
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Efficient Block Ciphers for Smartcards

Joan Daemen
Proton World International

Vincent Rijmen
K.U. Leuven

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



E�cient Block Ciphers for Smartcards

Joan Daemen

Proton World Int'l

Zweefvliegtuigstraat 10

B-1130 Brussel, Belgium

daemen.j@protonworld.com

Vincent Rijmen�

K.U.Leuven, Dept. ESAT

Kard. Mercierlaan 94

B-3001 Heverlee, Belgium

vincent.rijmen@esat.kuleuven.ac.be

April 1, 1999

Abstract

We present a family of block ciphers that
can be implemented very e�ciently on cheap
Smartcard processors. The ciphers use a
very small amount of RAM and a reasonable
amount of ROM. Both cipher execution and
key setup/key change are very fast. The ci-
phers resist theoretical and practical cryptan-
alytic attacks and in their design timing and
power analysis attacks have been taken into
account.

1 Introduction

In many applications Smartcards are used
as portable secure devices. For their secu-
rity the applications make use of MAC gener-
ation/veri�cation and encryption/decryption
using a block cipher. We present a family of
block ciphers that are suited for this purpose.
Additionally, all these ciphers can be used
as e�cient one-way function and the variants
with block size of 196 bits or higher are ef-
�cient compression function to form an iter-
ated cryptographic hash function. The fam-
ily is named after its �rst member that was

�F.W.O. Postdoctoral researcher, sponsored by
the Fund for Scienti�c Research - Flanders (Belgium).

designed and published: Square [1].

Currently, the Square family consists of
three ciphers: Square, with a block length
and a key length of 128 bits; BKSQ with a
block length of 96 bits and a variable key
length (96, 144 or 192 bits); and Rijndael
with a variable block length and key length
(both can be independently speci�ed at 128,
192 or 256 bits). The three ciphers are de-
signed to be secure against all known crypto-
graphic attacks. For a treatment of crypto-
graphic security and the design rationale we
refer to [1, 2, 3]. This paper treats implemen-
tation aspects and in particular those speci�c
for Smartcards.

In Section 2 we present the common ci-
pher structure of the Square family. Section 3
discusses the implementation of the ciphers
on typical Smartcard processors. Section 4
treats the features of the presented ciphers
to thwart attacks that exploit typical weak-
nesses of cipher implementations on Smart-
cards. Section 5 lists concrete performance
�gures.



2 Cipher structure

A Square cipher is an iterated block cipher:
it consists of the repeated application of a
round transformation that is parameterized
by a round key. The round keys are derived
from the cipher key by means of a key sched-
ule. The block length is indicated by n, the
cipher key length by m and the number of
rounds by r.

2.1 The round transformation

The round transformation is composed
of four invertible uniform transformations,
called steps. These steps can be described
most easily by thinking of the input as a rect-
angular byte array. The dimensions of this
byte array vary for the di�erent members of
the family, and depend on the block size. The
four steps are described as follows (cf. Fig-
ure 1).

The di�usion step: Every byte is replaced
by a linear combination of the bytes
within the same column. The bytes
are considered as elements in the �eld
GF(28).

The dispersion step: A permutation of
the bytes over di�erent columns. This is
done by shifting the rows of the byte ar-
ray over di�erent amounts, or by a trans-
position of the byte array (for Square).

The nonlinear step: A substitution of the
bytes by means of a nonlinear lookup ta-
ble.

The round key addition: The bytes are
EXORed with an n-bit round key.

The choice for the operations in the dif-
ferent steps has been in
uenced by our wish
to make the cipher e�ciently implementable
on Smartcards. The key addition, the disper-
sion and the nonlinear step all can be imple-
mented using operations on individual bytes,
the natural \unit" on an 8-bit processor. In
the di�usion step, inter-byte di�usion has to
be realised. On a 32-bit processor, this can

be done by using operations like 32-bit ro-
tations, multiplications, . . . , but the use of
these operations complicates Smartcard im-
plementations. In the Square family, the dif-
fusion step can be described as a matrix mul-
tiplication (cf. Section 3). The coe�cients of
the multiplication matrix have been selected
carefully to provide di�usion that is optimal
in a very de�nite, mathematical sense, while
at the same time allowing very e�cient imple-
mentation on standard Smartcard processors.

2.2 The key schedule

The round keys have length n and r + 1
round keys are required: one for every round
and a �nal key addition. The key schedule
can be thought to occur in two phases.

Generation of the expanded key: The
expanded key is initialized by taking
the m-bit cipher key. It is expanded by
iteratively attaching m-bit blocks that
are computed from the previously at-
tached block by means of an LFSR-like
computation. This is repeated until the
expanded key has length n(r + 1).

Extraction of round keys: Round key i is
taken from the expanded key by taking
the i-th n-bit block.

The LFSR computations in the key expan-
sion ensure that any pair of di�erent cipher
keys result in a pair of expanded keys with
a large Hamming di�erence. The addition of
round constants removes symmetry between
the rounds. This is necessary in order to
provide resistance against related-key attacks
and attacks where the cipher key is known,
e.g., if the cipher is used as the compression
function of a hash function.

3 Speci�c Smartcard implemen-

tation aspects

In this section we discuss the implementa-
tion of the cipher on 8-bit processors with a



-

Nonlinear step

a b c d

e f g h

i j k l

S[a] S[b] S[c] S[d]

S[e] S[f ] S[g] S[h]

S[i] S[j] S[k] S[l]

-

-

-

Di�usion step

a b c d

e f g h

i j k l

a b c d

h e f g

k l i j

-

Dispersion step

Figure 1: Graphical illustration of some basic operations of the Square ciphers.

limited amount of RAM and ROM available,
i.e., typical Smartcard processors.

3.1 The round transformation

The round transformation can be imple-
mented by serially performing the di�erent
steps.

The nonlinear step consists of a table
lookup operation that is the same for all
input bytes. The 256-byte lookup table is
hard-coded in the cipher program and the ta-
ble lookup can be implemented with a sim-
ple load accumulator instruction in indexed
mode. The round key addition is imple-
mented with the EXOR instruction. The byte
dispersion step does not take dedicated in-
structions but is embodied in the way input
bytes are loaded and stored in the preced-
ing/succeeding steps. These three steps can
be implemented in the following way: the
byte is loaded into the index register, an in-
dexed load accumulator instruction is per-
formed, the round key byte is EXORed and
the accumulator is stored to the (hard coded)

location.

Implementing the di�usion step is less
straightforward. It takes the computation
of additions and multiplication in the �eld
GF(28). Addition over this �eld corresponds
to the readily available EXOR instruction.
The multiplication factors are the elements
of GF(28) represented by byte values 1, 2 and
3. The multiplication by these factors can be
done as follows:

� 1 is the identity in GF(28) and multipli-
cation by it does not require any compu-
tation at all.

� Multiplication by 2 in the �nite �eld
could be implemented as a left shift, fol-
lowed by a reduction. However, the exe-
cution time and/or the power consump-
tion pattern of a reduction depend on the
value of the operand. If the MSB of the
operand is 1, the reduction takes place,
if 0, the reduction can be skipped. This
can be done in constant time by execut-
ing dummy instructions (e.g., NOP) in
the case the reduction is skipped. How-
ever, this gives rise to two di�erent se-



quences of operations. The operation
can be implemented with a �xed series
of instructions by implementing the mul-
tiplication by 2 as a table lookup with a
dedicated lookup table 2mult[�], that is
de�ned as

2mult[a] = 2 � a:

The fact that the execution time is inde-
pendent of the argument makes this ta-
ble lookup implementation timing attack
resistant. We explain in Section 4 how it
can be protected against power analysis.

� Multiplication by 3 can be obtained by
performing multiplication with 2 and
adding (EXORing) the argument itself:
3 � a = (2� 1) � a = 2mult[a]� a.

In Rijndael and Square the columns consist
of 4 bytes each and the di�usion step applied
to a column can be described by a matrix
multiplication, that is given by:

2
664

out0
out1
out2
out3

3
775 =

2
664

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

3
775 �

2
664

in0
in1
in2
in3

3
775 :

This can be e�ciently implemented as:

p = in0 � in1 � in2 � in3;

out0 = 2mult[in0 � in1]; out0� = p� in0;

out1 = 2mult[in1 � in2]; out1� = p� in1;

out2 = 2mult[in2 � in3]; out2� = p� in2;

out3 = 2mult[in3 � in0]; out3� = p� in3;

This implementation takes only 15 EXORs
and 4 table lookups per column. It requires
temporary storage for 2 bytes: the variables
p and in0 (if the output bu�er is equal to the
input bu�er).

In BKSQ the columns consist of 3 bytes
and the di�usion step is given by

2
4

out0
out1
out2

3
5 =

2
4

3 2 2
2 3 2
2 2 3

3
5 �

2
4

in0
in1
in2

3
5 :

This can be implemented with only 5 EXORs
and a single table lookup per column and only
one byte of temporary storage is needed.

3.2 The inverse round transforma-
tion

The Square ciphers do not have the Feis-
tel structure, like e.g. the DES. Whereas for
Feistel ciphers the operation of the cipher can
be inverted by simply reordering the round
keys, this is not possible for the Square ci-
phers. Therefore, if the inverse operation of
the cipher has to be implemented, it is nec-
essary to implement the inverse round oper-
ation separately.

The inverse of the round key addition is
the same as the round key addition: EXOR
with the round key. The inverse of the non-
linear step is implemented like the linear step,
but uses a di�erent lookup table. The byte
dispersion step is again embodied in the way
input bytes are loaded and stored in the other
steps.

The inverse of the di�usion step consists
of a multiplication with the inverse matrix.
For Rijndael and Square, the inverse of the
di�usion step is given by:

2
664

out0
out1
out2
out3

3
775 =

2
664

E 9 D B

B E 9 D

D B E 9
9 D B E

3
775 �

2
664

in0
in1
in2
in3

3
775 :

Here B, D and E denote hexadecimal values.
It is easy to see that this multiplication will
require more operations than the original dif-
fusion step, namely 21 EXORS and 8 table
lookups using only the previously de�ned ta-
ble 2mult[�]. If additional tables are used, the
performance loss can be reduced. The storage
requirements do not increase.

Note that most applications do not require
the inverse operation of the cipher to be exe-
cuted on the Smartcard. First of all, most of
the applications use the cipher for the gen-
eration and veri�cation of MACs and as a
one-way function in the generation of session
keys. In the cases where encipherment is ac-
tually used, the CFB or OFB mode can be
used, where the inverse cipher is not used.



3.3 The key schedule

In a Smartcard implementation, computing
the expanded key in a single shot and storing
it for use during the actual encryption, would
require too much RAM. Therefore, the key
expansion has been de�ned in such a way that
it can be implemented in a cyclic bu�er with
a size no larger than the size of the cipher key.
The expansion operation has been kept very
simple and e�cient to make fast just-in-time
key generation possible.

In the case that the cipher key length is
equal to the block length, the round key is
simply updated in between rounds. In the
other cases, a small amount of additional se-
quence control is required. All operations in
the key update can be e�ciently implemented
using EXORs and table lookups.

3.4 32-bit processors

On a 32-bit processor, an e�cient imple-
mentation of the round transformation will
use four large tables (1k each) that combine
the e�ect of the nonlinear and the dispersion
step. The tables will �t nicely in the cache of
most modern 32-bit processors.

The performance is independent of the
value of the multiplication factors in the dis-
persion step. The inverse operation of the ci-
pher has the same performance as the forward
operation, but uses a di�erent set of tables.

4 Smartcard-speci�c attacks

Recently, several attacks have been demon-
strated that exploit weaknesses of cipher
implementations, rather than the inherent
mathematical properties of the actual cipher
[4]. These attacks exploit information such
as timing and power consumption to obtain
information on the cipher key or plaintext. In
this section we will explain that the ciphers
of the Square family lend themselves to im-
plementations that provide resistance against
this type of attack typical for Smartcards.

If programmed as explained in the previ-
ous section, the cipher execution consists of a
series of instructions that is completely �xed:
there are no conditional branches whose exe-
cution depends on the cipher key and input.
This thwarts the following attacks:

Timing attack: This attack extracts
key/plaintext information from the
CPU time consumed by the cipher.
For the Square ciphers the CPU time
is independent of the cipher key and
plaintext.

Simple power analysis: This attack ex-
tracts key/plaintext information by ob-
serving the power consumption during
the cipher computation. Di�erent CPU
instructions have di�erent power con-
sumption and this attack allows to deter-
mine whether one or another conditional
branch is taken in a computation. For
the Square ciphers the series of instruc-
tions is �xed.

A more powerful attack is di�erential
power analysis. This attack exploits the fact
the power consumed by the CPU not only de-
pends on the instruction that is executed, but
also on the values of the operands. It com-
bines the application of cryptanalytic tech-
niques, statistics and power analysis. Basi-
cally, it allows the determination of the value
of individual bits of intermediary computa-
tion results of the cipher by an attacker that
does not even need to know the sequence of
instructions. The basic 
aw that is exploited
is that the power consumed by an instruction
depends on the values of the bits that are
handled by the command. To thwart these
attacks, two mechanisms are proposed:

scrambling: To complicate the exploitation
of power consumption bias, e.g., by us-
ing programming tricks, such as inser-
tion of a variable amount of NOPS, or
better, unnecessary instructions in be-
tween rounds. Scrambling can be applied
reasonably independent from the cipher
structure.

curing: To make the power consumption of
the relevant instructions used in a cipher



implementation much less dependent on
the value of the treated bits. One plau-
sible way to cure instructions is by the
introduction of symmetry. For example:
if a bit is stored in (loaded from) RAM,
also store (load) its complement. If two
bits are EXORed, execute all four di�er-
ent combinations: a�b; �a�b; a��b; �a��b).
Typically, additional hardware has to be
introduced for every sensitive instruc-
tion. Therefore it is an advantage to
have few di�erent instructions that han-
dle key- or plaintext-dependent bits.

The instructions that handle key- or plain-
text dependent bits in our implementations
of the ciphers of the Square family are:

� EXOR with accumulator, direct address-
ing;

� store accumulator, direct addressing;

� load accumulator, direct addressing;

� load accumulator, indexed addressing
(o�set + index register)

These are only four instructions. Most other
modern ciphers [5] use an instruction set that
is substantially larger, due to the use of arith-
metic operations. Moreover, the balancing
of arithmetic operations is likely to be more
complicated than the balancing of the EXOR.
It can be seen that there is arithmetic addi-
tion in the indexed addressing. However, if
the lookup tables are positioned at physical
addresses that are a multiple of 256, the ad-
dress computation can be reduced to a mere
concatenation of index and o�set. Obviously,
this implies a modi�cation of the ALU hard-
ware.

5 Performance

We implemented the Square ciphers on two
di�erent types of microprocessors that are
representative for Smartcards in use today.
These implementations have been optimized
towards minimal RAM usage and execution

time while guaranteeing a �xed execution
time. Table 1 shows that besides the storage
of the current round key and the intermedi-
ate ciphertext, only four bytes of RAM are
used. The numbers compare very favorably
with the �gures for the other AES candidate
algorithms.

The timings given include the key setup
and algorithm setup time. Only the for-
ward operation of the ciphers have been im-
plemented, backwards operation is expected
to be slower because the inverse of the di�u-
sion step cannot be implemented as e�ciently
(cf. Section 3.2). The inverse di�usion step is
between 1.5 and 2 times slower than the orig-
inal di�usion step. Since the di�usion step is
dominant in the execution of the ciphers on a
Smartcard, about the same performance loss
can be expected for the full cipher.

The implementations on the Motorola
68HC08 microprocessor have been done us-
ing the 68HC08 development tools by P&E
Microcomputer Systems, Woburn, MA USA,
the IASM08 68HC08 Integrated Assembler
and the SIML8 68HC08 simulator. No op-
timization of code length has been attempted
for this processor. Execution time, code size
and required RAM for a number of imple-
mentations are given in Table 1 (1 cycle = 1
oscillator period = 0.25 �sec).

Rijndael has also been implemented on the
Intel 8051 microprocessor, using 8051 De-
velopment tools of Keil Elektronik: �Vision
IDE for Windows and dScope Debug-
ger/Simulator for Windows. Execution time
for several code sizes is given in Table 2 (1
cycle = 12 oscillator periods = 1 �sec).

6 Availability

Several implementations of Square
in C and Java are available from the
URL http://www.esat.kuleuven.ac.be/

~rijmen/square.

More information on Rijndael and a refer-
ence implementation are available from the
URL http://www.esat.kuleuven.ac.be/

~rijmen/rijndael .



Cipher Code size Required RAM Number of cycles Execution time
(Key, block length) (bytes) (bytes) (msec)

BKSQ(96,96) 900 28 6500 1.6
Square(128,128) 919 36 6800 1.7
Rijndael(128,128) 919 36 8390 2.1
Rijndael(192,128) 1170 44 10780 2.7
Rijndael(256,128) 1135 52 12490 3.1

Table 1: Code size, required RAM and execution time for the square ciphers in Motorola
68HC08 Assembler.

(Key, block length) Code size Number of cycles Execution time
(bytes) (msec)

768 4065 4.1
(128,128) 826 3744 3.7

1016 3168 3.2
(192,128) 1125 4512 4.5
(256,128) 1041 5221 5.2

Table 2: Code size and execution time for Rijndael in Intel 8051 assembler.

References

[1] J. Daemen, L.R. Knudsen, V. Rijmen,
\The Square encryption algorithm," Dr.

Dobb's Journal, Vol. 22, No. 10, October
1997, pp. 54{56.

[2] J. Daemen and V. Rijmen, \The Rijndael
block cipher," presented at the First Ad-
vanced Encryption Standard Conference,
Ventura (California), 1998, available from
URL http://www.nist.gov/aes.

[3] J. Daemen and V. Rijmen, \The Block
Cipher BKSQ," Proc. of CARDIS'98,

LNCS, Springer-Verlag, to appear.

[4] P.C. Kocher, \Timing attacks on imple-
mentations of Di�e-Hellman, RSA, DSS
and other systems," Advances in Cryptol-

ogy, Proceedings Crypto'96, LNCS 1109,

N. Koblitz, Ed., Springer-Verlag, 1996,
pp. 146{158.

[5] NIST's AES Homepage:
http://www.nist.gov/aes.


