
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Design Principles for
Tamper-Resistant Smartcard Processors

Oliver Kömmerling
Advanced Digital Security Research

Markus G. Kuhn
University of Cambridge

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Design Principles for Tamper-Resistant Smartcard Processors

Oliver Kömmerling Markus G. Kuhn

Advanced Digital University of Cambridge
Security Research Computer Laboratory

Mühlstraße 7 Pembroke Street
66484 Riedelberg Cambridge CB2 3QG

Germany United Kingdom
ok@adsr.de mgk25@cl.cam.ac.uk

Abstract

We describe techniques for extracting protected
software and data from smartcard processors. This
includes manual microprobing, laser cutting, fo-
cused ion-beam manipulation, glitch attacks, and
power analysis. Many of these methods have already
been used to compromise widely-fielded conditional-
access systems, and current smartcards offer little
protection against them. We give examples of low-
cost protection concepts that make such attacks con-
siderably more difficult.

1 Introduction

Smartcard piracy has become a common occur-
rence. Since around 1994, almost every type of
smartcard processor used in European, and later also
American and Asian, pay-TV conditional-access sys-
tems has been successfully reverse engineered. Com-
promised secrets have been sold in the form of il-
licit clone cards that decrypt TV channels without
revenue for the broadcaster. The industry has had
to update the security processor technology several
times already and the race is far from over.

Smartcards promise numerous security benefits.
They can participate in cryptographic protocols, and
unlike magnetic stripe cards, the stored data can be
protected against unauthorized access. However, the
strength of this protection seems to be frequently
overestimated.

In Section 2, we give a brief overview on the
most important hardware techniques for breaking
into smartcards. We aim to help software engineers
without a background in modern VLSI test tech-
niques in getting a realistic impression of how phys-
ical tampering works and what it costs. Based on
our observations of what makes these attacks par-
ticularly easy, in Section 3 we discuss various ideas

for countermeasures. Some of these we believe to be
new, while others have already been implemented in
products but are either not widely used or have de-
sign flaws that have allowed us to circumvent them.

2 Tampering Techniques

We can distinguish four major attack categories:

• Microprobing techniques can be used to access
the chip surface directly, thus we can observe, ma-
nipulate, and interfere with the integrated circuit.

• Software attacks use the normal communica-
tion interface of the processor and exploit secu-
rity vulnerabilities found in the protocols, cryp-
tographic algorithms, or their implementation.

• Eavesdropping techniques monitor, with high
time resolution, the analog characteristics of all
supply and interface connections and any other
electromagnetic radiation produced by the pro-
cessor during normal operation.

• Fault generation techniques use abnormal en-
vironmental conditions to generate malfunctions
in the processor that provide additional access.

All microprobing techniques are invasive attacks.
They require hours or weeks in a specialized labora-
tory and in the process they destroy the packaging.
The other three are non-invasive attacks. After we
have prepared such an attack for a specific proces-
sor type and software version, we can usually repro-
duce it within seconds on another card of the same
type. The attacked card is not physically harmed
and the equipment used in the attack can usually be
disguised as a normal smartcard reader.

Non-invasive attacks are particularly dangerous
in some applications for two reasons. Firstly, the



owner of the compromised card might not notice
that the secret keys have been stolen, therefore it
is unlikely that the validity of the compromised keys
will be revoked before they are abused. Secondly,
non-invasive attacks often scale well, as the neces-
sary equipment (e.g., a small DSP board with special
software) can usually be reproduced and updated at
low cost.

The design of most non-invasive attacks requires
detailed knowledge of both the processor and soft-
ware. On the other hand, invasive microprobing at-
tacks require very little initial knowledge and usually
work with a similar set of techniques on a wide range
of products. Attacks therefore often start with in-
vasive reverse engineering, the results of which then
help to develop cheaper and faster non-invasive at-
tacks. We have seen this pattern numerous times on
the conditional-access piracy market.

Non-invasive attacks are of particular concern in
applications where the security processor is primar-
ily required to provide tamper evidence, while inva-
sive attacks violate the tamper-resistance character-
istics of a card [1]. Tamper evidence is of primary
concern in applications such as banking and digi-
tal signatures, where the validity of keys can easily
be revoked and where the owner of the card has al-
ready all the access that the keys provide anyway.
Tamper resistance is of importance in applications
such as copyright enforcement, intellectual property
protection, and some electronic cash schemes, where
the security of an entire system collapses as soon as
a few cards are compromised.

To understand better which countermeasures are
of practical value, we first of all have to understand
the techniques that pirates have used so far to break
practically all major smartcard processors on the
market. In the next section, we give a short guided
tour through a typical laboratory of a smartcard pi-
rate.

2.1 Invasive Attacks

2.1.1 Depackaging of Smartcards

Invasive attacks start with the removal of the chip
package. We heat the card plastic until it becomes
flexible. This softens the glue and the chip mod-
ule can then be removed easily by bending the card.
We cover the chip module with 20–50 ml of fuming
nitric acid heated to around 60 ◦C and wait for the
black epoxy resin that encapsulates the silicon die to
completely dissolve (Fig. 1). The procedure should
preferably be carried out under very dry conditions,
as the presence of water could corrode exposed alu-
minium interconnects. The chip is then washed with

Figure 1: Hot fuming nitric acid (> 98% HNO3)
dissolves the package without affecting the chip.

Figure 2: The depackaged smartcard processor is
glued into a test package, whose pins are then con-
nected to the contact pads of the chip with fine alu-
minium wires in a manual bonding machine.

acetone in an ultrasonic bath, followed optionally by
a short bath in deionized water and isopropanol. We
remove the remaining bonding wires with tweezers,
glue the die into a test package, and bond its pads
manually to the pins (Fig. 2). Detailed descriptions
of these and other preparation techniques are given
in [2, 3].

2.1.2 Layout Reconstruction

The next step in an invasive attack on a new pro-
cessor is to create a map of it. We use an optical
microscope with a CCD camera to produce several
meter large mosaics of high-resolution photographs
of the chip surface. Basic architectural structures,
such as data and address bus lines, can be identi-
fied quite quickly by studying connectivity patterns



Figure 3: Left: CMOS AND gate imaged by a con-
focal microscope. Right: same gate after removal of
metal layer (HF wet etching). Polysilicon intercon-
nects and diffusion areas are now fully visible.

and by tracing metal lines that cross clearly visible
module boundaries (ROM, RAM, EEPROM, ALU,
instruction decoder, etc.). All processing modules
are usually connected to the main bus via easily rec-
ognizable latches and bus drivers. The attacker ob-
viously has to be well familiar with CMOS VLSI
design techniques and microcontroller architectures,
but the necessary knowledge is easily available from
numerous textbooks [4, 5, 6, 7].

Photographs of the chip surface show the top
metal layer, which is not transparent and therefore
obscures the view on many structures below. Un-
less the oxide layers have been planarized, lower
layers can still be recognized through the height
variations that they cause in the covering layers.
Deeper layers can only be recognized in a second se-
ries of photographs after the metal layers have been
stripped off, which we achieve by submerging the
chip for a few seconds in hydrofluoric acid (HF) in an
ultrasonic bath [2]. HF quickly dissolves the silicon
oxide around the metal tracks and detaches them
from the chip surface. HF is an extremely dangerous
substance and safety precautions have to be followed
carefully when handling it.

Figure 3 demonstrates an optical layout recon-
struction of a NAND gate followed by an inverter.
These images were taken with a confocal micro-
scope (Zeiss Axiotron-2 CSM), which assigns differ-
ent colors to different focal planes (e.g., metal=blue,
polysilicon=green) and thus preserves depth infor-
mation [8]. Multilayer images like those shown in
Fig. 3 can be read with some experience almost as
easily as circuit diagrams. These photographs help
us in understanding those parts of the circuitry that
are relevant for the planned attack.

If the processor has a commonly accessible stan-
dard architecture, then we have to reconstruct the

Figure 4: The vias in this structure found in a
ST16F48A form a permutation matrix between the
memory readout column lines and the 16:1 demulti-
plexer. The applied mapping remains clearly visible.

layout only until we have identified those bus lines
and functional modules that we have to manipulate
to access all memory values. More recently, design-
ers of conditional-access smartcards have started to
add proprietary cryptographic hardware functions
that forced the attackers to reconstruct more com-
plex circuitry involving several thousand transistors
before the system was fully compromised. How-
ever, the use of standard-cell ASIC designs allows
us to easily identify logic gates from their diffusion
area layout, which makes the task significantly easier
than the reconstruction of a transistor-level netlist.

Some manufacturers use non-standard instruction
sets and bus-scrambling techniques in their secu-
rity processors. In this case, the entire path from
the EEPROM memory cells to the instruction de-
coder and ALU has to be examined carefully before
a successful disassembly of extracted machine code
becomes possible. However, the attempts of bus
scrambling that we encountered so far in smartcard
processors were mostly only simple permutations of
lines that can be spotted easily (Fig. 4).

Any good microscope can be used in optical VLSI
layout reconstruction, but confocal microscopes have
a number of properties that make them particularly
suited for this task. While normal microscopes pro-
duce a blurred image of any plane that is out of fo-
cus, in confocal scanning optical microscopes, every-
thing outside the focal plane just becomes dark [8].
Confocal microscopes also provide better resolution
and contrast. A chromatic lens in the system can
make the location of the focal plane wavelength de-
pendent, such that under white light different layers



Figure 5: The data of this NOR ROM becomes
clearly visible when the covering metal and polysili-
con access lines plus the surrounding field oxide have
been removed (HF wet etching). The image shows
16×10 bits in an ST16xyz. Every bit is represented
by either a present or missing diffusion layer connec-
tion.

of the chip will appear simultaneously, but in differ-
ent colors.

Automatic layout reconstruction has been demon-
strated with scanning electron microscopy [9]. We
consider confocal microscopy to be an attractive al-
ternative, because we do not need a vacuum envi-
ronment, the depth information is preserved, and
the option of oil immersion allows the hiding of un-
evenly removed oxide layers. With UV microscopy,
even chip structures down to 0.1 µm can be resolved.

With semiautomatic image-processing methods,
significant portions of a processor can be reverse
engineered within a few days. The resulting poly-
gon data can then be used to automatically generate
transistor and gate-level netlists for circuit simula-
tions.

Optical reconstruction techniques can also be
used to read ROM directly. The ROM bit pattern
is stored in the diffusion layer, which leaves hardly
any optical indication of the data on the chip sur-
face. We have to remove all covering layers using HF
wet etching, after which we can easily recognize the
rims of the diffusion regions that reveal the stored
bit pattern (Fig. 5).

Some ROM technologies store bits not in the
shape of the active area but by modifying transistor
threshold voltages. In this case, additional dopant-
selective staining techniques have to be applied to
make the bits visible (Fig. 6). Together with an
understanding of the (sometimes slightly scrambled,
see Fig. 4) memory-cell addressing, we obtain disas-
sembler listings of the entire ROM content. Again,
automated processing techniques can be used to ex-
tract the data from photos, but we also know cases

Figure 6: The implant-mask layout of a NAND
ROM can be made visible by a dopant-selective
crystallographic etch (Dash etchand [2]). This im-
age shows 16 × 14 bits plus parts of the row selec-
tor of a ROM found on an MC68HC05SC2x CPU.
The threshold voltage of 0-bit p-channel transistors
(stained dark here) was brought below 0 V through
ion implantation.

where an enthusiastic smartcard hacker has recon-
structed several kilobytes of ROM manually.

While the ROM usually does not contain any
cryptographic key material, it does often contain
enough I/O, access control, and cryptographic rou-
tines to be of use in the design of a non-invasive
attack.

2.1.3 Manual Microprobing

The most important tool for invasive attacks is a
microprobing workstation. Its major component is
a special optical microscope (e.g., Mitutoyo FS-60)
with a working distance of at least 8 mm between
the chip surface and the objective lens. On a stable
platform around a socket for the test package, we in-
stall several micropositioners (e.g., from Karl Suss,
Micromanipulator, or Wentworth Labs), which allow
us to move a probe arm with submicrometer preci-
sion over a chip surface. On this arm, we install a
“cat whisker” probe (e.g., Picoprobe T-4-10). This
is a metal shaft that holds a 10 µm diameter and
5 mm long tungsten-hair, which has been sharpened
at the end into a < 0.1 µm tip. These elastic probe
hairs allow us to establish electrical contact with on-
chip bus lines without damaging them. We connect
them via an amplifier to a digital signal processor
card that records or overrides processor signals and
also provides the power, clock, reset, and I/O signals
needed to operate the processor via the pins of the
test package.

On the depackaged chip, the top-layer aluminium
interconnect lines are still covered by a passivation



Figure 7: This image shows 9 horizontal bus lines
on a depackaged smartcard processor. A UV laser
(355 nm, 5 ns) was used to remove small patches of
the passivation layer over the eight data-bus lines to
provide for microprobing access.

layer (usually silicon oxide or nitride), which pro-
tects the chip from the environment and ion migra-
tion. On top of this, we might also find a poly-
imide layer that was not entirely removed by HNO3

but which can be dissolved with ethylendiamine.
We have to remove the passivation layer before the
probes can establish contact. The most convenient
depassivation technique is the use of a laser cutter
(e.g., from New Wave Research).

The UV or green laser is mounted on the camera
port of the microscope and fires laser pulses through
the microscope onto rectangular areas of the chip
with micrometer precision. Carefully dosed laser
flashes remove patches of the passivation layer. The
resulting hole in the passivation layer can be made so
small that only a single bus line is exposed (Fig. 7).
This prevents accidental contacts with neighbouring
lines and the hole also stabilizes the position of the
probe and makes it less sensitive to vibrations and
temperature changes.

Complete microprobing workstations cost tens of
thousands of dollars, with the more luxurious ver-
sions reaching over a hundred thousand US$. The
cost of a new laser cutter is roughly in the same
region.

Low-budget attackers are likely to get a cheaper
solution on the second-hand market for semicon-
ductor test equipment. With patience and skill it
should not be too difficult to assemble all the re-
quired tools for even under ten thousand US$ by
buying a second-hand microscope and using self-
designed micropositioners. The laser is not essential
for first results, because vibrations in the probing
needle can also be used to break holes into the pas-
sivation.

2.1.4 Memory Read-out Techniques

It is usually not practical to read the information
stored on a security processor directly out of each
single memory cell, except for ROM. The stored data
has to be accessed via the memory bus where all data
is available at a single location. Microprobing is used
to observe the entire bus and record the values in
memory as they are accessed.

It is difficult to observe all (usually over 20) data
and address bus lines at the same time. Various
techniques can be used to get around this problem.
For instance we can repeat the same transaction
many times and use only two to four probes to ob-
serve various subsets of the bus lines. As long as
the processor performs the same sequence of mem-
ory accesses each time, we can combine the recorded
bus subset signals into a complete bus trace. Over-
lapping bus lines in the various recordings help us
to synchronize them before they are combined.

In applications such as pay-TV, attackers can eas-
ily replay some authentic protocol exchange with
the card during a microprobing examination. These
applications cannot implement strong replay pro-
tections in their protocols, because the transaction
counters required to do this would cause an NVRAM
write access per transaction. Some conditional-
access cards have to perform over a thousand pro-
tocol exchanges per hour and EEPROM technology
allows only 104–106 write cycles during the lifetime
of a storage cell. An NVRAM transaction counter
would damage the memory cells, and a RAM counter
can be reset by the attacker easily by removing
power. Newer memory technologies such as FERAM
allow over 109 write cycles, which should solve this
problem.

Just replaying transactions might not suffice to
make the processor access all critical memory loca-
tions. For instance, some banking cards read criti-
cal keys from memory only after authenticating that
they are indeed talking to an ATM. Pay-TV card
designers have started to implement many different
encryption keys and variations of encryption algo-
rithms in every card, and they switch between these
every few weeks. The memory locations of algorithm
and key variations are not accessed by the proces-
sor before these variations have been activated by a
signed message from the broadcaster, so that passive
monitoring of bus lines will not reveal these secrets
to an attacker early.

Sometimes, hostile bus observers are lucky and
encounter a card where the programmer believed
that by calculating and verifying some memory
checksum after every reset the tamper-resistance



could somehow be increased. This gives the at-
tacker of course easy immediate access to all memory
locations on the bus and simplifies completing the
read-out operation considerably. Surprisingly, such
memory integrity checks were even suggested in the
smartcard security literature [10], in order to defeat
a proposed memory rewrite attack technique [11].
This demonstrates the importance of training the
designers of security processors and applications in
performing a wide range of attacks before they start
to design countermeasures. Otherwise, measures
against one attack can far too easily backfire and
simplify other approaches in unexpected ways.

In order to read out all memory cells without the
help of the card software, we have to abuse a CPU
component as an address counter to access all mem-
ory cells for us. The program counter is already
incremented automatically during every instruction
cycle and used to read the next address, which makes
it perfectly suited to serve us as an address sequence
generator [12]. We only have to prevent the proces-
sor from executing jump, call, or return instructions,
which would disturb the program counter in its nor-
mal read sequence. Tiny modifications of the in-
struction decoder or program counter circuit, which
can easily be performed by opening the right metal
interconnect with a laser, often have the desired ef-
fect.

2.1.5 Particle Beam Techniques

Most currently available smartcard processors have
feature sizes of 0.5–1 µm and only two metal lay-
ers. These can be reverse-engineered and observed
with the manual and optical techniques described
in the previous sections. For future card genera-
tions with more metal layers and features below the
wavelength of visible light, more expensive tools ad-
ditionally might have to be used.

A focused ion beam (FIB) workstation consists of
a vacuum chamber with a particle gun, comparable
to a scanning electron microscope (SEM). Gallium
ions are accelerated and focused from a liquid metal
cathode with 30 kV into a beam of down to 5–10 nm
diameter, with beam currents ranging from 1 pA to
10 nA. FIBs can image samples from secondary par-
ticles similar to a SEM with down to 5 nm resolution.
By increasing the beam current, chip material can be
removed with the same resolution at a rate of around
0.25 µm3 nA−1 s−1 [13]. Better etch rates can be
achieved by injecting a gas like iodine via a needle
that is brought to within a few hundred micrometers
from the beam target. Gas molecules settle down on
the chip surface and react with removed material to

form a volatile compound that can be pumped away
and is not redeposited. Using this gas-assisted etch
technique, holes that are up to 12 times deeper than
wide can be created at arbitrary angles to get ac-
cess to deep metal layers without damaging nearby
structures. By injecting a platinum-based organo-
metallic gas that is broken down on the chip surface
by the ion beam, platinum can be deposited to es-
tablish new contacts. With other gas chemistries,
even insulators can be deposited to establish surface
contacts to deep metal without contacting any cov-
ering layers.

Using laser interferometer stages, a FIB operator
can navigate blindly on a chip surface with 0.15 µm
precision, even if the chip has been planarized and
has no recognizable surface structures. Chips can
also be polished from the back side down to a thick-
ness of just a few tens of micrometers. Using laser-
interferometer navigation or infrared laser imaging,
it is then possible to locate individual transistors and
contact them through the silicon substrate by FIB
editing a suitable hole. This rear-access technique
has probably not yet been used by pirates so far,
but the technique is about to become much more
commonly available and therefore has to be taken
into account by designers of new security chips.

FIBs are used by attackers today primarily to
simplify manual probing of deep metal and polysil-
icon lines. A hole is drilled to the signal line of in-
terest, filled with platinum to bring the signal to
the surface, where a several micrometer large prob-
ing pad or cross is created to allow easy access
(Fig. 11). Modern FIB workstations (for example
the FIB 200xP from FEI) cost less than half a mil-
lion US$ and are available in over hundred organiza-
tions. Processing time can be rented from numerous
companies all over the world for a few hundred dol-
lars per hour.

Another useful particle beam tool are electron-
beam testers (EBT) [14]. These are SEMs with a
voltage-contrast function. Typical acceleration volt-
ages and beam currents for the primary electrons
are 2.5 kV and 5 nA. The number and energy of sec-
ondary electrons are an indication of the local elec-
tric field on the chip surface and signal lines can be
observed with submicrometer resolution. The signal
generated during e-beam testing is essentially the
low-pass filtered product of the beam current mul-
tiplied with a function of the signal voltage, plus
noise. EBTs can measure waveforms with a band-
width of several gigahertz, but only with periodic
signals where stroboscopic techniques and periodic
averaging can be used. If we use real-time voltage-
contrast mode, where the beam is continuously di-



rected to a single spot and the blurred and noisy
stream of secondary electrons is recorded, then the
signal bandwidth is limited to a few megahertz [14].
While such a bandwidth might just be sufficient for
observing a single signal line in a 3.5 MHz smart-
card, it is too low to observe an entire bus with a
sample frequency of several megahertz for each line.

EBTs are very convenient attack tools if the clock
frequency of the observed processor can be reduced
below 100 kHz to allow real-time recording of all bus
lines or if the processor can be forced to generate
periodic signals by continuously repeating the same
transaction during the measurement.

2.2 Non-invasive Attacks

A processor is essentially a set of a few hundred
flipflops (registers, latches, and SRAM cells) that de-
fine its current state, plus combinatorial logic that
calculates from the current state the next state dur-
ing every clock cycle. Many analog effects in such
a system can be used in non-invasive attacks. Some
examples are:

• Every transistor and interconnection have a ca-
pacitance and resistance that, together with fac-
tors such as the temperature and supply voltage,
determine the signal propagation delays. Due to
production process fluctuations, these values can
vary significantly within a single chip and between
chips of the same type.

• A flipflop samples its input during a short time
interval and compares it with a threshold volt-
age derived from its power supply voltage. The
time of this sampling interval is fixed relative to
the clock edge, but can vary between individual
flipflops.

• The flipflops can accept the correct new state only
after the outputs of the combinatorial logic have
stabilized on the prior state.

• During every change in a CMOS gate, both the
p- and n-transistors are open for a short time,
creating a brief short circuit of the power supply
lines [15]. Without a change, the supply current
remains extremely small.

• Power supply current is also needed to charge or
discharge the load capacitances when an output
changes.

• A normal flipflop consists of two inverters and
two transmission gates (8 transistors). SRAM
cells use only two inverters and two transistors

to ground one of the outputs during a write oper-
ation. This saves some space but causes a signif-
icant short-circuit during every change of a bit.

There are numerous other effects. During careful
security reviews of processor designs it is often nec-
essary to perform detailed analog simulations and
tests and it is not sufficient to just study a digital
abstraction.

Smartcard processors are particularly vulnerable
to non-invasive attacks, because the attacker has full
control over the power and clock supply lines. Larger
security modules can be equipped with backup bat-
teries, electromagnetic shielding, low-pass filters,
and autonomous clock signal generators to reduce
many of the risks to which smartcard processors are
particularly exposed.

2.2.1 Glitch Attacks

In a glitch attack, we deliberately generate a mal-
function that causes one or more flipflops to adopt
the wrong state. The aim is usually to replace a sin-
gle critical machine instruction with an almost ar-
bitrary other one. Glitches can also aim to corrupt
data values as they are transferred between registers
and memory. Of the many fault-induction attack
techniques on smartcards that have been discussed
in the recent literature [11, 12, 16, 17, 18], it has
been our experience that glitch attacks are the ones
most useful in practical attacks.

We are currently aware of three techniques for cre-
ating fairly reliable malfunctions that affect only a
very small number of machine cycles in smartcard
processors: clock signal transients, power supply
transients, and external electrical field transients.

Particularly interesting instructions that an at-
tacker might want to replace with glitches are condi-
tional jumps or the test instructions preceding them.
They create a window of vulnerability in the process-
ing stages of many security applications that often
allows us to bypass sophisticated cryptographic bar-
riers by simply preventing the execution of the code
that detects that an authentication attempt was un-
successful. Instruction glitches can also be used to
extend the runtime of loops, for instance in serial
port output routines to see more of the memory af-
ter the output buffer [12], or also to reduce the run-
time of loops, for instance to transform an iterated
cipher function into an easy to break single-round
variant [11].

Clock-signal glitches are currently the simplest
and most practical ones. They temporarily increase
the clock frequency for one or more half cycles, such
that some flipflops sample their input before the new



state has reached them. Although many manufac-
turers claim to implement high-frequency detectors
in their clock-signal processing logic, these circuits
are often only simple-minded filters that do not de-
tect single too short half-cycles. They can be cir-
cumvented by carefully selecting the duty cycles of
the clock signal during the glitch.

In some designs, a clock-frequency sensor that is
perfectly secure under normal operating voltage ig-
nores clock glitches if they coincide with a carefully
designed power fluctuation. We have identified clock
and power waveform combinations for some widely
used processors that reliably increment the program
counter by one without altering any other processor
state. An arbitrary subsequence of the instructions
found in the card can be executed by the attacker
this way, which leaves very little opportunity for
the program designer to implement effective coun-
termeasures in software alone.

Power fluctuations can shift the threshold volt-
ages of gate inputs and anti-tampering sensors rel-
ative to the unchanged potential of connected ca-
pacitances, especially if this occurs close to the sam-
pling time of the flipflops. Smartcard chips do not
provide much space for large buffer capacitors, and
voltage threshold sensors often do not react to very
fast transients.

In a potential alternative glitch technique that we
have yet to explore fully, we place two metal needles
on the card surface, only a few hundred micrometers
away from the processor. We then apply spikes of
a few hundred volts for less than a microsecond on
these needles to generate electrical fields in the sil-
icon substrate of sufficient strength to temporarily
shift the threshold voltages of nearby transistors.

2.2.2 Current Analysis

Using a 10–15 Ω resistor in the power supply, we can
measure with an analog/digital converter the fluctu-
ations in the current consumed by the card. Prefer-
ably, the recording should be made with at least
12-bit resolution and the sampling frequency should
be an integer multiple of the card clock frequency.

Drivers on the address and data bus often con-
sist of up to a dozen parallel inverters per bit, each
driving a large capacitive load. They cause a sig-
nificant power-supply short circuit during any tran-
sition. Changing a single bus line from 0 to 1 or
vice versa can contribute in the order of 0.5–1 mA
to the total current at the right time after the clock
edge, such that a 12-bit ADC is sufficient to esti-
mate the number of bus bits that change at a time.
SRAM write operations often generate the strongest

signals. By averaging the current measurements of
many repeated identical transactions, we can even
identify smaller signals that are not transmitted over
the bus. Signals such as carry bit states are of special
interest, because many cryptographic key scheduling
algorithms use shift operations that single out indi-
vidual key bits in the carry flag. Even if the status-
bit changes cannot be measured directly, they often
cause changes in the instruction sequencer or mi-
crocode execution, which then cause a clear change
in the power consumption.

The various instructions cause different levels of
activity in the instruction decoder and arithmetic
units and can often be quite clearly distinguished,
such that parts of algorithms can be reconstructed.
Various units of the processor have their switching
transients at different times relative to the clock
edges and can be separated in high-frequency mea-
surements.

3 Countermeasures

3.1 Randomized Clock Signal

Many non-invasive techniques require the at-
tacker to predict the time at which a certain instruc-
tion is executed. A strictly deterministic processor
that executes the same instruction c clock cycles af-
ter each reset—if provided with the same input at
every cycle—makes this easy. Predictable processor
behaviour also simplifies the use of protocol reaction
times as a covert channel.

The obvious countermeasure is to insert random-
time delays between any observable reaction and
critical operations that might be subject to an at-
tack. If the serial port were the only observable
channel, then a few random delay routine calls con-
trolled by a hardware noise source would seem suf-
ficient. However, since attackers can use cross-
correlation techniques to determine in real-time from
the current fluctuations the currently executed in-
struction sequence, almost every instruction be-
comes an observable reaction, and a few localized
delays will not suffice.

We therefore strongly recommend introducing
timing randomness at the clock-cycle level. A ran-
dom bit-sequence generator that is operated with
the external clock signal should be used to generate
an internal clock signal. This will effectively reduce
the clock frequency by a factor of four, but most
smartcards anyway reduce internally the 3.5 MHz
provided for contact cards and the 13 MHz provided
for contact-less cards.

Hardware random bit generators (usually the am-
plified thermal noise of transistors) are not always



good at producing uniform output statistics at high
bit rates, therefore their output should be smoothed
with an additional simple pseudo-random bit gener-
ator.

The probability that n clock cycles have been exe-
cuted by a card with a randomized clock signal after
c clock cycles have been applied can be described as
a binomial distribution:

p(n, c) = 2−c

[(
c

2n

) (
c

2n + 1

)]

≈
√

8
πc

· e− 8
c ·(n− c

4 )2 as c → ∞

So for instance after we have sent 1000 clock cy-
cles to the smartcard, we can be fairly sure (prob-
ability > 1 − 10−9) that between 200 and 300 of
them have been executed. This distribution can be
used to verify that safety margins for timing-critical
algorithms—such as the timely delivery of a pay-TV
control word—are met with sufficiently high proba-
bility.

Only the clock signals of circuitry such as the se-
rial port and timer need to be supplied directly with
the external clock signal, all other processor parts
can be driven from the randomized clock.

A lack of switching transients during the inactive
periods of the random clock could allow the attacker
to reconstruct the internal clock signal from the con-
sumed current. It is therefore essential that the pro-
cessor shows a characteristic current activity even
during the delay phases of the random clock. This
can be accomplished by driving the bus with ran-
dom values or by causing the microcode to perform
a write access to an unused RAM location while the
processor is inactive.

3.2 Randomized Multithreading

To introduce even more non-determinism into
the execution of algorithms, it is conceivable to de-
sign a multithreaded processor architecture [19] that
schedules the processor by hardware between two
or more threads of execution randomly at a per-
instruction level. Such a processor would have mul-
tiple copies of all registers (accumulator, program
counter, instruction register, etc.), and the combina-
torial logic would be used in a randomly alternating
way to progress the execution state of the threads
represented by these respective register sets.

The simple 8-bit microcontrollers of smartcards
do not feature pipelines and caches and the entire
state is defined only by a very small number of reg-
isters that can relatively easily be duplicated. The
only other necessary addition would be new machine

instructions to fork off the other thread(s) and to
synchronize and terminate them. Multithreaded ap-
plications could interleave some of the many inde-
pendent cryptographic operations needed in secu-
rity protocols. For the remaining time, the auxiliary
threads could just perform random encryptions in
order to generate an realistic current pattern during
the delay periods of the main application.

3.3 Robust Low-frequency Sensor

Bus-observation by e-beam testing becomes much
easier when the processor can be clocked with only
a few kilohertz, and therefore a low-frequency alarm
is commonly found on smartcard processors. How-
ever, simple high-pass or low-pass RC elements are
not sufficient, because by carefully varying the duty
cycle of the clock signal, we can often prevent the
activation of such detectors. A good low-frequency
sensor must trigger if no clock edge has been seen for
longer than some specified time limit (e.g., 0.5 µs).
In this case, the processor must not only be reset im-
mediately, but all bus lines and registers also have to
be grounded quickly, as otherwise the values on them
would remain visible sufficiently long for a voltage-
contrast scan.

Even such carefully designed low-frequency detec-
tors can quite easily be disabled by laser cutting or
FIB editing the RC element. To prevent such simple
tampering, we suggest that an intrinsic self-test be
built into the detector. Any attempt to tamper with
the sensor should result in the malfunction of the en-
tire processor. We have designed such a circuit that
tests the sensor during a required step in the nor-
mal reset sequence. External resets are not directly
forwarded to the internal reset lines, but only cause
an additional frequency divider to reduce the clock
signal. This then activates the low-frequency de-
tector, which then activates the internal reset lines,
which finally deactivate the divider. The processor
has now passed the sensor test and can start normal
operation. The processor is designed such that it
will not run after a power up without a proper in-
ternal reset. A large number of FIB edits would be
necessary to make the processor operational without
the frequency sensor being active.

Other sensor defenses against invasive attacks
should equally be embedded into the normal opera-
tion of the processor, or they will easily be circum-
vented by merely destroying their signal or power
supply connections.

3.4 Destruction of Test Circuitry

Microcontroller production has a yield of typically
around 95%, so each chip has to be thoroughly tested



Figure 8: The interrupted white line at the bot-
tom of the cavity in this FIB secondary-electron im-
age is a blown polysilicon fuse next to a test pad
(MC68HC05SC2x processor).

after production. Test engineers —like microprobing
attackers—have to get full access to a complex cir-
cuit with a small number of probing needles. They
add special test circuitry to each chip, which is usu-
ally a parallel/serial converter for direct access to
many bus and control lines. This test logic is acces-
sible via small probing pads or multiplexed via the
normal I/O pads. On normal microcontrollers, the
test circuitry remains fully intact after the test. In
smartcard processors, it is common practice to blow
polysilicon fuses that disable access to these test cir-
cuits (Fig. 8). However, attackers have been able
to reconnect these with microprobes or FIB editing,
and then simply used the test logic to dump the en-
tire memory content.

Therefore, it is essential that any test circuitry is
not only slightly disabled but structurally destroyed
by the manufacturer. One approach is to place the
test interface for chip n onto the area of chip n + 1
on the wafer, such that cutting the wafer into dies
severs all its parallel connections. A wafer saw usu-
ally removes a 80–200 µm wide area that often only
contains a few process control transistors. Locat-
ing essential parts of the test logic in these cut areas
would eliminate any possibility that even substantial
FIB edits could reactivate it.

3.5 Restricted Program Counter

Abusing the program counter as an address pat-
tern generator significantly simplifies reading out the
entire memory via microprobing or e-beam testing.

Separate watchdog counters that reset the proces-
sor if no jump, call, or return instruction is executed

for a number of cycles would either require many
transistors or are too easily disabled.

Instead, we recommend simply not providing a
program counter that can run over the entire ad-
dress space. A 16-bit program counter can easily
be replaced with the combination of a say 7-bit off-
set counter O and a 16-bit segment register S, such
that the accessed address is S + O. Instead of over-
flowing, the offset counter resets the processor after
reaching its maximum value. Every jump, call, or re-
turn instruction writes the destination address into
S and resets O to zero. The processor will now be
completely unable to execute more than 127 bytes
of machine code without a jump, and no simple FIB
edit will change this. A simple machine-code post-
processor must be used by the programmer to insert
jumps to the next address wherever unconditional
branches are more than 127 bytes apart.

With the program counter now being unavailable,
attackers will next try to increase the number of it-
erations in software loops that read data arrays from
memory to get access to all bytes. This can for in-
stance be achieved with a microprobe that performs
a glitch attack directly on a bus-line. Programmers
who want to use 16-bit counters in loops should keep
this in mind.

3.6 Top-layer Sensor Meshes

Additional metallization layers that form a sen-
sor mesh above the actual circuit and that do
not carry any critical signals remain one of the
more effective annoyances to microprobing attack-
ers. They are found in a few smartcard CPUs such as
the ST16SF48A or in some battery-buffered SRAM
security processors such as the DS5002FPM and
DS1954.

A sensor mesh in which all paths are continu-
ously monitored for interruptions and short-circuits
while power is available prevents laser cutter or se-
lective etching access to the bus lines. Mesh alarms
should immediately trigger a countermeasure such
as zeroizing the non-volatile memory. In addition,
such meshes make the preparation of lower layers
more difficult, because since the etch progresses un-
evenly through them, their pattern remains visible
in the layers below and therefore they complicate
automatic layout reconstruction. Finally, a mesh on
top of a polished oxide layer hides lower layers, which
makes navigation on the chip surface for probing and
FIB editing more tedious.

The implementations of sensor meshes in fielded
products however show a number of quite surpris-
ing design flaws that significantly reduce the protec-
tion (Fig. 9 and 10). The most significant flaw is



Figure 9: Escape route for imprisoned crypto bits:
The ST16SF48A designers generously added this re-
dundant extension of the data bus several micro-
meters beyond the protected mesh area, providing
easy probing access.

Figure 10: Every second line is connected to VCC
or GND at one end and open at the other. Not all
are used to supply lower layers and therefore some
can safely be opened with a laser for probing access
to the bus lines below.

that a mesh breach will only set a flag in a status
register and that zeroization of the memory is left
completely to the application software. We noted
in Section 2.1.4 that a common read-out technique
involves severely disabling the instruction decoder,
therefore software checks for invasive attacks are of
little use.

A well-designed mesh can make attacks by man-
ual microprobing alone rather difficult, and more so-
phisticated FIB editing procedures will be required
to bypass it. Several techniques can be applied here.
The resolution of FIB drilling is much smaller than
the mesh line spacings, therefore it is no problem to
establish contact through three or more metal layers
and make deeply buried signals accessible for micro-

Figure 11: A FIB was used here to drill a fine hole to
a bus line through the gap between two sensor mesh
lines, refill it with metal, and place a metal cross on
top for easy microprobing access.

probing via a platinum or tungsten pad on top of
the passivation layer (Fig. 11). Alternatively, it is
also possible to etch a larger window into the mesh
and then reconnect the loose ends with FIB metal
deposits around it.

4 Conclusion

We have presented a basis for understanding
the mechanisms that make microcontrollers partic-
ularly easy to penetrate. With the restricted pro-
gram counter, the randomized clock signal, and
the tamper-resistant low-frequency sensor, we have
shown some selected examples of low-cost coun-
termeasures that we consider to be quite effective
against a range of attacks.

There are of course numerous other more obvi-
ous countermeasures against some of the commonly
used attack techniques which we cannot cover in de-
tail in this overview. Examples are current regula-
tors and noisy loads against current analysis attacks
and loosely coupled PLLs and edge barriers against
clock glitch attacks. A combination of these together
with e-field sensors and randomized clocks or per-
haps even multithreading hardware in new processor
designs will hopefully make high-speed non-invasive
attacks considerably less likely to succeed. Other
countermeasures in fielded processors such as light
and depassivation sensors have turned out to be of
little use as they can be easily bypassed.

We currently see no really effective short-term
protection against carefully planned invasive tam-
pering involving focused ion-beam tools. Zeroiza-
tion mechanisms for erasing secrets when tampering



is detected require a continuous power supply that
the credit-card form factor does not allow. The at-
tacker can thus safely disable the zeroization mecha-
nism before powering up the processor. Zeroization
remains a highly effective tampering protection for
larger security modules that can afford to store se-
crets in battery-backed SRAM (e.g., DS1954 or IBM
4758), but this is not yet feasible for the smartcard
package.

5 Acknowledgements

The authors would like to thank Ross Anderson,
Simon Moore, Steven Weingart, Matthias Brunner,
Gareth Evans and others for useful and highly inter-
esting discussions.

References

[1] FIPS PUB 140-1: Security Requirements for
Cryptographic Modules. National Institute of
Standards and Technology, U.S. Department of
Commerce, 11 January 1994.

[2] F. Beck: Integrated Circuit Failure Analysis –
A Guide to Preparation Techniques. John Wiley
& Sons, 1998.

[3] T.W. Lee, S.V. Pabbisetty (eds.): Microelec-
tronic Failure Analysis, Desk Reference. 3rd
edition, ASM International, Ohio, 1993, ISBN
0-87170-479-X.

[4] N.H.E. Weste, K. Eshraghian: Principles of
CMOS VLSI Design. Addison-Wesley, 1993.

[5] S.-M. Kang, Y. Leblebici: CMOS Digital Inte-
grated Circuits: Analysis and Design. McGraw-
Hill, 1996.

[6] J. Carter: Microprocessor Architecture and Mi-
croprogramming – A State-Machine Approach.
Prentice-Hall, 1996.

[7] S.M. Sze: Semiconductor Devices – Physics and
Technology. John Wiley & Sons, 1985.

[8] T.R. Corle, G.S. Kino: Confocal Scanning Op-
tical Microscopy and Related Imaging Systems.
Academic Press, 1996.

[9] S. Blythe, et al.: Layout Reconstruction of
Complex Silicon Chips. IEEE Journal of Solid-
State Circuits, 28(2):138–145, February 1993.

[10] D.P. Maher: Fault Induction Attacks, Tamper
Resistance, and Hostile Reverse Engineering

in Perspective. In R. Hirschfeld (ed.): Finan-
cial Cryptography, FC ’97, Proceedings, LNCS
1318, pp. 109–121, Springer-Verlag, 1997.

[11] R.J. Anderson, M.G. Kuhn: Low Cost At-
tacks on Tamper Resistant Devices. In M. Lo-
mas, et al. (eds.), Security Protocols, 5th Inter-
national Workshop, LNCS 1361, pp. 125–136,
Springer-Verlag, 1997

[12] R.J. Anderson, M.G. Kuhn: Tamper Resis-
tance — a Cautionary Note. In The Second
USENIX Workshop on Electronic Commerce
Proceedings, pp. 1–11, Oakland, California, 18–
21 November 1996.

[13] J.H. Daniel, D.F. Moore, J.F. Walker: Fo-
cused Ion Beams for Microfabrication. Engi-
neering Science and Education Journal, pp. 53–
56, April 1998.

[14] H. P. Feuerbaum: Electron Beam Testing:
Methods and Applications. Scanning, 5(1):14–
24, 1982.

[15] H.J.M. Veendrick: Short-Circuit Dissipation
of Static CMOS Circuitry and Its Impact on
the Design of Buffer Circuits. IEEE Journal
of Solid-State Circuits, 19(4):468–473, August
1984.

[16] D. Boneh, R.A. DeMillo, R.J. Lipton: On the
Importance of Checking Cryptographic Pro-
tocols for Faults. In Advances in Cryptology
– EUROCRYPT ’97, LNCS 1233, pp. 37–51,
Springer-Verlag, 1997.

[17] F. Bao, et al.: Breaking Public Key Cryp-
tosystems on Tamper Resistant Devices in the
Presence of Transient Faults. In M. Lomas,
et al. (eds.), Security Protocols, 5th Interna-
tional Workshop, LNCS 1361, pp. 115–124,
Springer-Verlag, 1997.

[18] M. Joye, J.-J. Quisquater, F. Bao, R. H.
Deng: RSA-type Signatures in the Presence
of Transient Faults. In Cryptography and Cod-
ing, LNCS 1355, pp. 155–160, Springer-Verlag,
1997.

[19] S.W. Moore: Multithreaded Processor Design.
Kluwer Academic Publishers, 1996.


