, 1995.

