
The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium

Salt Lake City, Utah, June 1995.

For more information about USENIX Association contact:
1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

WAN-hacking with AutoHack--
Auditing security behind the firewall

Alec Muffett
Sun Microsystems, United Kingdom



WAN�hacking with AutoHack

� Auditing security behind the �rewall
To appear in the �th USENIX Unix Security Symposium� �th June ����

Alec Mu�ett

Network Security Group

Sun Microsystems

United Kingdom�

June �� ����

Abstract

This paper is a review of an ongoing project to sim�
plify security auditing of the world�wide tcp�ip net�
work of some thirty thousand hosts� internal to Sun
Microsystems�
The paper also examines the issues which this pro�

ject raises� it details the conception� design� develop�
ment of� and one year�s results gathered from� Auto�
Hack� a tool specially created to probe� audit� and
produce security reports for� a tcp�ip network of this
size�

Introduction�

One of the many problems to beset systems admin�
istrators who seek secure their machines is a form of
entropy� Over periods of time ranging from minutes
to months� the e�ective security of a machine attached
to a network will diminish�
Even if a host has been �locked down� in accord�

ance with some comprehensive security policy� as
time progresses more people will become aware of the
host�s existence� and hitherto undiscovered 	aws in
its hardware� software� or inadequacies in the stand�
ard to which it was secured� will come to light�
In short
 even though the machine per se does not

change� its defenses weaken as more becomes known
about them�
Because information regarding security holes is of�

ten slow to propagate amongst less�motivated systems
administrators� it is common to �nd pockets of en�
tropy like this� where otherwise notoriously insecure
software is still being used on live �and perversely�
often mission�critical systems� because the software
is known to be �stable� �ie
 the software is old and

�e�mail� alec�mu�ett�uk�sun�com or alec�hicom�org

its failings are not known to local systems adminis�
trations sta��
Further� if the administrators are regularly forced

to alter a host�s setup in order to serve the needs
of a changing user base� issues of miscon�guration
invariably arise


� �dead� accounts which exist in obscure parts of
the �le�system�

� long�forgotten systems software packages�

� �quick hacks� to system security to �x some
emergency situation� never set right� � �

� � �and when compounded by problems of manage�
ment �eg
 a knowlegable or aggressive user base� re�
mote administration of widely distributed sites� the
generally poor scalability of systems administration
tasks then these basic problems of network security
can appear beyond the administrator�s control�

The modern response to this situation is to �rewall
your systems� at some level restricting access to your
machines on the basis of who is trying to access them�
and from where� Although this relieves much of the
stress placed upon administration sta�� the �unthink�
able� question remains


What if someone breaks through the �rewall�

The trouble with �rewalls� � �

Firewalling�CB��� Ran��� your system from the Inter�
net �or otherwise partitioning your network by setting
up internal �rewalls brings many problems� possibly
the worst of which is that the presence of a �rewall
encourages slackness on the �secure� side of the net�
work�



The misconception held by network users and man�
agement alike is that threats to security are �con�
tained� by the �rewall�s presence� that someone else
is �dealing� with security� and that therefore the im�
portance of maintaining security on interior networks
is somehow lessened�
It is because of this belief that many �often corpor�

ate networks �t the �crunchy shell with a soft centre�
model of network security� Around the core of critical
datacentres exists a light� 	u�y network full of holes�
which in turn is supposedly coated with a rock�hard
shell of security � the �rewall�
This model is rapidly losing ground as a viable

large�scale network architecture in the commercial
world� With the burgeoning of the Internet� work
practices are changing


� People would like to be able to work from home�
accessing their �desktop� machines via the Inter�
net�

� People want to work nomadically� carrying their
work environment �their laptop with them� read�
ing and writing e�mail from the hotel in which
they are staying�

� Companies want to share �nancial data with each
other� their banks� their remotest o�ces� the
people who deliver their goods�

� Large companies �take over� smaller ones and
must then subsume an entire network of dubious
trustworthiness into their own�

Implementation of the �improvements� mentioned
above will require holes to be drilled through the pro�
tective shell of your �rewall� with two possible out�
comes
 something gets in through the holes and eats
your systems� or all your data leaks out the bottom�
The technology necessary to safely share data with

remote parties� or to shepherd third�party tra�c from
the Internet along your own networks into �semi�
public� datacentres� consists largely of bleeding�edge
proprietary vapourware� or is sorely behind the times�
or is tied up in patent lawsuits�

Herein lies both a problem and an opportunity�

In this period of rapid growth of the Internet�s im�
portance and usage� whilst we are lacking the soft�
ware� technology and standards required to create
	exible� �open�� and yet secure data�sharing network
architectures� the tasks that we must undertake to
maintain security in the meantime seem obvious


� Restrict your data sharing�

� Watch your �rewall� very� very carefully�

� Harden your network throughout� securing all in�
ternal and external interfaces�

� Perform regular auditing to detect new hosts that
have been attached to your network�

� Fix the holes that you �nd�

� � � several points� all of which revolve around one
key requirement
 that you are able to comprehens�
ively audit the security of all hosts that are connected
to the network� and present comprehensible reports of
your �ndings to those with the power to �x any faults
that exist�
Given the general desirability of maintaining high

levels of system integrity�� as well as the long�term be�
ne�ts that could be reaped from early introduction of
rigorous� network�wide auditing� it seemed to us� that
it would be useful to obtain or create a tool that would
allow us to audit our internal network from a central
location� producing detailed reports that could be fed
back to grass�roots systems administration personnel�
to help them perform the necessary �xes�

Tools at our disposal�

Security tools can typically be divided into two cat�
egories


proactive � tools which are �defensive� in nature�
which are not easily utilised for nefarious pur�
poses�

reactive � analytic �o�ensive� tools which may be
of use to both the systems administrator� and to
members of the hacker community�

The �rst group includes software such as Tripwire�
password��le �shadowing� systems and so�called �fas�
cist� passwd programs �such as passwd� or npasswd�
and software like S�Key � programs which strengthen
authentication mechanisms or detect anomalous beha�
viour on your system�
However� to the would�be auditor� the second cat�

egory is much more interesting� including tools that
can e�ect a break�in to �or similarly compromise a
system� regardless of whether the perpetrator is leg�
ally permitted to do so�
Programs of this type �eg
 COPS� Crack� TAMU�

ISS� ypx� nfsbug� and now Satan are not uncommon�
because they are precisely the sort of program written
by the hackers who want to break into your system�

�
� � � especially since some sources indicate that ������� of

computer security incidents are caused by internal users�
�Sun	s Network Security Group



Since the only way to prove the robustness of a
system is to attack it� it seemed logical that we needed
to �nd or create a network auditing tool that could
probe each of our hosts in turn� in the manner of a
hacker� if we were going to harden our intra�network
security�
The host�oriented reactive tools described above

did not appear entirely suitable for our needs� be�
cause most of them are meant to be run upon the
host in question to check for con�gurational errors�
rather than to attack the host over the network�

The two tools which appeared nearest to what we
wanted were


ISS the �Internet Security Scanner� package by
Chris Klaus�

Satan a �Security Analysis Tool for Auditing Net�
works�� by Dan Farmer and Wietse Venema�

The �rst two releases of ISS to USENET were as
freeware� consisting of single programs which could
serially probe a range of ip�addresses in a variety of
ways� producing reports �on the 	y��
Aside from the interest it generated by its being

the �rst generally available network probe� ISS was
also notable because it called upon external programs
to provide extra functionality �eg
 ypx� a nis passwd�
map snar�ng tool� However� not long after the initial
release� ISS became a commercial product� and we
chose not to pursue investigation of it any further�

Satan� as described by Dan Farmer and Wietse
Venema�FV��� sounded immensely suited to our
needs� A con�gurable network probing tool� capable
of digesting information from separate attack mod�
ules� generating reports as it goes�
The �rst problem with Satan� however� was that

the software was not generally available at the time
when this project began��
It also appeared�Far��� that the upcoming software

wasn�t exactly suited to our needs� Rather than large�
scale auditing and report generation� Satan appears
to be aimed at investigation of the �web of trust� in
network security� building a dependency graph that
lists which machines trust which other machines� to
some �nite tree depth�

Reasoning that all hosts on our network are of equal
importance to us�� we decided that �if you can�t break
into any of them� then it doesn�t matter who trusts
whom�� Bulk auditing was of greater interest� and the
matter of securing �hot�spots� in the network could
come later�

�May 
���
�
� � � although some are more equal than others� � �

With this in mind� the goal of our project became
clear
 create a scalable� extensible tool capable ofwide
�as opposed to deep auditing of the entire network�
and with the ability to retrospectively produce inform�
ative security reports for any arbitrary list of hosts�

Evil Designs� � �

AutoHack is a tool which wasn�t so much developed
as congealed from good and bad ideas� and it was con�
stantly re�written until �mostly only the good ideas
remained� Certain design requirements were enforced
by the limited resources at our disposal� but it can�
not be said that there was ever a preconceived �design
plan��

In retrospect this was a good thing� armed with
nothing more than the spare cycles on a personal
workstation�� half a gigabyte of free disk space� and
the political authority to spot�audit the internal net�
work � the lack of deadlines and initial managerial in�
volvement provided the freedom to experiment� throw
away code� and to generally keep going until the soft�
ware just �looked right��

The goals seemed obvious


� Simplicity should be pervasive
 simple data
formats� sensible ordering of information� and
easy access to that information�

� The user should be able to create new probes and
add them to the suite without having to modify
any part of the package� other than the report
writer�

� Data received from individual probes should be
stored verbatim� to permit incremental improve�
ments to modules �eg
 the report writing soft�
ware without forcing a complete re�scan of the
network�

�It should be noted that this immediately sug�
gests the separation of function into data�
gathering and data�interpreting modules�

� Modularity is very desirable� Apart from the be�
ne�ts of being able to rewrite or add new modules
to the suite without a�ecting other code� adopting
the �processes� pipes and �lters� model would
reap bene�ts by allowing us to utilise the exist�
ing software base� eg
 tftp and rsh clients� saving
time otherwise spent rewriting protocol drivers�

�A �Mb SPARCStation 
�����



���bin�sh

while read host

do

for user in root daemon bin sys smtp adm nobody

do

su �user �c �rsh �n �host �echo �host��user��

done

done

Figure �
 Anatomy of AutoHack v����

� The user interface should be both comprehens�
ible and idiot�proof� and should provide no addi�
tional functionality other than to provide struc�
ture to the functionality of the underlying mod�
ules� permitting us to throw away or rewrite the
user�interface without cost�

� All code should be written with scalability in
mind� the worst�case scenario for a network probe
is that it should be set to scan the entire Inter�
net� it should either be able to cope with this
load with little or �preferably no modi�cation�
or return a sensible error message to the user�

� The data�gathering component should be written
so that it can be restricted to using no more re�
sources than are comfortably available� in terms
of network bandwidth� etc� Speed is important�
but it is not as important as keeping your local
network manager happy�� If the program can be
designed in such a way that complications such as
�le�locking� etc� never become problems in nor�
mal operation� so much the better�

Much of the above appears peripheral to the matter
of probing hosts and discovering their security holes�
but as we shall discuss� much of the power of Auto�
Hack lies in its ability to cope with almost any size
of task that is given to it�

The Attack Engine�

As shown in Figure �� AutoHack began as a trivial
shell�script probing for the local network for systems
with �promiscuous� trust �brought on by nis wild�
cards in �etc�hosts�equiv� ��rhosts� or similar�
Once it became apparent that the result from a wider
�audit� would be interesting� the program began to
evolve�

�
� � � or ignorant� Either� It doesn	t matter which� � �

Problems that needed to be addressed immediately
at the start of the project� included


� The matter of host availability� The connection
phase of the rsh process could �hang� the script
for several minutes at a time if the remote host
was unreachable for some reason�

The simplistic �x for this problem involved test�
ing the host�s availability by using ping� before
trying to rsh�

� The matter of timeouts� On rare occasions the
rsh process would inexplicably hang during exe�
cution� which again staunched the 	ow of data�

Taking the view that inexplicable �stoppages� of
this sort would become more common and even
less explicable as AutoHack reached out further
into the WAN environment � into networks that
were beyond our immediate administrative con�
trol � we decided that the logical solution to this
problem was to wrap the probe processes with
some form of �watcher�� a program designed to
kill the probe after a speci�ed quantum of wall�
clock time has expired�

Generalising� this led to the creation of the
timeout script� which launches a process spe�
ci�ed on the command line and then allows the
process to run for a speci�ed period of time ran�
ging from seconds to days� killing it� �rst with
sigterm and then sigkill� when the period of
time is over�

This simple interface to robust timeout function�
ality was responsible for a sudden rush in the
creation of probes based upon utilities found in
the standard Unix networking toolkit �some of
which were otherwise too untrustworthy to be
suitable� and timeout thus became the mainstay

�The prime suspect in our complex networked environ�
ment was that this was caused by a subtle interaction between
in�rshd� nfs and automounter�



genaddr sortaddr

genaddr sortaddr

uniqaddr

uniqaddr reportaddr

a) AutoHack

report

report.writer

mux

attack

module
attack

module
attack

engine

engine

enginetestaddr

testaddr

testaddr

module

database

b) HackReport

avoidaddr

(background)

Figure �
 Anatomy of a AutoHack v��� and b HackReport�

of ensuring AutoHack �s reliability in the face of
extreme system and network load�

Problems that we encountered only once we had
begun probing the network� included


� The output� Even with these extra enhance�
ments� there is obviously so much more that
could be done with this script� obtaining inform�
ation about other services available on the target
hosts

� The data collection mechanism itself� The fact
that the data generated by this probe could only
be reproduced by re�scanning the network � un�
less it was explicitly saved into a �le by the user
� placed an unacceptable strain upon the devel�
opment� Repeating sweep after sweep of the local
network was both irritating� and slow�

It was at about this time that AutoHack began to
take a slightly di�erent direction from the serial �at�
tack and report� scheme used by other network scan�
ners�
The original loop was modi�ed to invoke a series

of separate �probe� modules� specifying the target
host�s ip�address as the �rst argument� Timeouts
were handled by the modules themselves so that the
�driver� shell�script did not have to be modi�ed when
new probes with di�erent runtimes were introduced�

The most important innovation� however� was a
new way of indexing the output created by the probes�
Results from each probe were stored as separate �les
in individual directories �referred to as �bins� with
one �bin� for each host in the database�
Originally these bins were grouped together in a

single 	at database directory� and each bin was
named after the host concerned� eg


database�mailhost�foo�com�

References to textual hostnames were later replaced
by ip�addresses� making access to the database �tree�
less fraught with ambiguity� but eventually� as the
database directory grew� experiment demonstrated
that the most 	exible and e�cient naming convention
for these bins was as a hierarchy re	ecting the ip�
address� for instance


database�	
������	�

� � � is the bin that would store reports for localhost�

Although this appears at �rst to be a unjusti�ably
expensive method of storing data� the bene�ts are im�
mense
 the database structure scales extremely well�
permits fast access� � simpli�es incremental updating
on a per�host or even a per�probe basis� obviates most

�A directory will never contain more than ��� links� typ�
ically only one quarter of that number of bins populate the
third�level directories in the database�



�le�locking or record�locking issues� and is easily im�
plemented with tools from the standard Unix toolkit�

With the new program structure came the oppor�
tunity to experiment� as the original shell�script was
designed to read a list of target hostnames or ip�
addresses from stdin� after experimentation it was
found that a small but not negligible increase in
throughput could be achieved by asynchronously test�
ing the reachability of machines before attacking them�
rather than pinging them synchronously before attack�
ing� Thus was created testaddr� a simple front�end to
the ping program� reading a stream of ip�addresses
from stdin and �ltering out all those which are not
reachable�

The AutoHack script was now reduced to a simple
argument�parsing shell�script which created a stream
of ip�addresses� pinged them in one process� and
piped the live addresses into a hacking engine� This
engine process in turn creates the database bins and
launches the probes upon the addresses that it is sup�
plied with� never	 wasting time attacking �dead� ma�
chines�

This is the basic structure which is still used today
�Figure �� and which has endured some � major and
�� minor revisions� Testaddr itself has been changed
slightly� and now consists of a single process which
sends and receives udp �echo� packets to test host
reachability� saving the overhead of spawning a large
number of individual ping processes� although ping
functionality is also available if desired�

Further re�nements to the pipeline included the in�
troduction of sortaddr and uniqaddr �lters which per�
form functions similar to their Unix counterparts�
 �
Given the central nature of a host�s ip�address in the
database� an intelligent resolvaddr module was writ�
ten to canonicalise streams of ip�addresses and�or
hostnames into a single format suitable for use by all
the above modules�

The avoidaddr script also plugs into the pipeline
to �lter out spurious ip�addresses� and optionally to
remove hosts which have already been logged in the
database� or speci�c machines which you may wish
not to probe�

Next came the driver module and multiplexer�
it was no longer su�cient merely to feed munged
�etc�hosts �les into AutoHack as input � there was
a pressing need to be able to exhaustively search ip�
address spaces� Genaddr �lls this need� taking a list
of condensed ip�address patterns ��ipaddrpats� such
as


	Almost�
�


� � �di�ering only by the fact that all comparisons are
based upon numeric value of ip�address� as opposed to string
comparisons�

	
����������xxx

� � � either as command�line arguments or from
stdin� producing a stream of raw ip�addresses as out�
put�

With genaddr driving the pipeline� WAN�scale
auditing became feasible� and made it possible to
check every ip�connected machine on the network�
however� in order to cope with this additional load�
it became necessary to split the input amongst sev�
eral processes� Thus the mux program was written
to deal with this problem�
Similar in function to xargs� mux reads all of its

input �taken from avoidaddr into a temporary �le
and then splits the data into many equal�sized chunks
��les� where the number of chunks can either be
set by the user or automatically guessed at from the
amount of data� Mux then spawns one testaddr�
engine pipeline for every chunk� each one reading its
portion of the work �as stdin from the chunk��le
created above�
This multiplexing allows the user to take much

greater advantage of the available hardware� and re�
duces overall runtime signi�cantly�

The Attack Modules�

The power of AutoHack lies in its structure and data�
base format� but its usefulness comes from the probes
�or �attack modules� that it uses�
To reiterate� each module is a single program which

takes an ip�address as an argument� sets a timer to
some sensible interval for execution� and performs a
security�related probe upon the ip�address�
Modules are all stored in a single directory� scanned

by the engine process on startup� and are named in
this manner


attack
�nfsserv

The �attack� keyword marks this program as be�
ing an attack module� as opposed to any other type
of program� The number �
� refers to an attack
scheduling mechanism similar to that used by Sys�
tem V�s init program� attacks can be sequenced so
that they can draw upon data retrieved by earlier
probes�
The module�s su�x �nfsserv� is the name of the

�le which will be created by engine to contain the
probe�s output� If this �le is empty after the probe
has exited� it will be deleted so as not to clutter the
bin with useless data�
If this �le is not empty� and a �le �eg


exploit�nfsserv



� http probe

library lib�banter

tcp 	
�����
�����

� send an illegal command and log response

psend BOING

call flush�input

quit

Figure �
 banter code for probing http daemons�

� exists in the modules directory� then this latter
program will be launched at the host in a similarman�
ner� in order to follow�up the probe�s initial attack and
to gather further information�
This technique of using sequenced attacks with

automatic follow�up is useful when building complex
probes which have special dependencies� and it also
simpli�es the creation of more advanced probes which
can draw together output from earlier attacks and
make inferences about the remote machine�s security�
The evolution of the attacks themselves have shown

the bene�ts of modular coding� in particular� the rsh
attack carried over from the very �rst revision of
AutoHack has been through three functional revisions
with no modi�cation whatsoever to the engine


� su locuser �c rsh �n hostname echo cookie

� doas locuser rsh �n address echo cookie

� xrsh �verbose address ruser luser echo cookie

The �rst version calls upon su as �root� to forge
credentials that would be used by rsh to test the abil�
ity to log in as �say user �daemon��
The second revision utilised a custom perl script

doas which provided similar functionality to su� ex�
cept that it could cope with changing UID and GID to
arbitrary values� or to users who do not have a valid
login shell locally �eg
 �bin�sync for user sync�
The third� current� and most powerful version of

the probe uses a perl script called xrsh� which takes
the r�protocol credentials supplied on the command
line and passes them to the remote host as would any
other rsh client� so that the probe can quickly test re�
mote accessibility as any arbitrary username without
requiring the same username to be installed on the
local machine�
Xrsh also takes the notable step of speci�c�

ally reporting whether the authentication credentials
provided were accepted by the remote host� permit�
ting AutoHack to distinguish between four states


� the tcp connection was refused�

� credentials were rejected and the rsh connection
refused�

� credentials were accepted and the command was
executed�

� credentials were accepted and the command was
not executed�

� the consequences of the �rst three possibilities
are obvious� but the fourth is slightly more interest�
ing� if a large number of accounts on a host accept
the credentials but do not execute the command sup�
plied by xrsh� it implies that the host has been �se�
cured� by changing the login shell of system accounts
to a non�standard shell �eg
 �bin�false without re�
moving promiscuous trust from �etc�hosts�equiv

� a situation which deserves further investigation and
possible remedial work�
Probably the most diverse probes used by Auto�

Hack are those which attack the ASCII�based tcp
services such as smtp �and its speci�c incarnations in
programs such as Sendmail� ftp� nntp� http and
finger � protocols which rely upon the exchange of
ASCII text and�or standardised result codes for their
correct operation�
After creating a couple of protocol�speci�c attack

modules� it became evident that there was a great deal
of code that would be replicated in all the modules of
this type� increasing the overhead of code mainten�
ance and multiplying code diversity within the suite
� with all of the porting problems that this usually
causes�
To alleviate this problem� all of the attack code per�

tinent to the �simple�tcp protocols was thrown away
and replaced with code written in a custom assembly�
like language� banter�
The banter interpreter is a ��� line perl script�

providing primitives for functions� reusable librar�
ies and program 	ow control� establishment of tcp
connections to speci�ed host and port combinations�



timeout management� writing data to remote services�
pattern matching of data received from remote ser�
vices� symbol table management and basic debugging
facilities�
Having abstracted this reusable functionality into

a single� easily ported program� tcp probes be�
come extremely simple to create� For instance� with
transaction�oriented protocols such as http or fin�
ger� there is little more to a banter script than send�
ing a string to the remote server� and then reading
whatever response is returned �Figure ��
This simplicity has allowed us to proactively scan

our network for particular network services� in case
the information should become useful at a future time�
For instance
 during a recent scare involving a par�

ticularwww hypertext daemon� we quickly identi�ed
all of those machines which were at risk from the bug�
by adding code to examine and report upon data that
had already been collected in an earlier AutoHack
run�
We had noted �some months previously that many

www hypertext daemons indicate their make and ver�
sion number in the html document that they produce
in response to an illegal request�BL���� Partly be�
cause this sort of information is often interesting for
its own sake� and partly because the probe was so
easy to create �Figure �� the http probe was ad�
ded to the suite on the �o��chance� that the data it
collected might eventually prove useful� It did�

In a �re�ghting scenario� having this sort of inform�
ation at your �ngertips can be a refreshing change for
most security personnel�

Much the same approach is taken with probing of
other daemons� the prime objective being to eradicate
buggy software � however� banter is not restricted
to passive analysis of what information the daemon
openly provides� more complex attacks can be created
with only a little extra e�ort� for instance probing for
deeply buried bugs in Sendmail �Figure � or in the
�le permissions of anonymous�ftp archives�
Of course� most of these attacks stand on the

shoulders of simpler probes such as tcpprobe� a
small but e�cient scanner which reports active tcp
port numbers on a speci�ed host� Since the port
scanner is always the �rst probe to be launched
�attack	��tcp� all further tcp�based attacks can
check the output of the scanner to ensure that the re�
mote host really does support the service that would
be attacked by the probe�
Many other probes rely on standard networking

tools to gather their information� there is much that
can be inferred from the output of rpcinfo and show�
mount� and of course simple tests such as trying to

use tftp to steal a copy of �etc�passwd�
This is the nub of the argument above� that al�

though the attack modules are important to Auto�
Hack �s functioning� the real power of it� or any sim�
ilar program� is that it can automate the centralised
collection and analysis of freely�available �publicly�
available� data pertaining to an entire network of
machines� and then provide a mechanism for �ltering
the merely �ordinary� results from other data which
might hint that a host is su�ering from poor con�g�
uration�
Much of this data is already accessible to anyone

on the network with a standard operating system with
standard tools like rpcinfo��� but of course� not all of
the services capable of broadcasting �publicly avail�
able� information are provided with widely�available
user interfaces� It has been necessary in some cases
to write code to probe and collect this data�
So it is with ripprobe� a small script which sends

a rip�Hed��� enquiry packet to a machine�s routed
�or similar and receives in return a dump of the ma�
chine�s routing table� which is then sorted by network
metric and written to stdout�
This routing table dump can later be parsed by the

report writer� and is useful for network mapping and
for detecting unauthorised network connections and
other anomalies�

Other problems are also probed� for instance an�
cient versions of selection svc� rexd� and other poorly�
authenticated services� and �lestore exported globally
through nfs� Like most other modules� these probes
have evolved from the simplistic �checking to see if
the particular service is registered with portmapper
to the concrete �exploiting the service to provide evid�
ence that the problem exists�
These changes have been driven by the scale of the

problem at hand� no�one will invest time and money
into the eradication of a service from a network� when
only �� of the installed base su�ers the security bug
that you wish to eradicate� This explains AutoHack �s
greater emphasis on bug exploitation compared to
some other software � it is often necessary to supply
administrators with concrete proof of the problem� so
that they may make time to �x it�

The Report Writer�

The AutoHack report writer� HackReport� provides a
dual to the AutoHack pipeline described above� many

��Since automating centralised collection can be as simple as
writing a eight line shell�script �Figure 
� � the output of which
can be scanned with grep � it seems unfair to refer to programs
such as Satan and AutoHack as being intrinsically threats to
network security�



� stdlib and connect

library lib�banter

tcp 	
�����
���
�

� get the header� watch for continuation lines

call cfill�buffer

� hi there�

psend HELO

call cfill�buffer

� deliver one nearly�valid message

psend MAIL FROM� �

call cfill�buffer

psend RCPT TO� nobody

call cfill�buffer

psend DATA

call cfill�buffer

psend �

call cfill�buffer

� try to send a viral message

psend MAIL FROM� daemon

call cfill�buffer

psend RCPT TO� � sed �	�����d� � sh

call cfill�buffer

skipt ��
��d�d

goto smtp�abort

psend DATA

call cfill�buffer

skipt ��
��d�d

goto smtp�abort

psend dd if��dev�null of��tmp�AUTOHACKED

psend �

call cfill�buffer

skipt ��
��d�d

goto smtp�abort

echo autohack��� suffers sendmail security hole �	

label smtp�abort

psend QUIT

call cfill�buffer

quit

Figure �
 Some banter code for probing Sendmail�



host 	
�����
�� wibble

date Wed Jan 
� 
	��
�� 	���

	
�����
�� ����� rlogin� DIRECT ROOT ACCESS � root succeeded

	
�����
�� ����� sendmail� info � suffers sendmail security hole �	

	
�����
�� ���� hosts�equiv� netgroup in hosts�equiv � �

	
�����
�� ���� mail daemon� info � there is a decode alias �

	
�����
�� ���� rlogin� DIRECT RLOGIN � as bin succeeded

	
�����
�� ���� rlogin� DIRECT RLOGIN � as daemon succeeded

	
�����
�� ���� rlogin� DIRECT RLOGIN � as guest succeeded

	
�����
�� ���� rlogin� DIRECT RLOGIN � as sys succeeded

	
�����
�� ���� rlogin� DIRECT RLOGIN � as uucp succeeded

	
�����
�� ��� ftp daemon� info � anonymous ftp is enabled and works�

	
�����
�� ��� ftp daemon� info � root ftp is enabled

	
�����
�� ��� mail daemon� info � postmaster mail goes to bitbucket

	
�����
�� ��� rlogin� connect � as sync permitted

	
�����
�� �� ��rhosts� obtained � bong root

	
�����
�� �� domainname� obtained � nis

	
�����
�� �� hosts�equiv� obtained � �

	
�����
�� �� tcp svc� info � 		� �pop�

	
�����
�� �� tcp svc� info � �� �www�

	
�����
�� �� uname� obtained � SunOS wibble ��	�� �
 sun�c

	
�����
�� � routed� routes to � 	
�
�
	��

Figure �
 Fictional output from HackReport �s report writer�

of the modules are reused� the di�erence being in the
replacement of engine by reportaddr� a script which
�like its counterpart reads lines of ip�addresses from
stdin� but then test for the existence of and changes
directory into the appropriate �bin�� and then �as op�
posed to an attack module it launches a script called
report�writer�

The report�writer script has a single task
 to test
for the existence of �les that have been left behind
by the attack modules� to parse their contents� and
then to summarise its �ndings in a comprehensible
manner �Figure �� The script�s task is eased by
the way that the banter scripts have been written�
many scripts produce �cookies� in their output �
small� specially�formatted strings which re	ect the
problem that banter has detected � and these cook�
ies are picked up by report�writer� reformatted� and
included in the �nal report�

As an aid to comprehension� all of the notable facts
reported by the default report�writer script are as�
sociated with a arbitrary severity rating � a string
of between zero and �ve �stars�� where trivial facts
about the host are rated as one�star� important in�
formation and con�gurational issues are three�star�
and direct root access �or similarly nasty bugs are
rated as �ve�star�

This simple grading allows administrators to see at
a glance what problems need to be dealt with on their
network� and has yet to be misunderstood by anyone
to whom it has been explained���
We have examined the possibility of creating a

modular report writing system in the manner of the
engine program� permitting �drop�in� report modules
to be tied to the functionality of their respective attack
modules� however �although the idea has not been en�
tirely dismissed experimentation has shown that the
extra time imposed upon the report�writing process
by the overhead of spawning separate report mod�
ules would be unacceptable� and would impose other
problems in �eg
 the ordering of security �facts� by
severity�

Experiences and Feedback�

The AutoHack software suite runs successfully on
both Solaris ��x and ��x� and has been tested on Slack�
ware Linux ���� upon which it partly fails� due to a
feature of the tcp stack in Linux kernels up to at least
version ������
AutoHack �s throughput depends upon the ability

��Who says that security tools need GUIs � ���



to rapidly create and destroy processes� �les and
network connections� Because each engine typically
occupies � to � process�table slots � each engine
launching a variety of short�lived processes � to run
�eg
 �� simultaneous engines requires enough phys�
ical memory to comfortably sustain ��� processes�� �

In a restricted setting� AutoHack �s resource re�
quirements can be con�gured to be quite low �with a
corresponding impact on throughput� but for prefer�
ence it should be run on a machine with a moderately
large quantity of of both physical and virtual memory
so that paging is kept to a minimum� also providing
su�cient room for those transient processes which
may grow to be really large��� although this is rare in
normal usage� Heavy paging activity severely abraids
the performance of engine processes�

As part of the automatic load�balancing scheme�
and as an aid to portability� the mux process makes
an empirical guess at how many engine processes
should be launched� based upon the total number of
ip�addresses that are to be scanned � on the presump�
tion that only �well�equipped� machines will be set to
probing networks of many thousands of hosts�

In extraordinary circumstances� the user may over�
ride this value by changing a variable in the driver
script� but otherwise this feature permits AutoHack
to behave sensibly when tasked with attacking any
number of ip�addresses � from networks linking a
handful of �secure� machines on a �rewall DMZ�
to networks of several hundred thousand potentially
Internet�connected hosts�

With regard to e�ciency� the standard architecture
of AutoHack �Figure � has proven to be very e�ect�
ive when the list of ip�addresses created by genaddr
is highly populated with �live� machines� but it is
less than optimal in �sparse� address spaces� as is
common when scanning all possible addresses in a
particular set of subnets�

In such cases it is not unusual for an exhaustive
list of ip�addresses to be split into a dozen equal�
sized chunks and fed to hacking engines� one of which
may complete in a few hours after attacking the few
�live� addresses which were supplied with amongst
its input� whilst another engine might take several
days to complete because nearly every address that it
was supplied with was �live��

This obviously is not the most e�cient use of the re�
sources at hand� which would occur when all engines

��When running at full speed� it has been noted that Auto�
Hack can easily orbit the process table in ��� hours�

��eg� genaddr has been seen to occupy �Mb of virtual
memory in extreme circumstances� this is believed to be a side
e�ect of the way memory is sometimes �not� reused in Perl
����

completed their work at approximately the same time�
An alternative to this method could be to generate

the list of ip�addresses �using genaddr and test their
availability �using testaddr before passing them in
a round�robin fashion to one of several concurrent
engines� via some form of asynchronous multiplexer
similar to a real�time version of mux�
Although this latter strategy appears better in

many ways �faster completion of attack� even distri�
bution of workload amongst the attack engines its
disadvantages include bu�ering issues within the mul�
tiplexer� bottlenecking of testaddr� and concentration
of network load into �hot�spots��
The latter point bears some explanation
 in the

current architecture� sorting the ip�addresses before
splitting the list into serially�probed �chunks� has the
e�ect of evenly distributing the network load created
by the attack engines� around the WAN�
Because similarity of ip�address in a WAN envir�

onment usually re	ects geographical proximity of the
machines in question� and therefore re	ects the like�
lihood that all ip�addresses in a particular chunk are
served by a single long�haul link� it is sensible to ar�
range matters so that only one engine is loading that
link� to avoid network congestion�
The existing strategy exhibits this desirable prop�

erty without any special treatment� the proposed one
risks precisely the opposite � if presented with sorted
input� several engines will attack hosts over the same
long�haul network link simultaneously� causing both
network congestion and ill�will�
Future research may �nd a way �short of random�

ising the order of input to overcome this problem�
increasing performance by an estimated factor of two
� but for the moment the preferred solution to the
e�ciency problem is to create a new AutoHack data�
base in two stages� �rst using a list of hosts which
are likely to exist and be �alive� �eg
 from dns and
then second� against an exhaustive list of all possible
ip�addresses except those which have been put into
the database during the �rst stage�
In this manner� all engines �during each run re�

quire approximately the same amount of time to run
to completion� and the resources of both the machine
and the network are used to near�optimal e�ciency�

Meaningful statistics regarding AutoHack �s per�
formance are hard to generate� and even harder to
explain without causing confusion� The following em�
pirical values are o�ered in lieu of hard benchmark
�gures� because they re	ect the speci�c circumstances
under which AutoHack is being run within Sun �
network infrastructure and resources available on the
host platform � they provide little more than hints as
to AutoHack �s capabilities�



target network � AutoHack �s target network is a
tcp�ip Internet comprising several Class B ip�
networks which yield a total of some ���� subnets
and an address space of some ������� potentially
�live� ip�addresses�

Of these addresses� some ������ are �live� in�
terfaces attached to hosts scattered around the
world� interconnected by a variety of networking
technologies of di�ering bandwidths� typically in
the ��Kbit to ���Kbit range�

Most notable amongst these are a pair of
���Kbit trans�atlantic links providing connectiv�
ity between Northern Europe� the North Amer�
ican continent� and �eventually the Paci�c Rim�

Given that the AutoHack project is developed
and run from an o�ce in the United Kingdom�
and that a major portion of the address space
will be accessed across these connections� these
links are particularly interesting�

time expended � AutoHack completes a two�part
scan of all ������� possible ip�addresses and
������ hosts in a little under � days� using �� en�
gine processes on a ��Mb SPARCStation �����
running Solaris ������

In comparison� in a single�step exhaustive search
of the target network� the �� engine processes
will terminate independently of each other� with
the �rst typically exiting after ���� days� the last
after ����� days�

This �window� of completion is due to the sparse
nature of the address space in these circum�
stances �a host density of about ���� and the
sub�optimal use of resources as described above�

per�attack bandwidth � An attack on an indi�
vidual host typically generates a total of between
��Kb and ��Kb of bi�directional tra�c at the ip
layer� depending upon the success and depth of
the attack� the nature of the networks linking the
local and remote hosts� network load� etc� An
attack on an individual host typically requires
between �� seconds and � minutes to complete�
similarly constrained by the state of the network�

Attempting to convert this data into a meaning�
ful �gure of long�haul bandwidth occupancy is
tricky� since other factors such as fragmentation�
network speed� and latency must be taken into
account� therefore we shall merely note that this

��Only 
� engines are used� in order to leave some CPU�time
free for other tasks� AutoHack by default would use 
� engines�
which would just about tie up the CPU� and certainly hamper
interactive use of the machine in question�

is a small but non�negligible amount of tra�c�
and thus is a powerful argument for not running
large numbers of probes simultaneously across a
single long�haul link�

bandwidth observations � Approximately two�
thirds of the total address space is probed over
the two transatlantic links mentioned above�
Over the eight day period� the tra�c generated
by these probes peaks at occupying ��� of the
total bandwidth available on each link� and more
typical occupancy �gures are between �� and
��� of the total bandwidth available�

This is satisfactory enough to keep our network
management team happy��� and to favour main�
taining the centralised nature of the AutoHack
software and database� as opposed to distribut�
ing it over the network�

database size � The database storing the probe res�
ults for the above network occupies approxim�
ately ���Mb� The directory structure of the data�
base accounts for approximately ��Mb of this
space� This was surprising� intuition led us to
believe that the overhead of �all that directory
structure� would be an enormous factor in the
eventual size of the database� As it is� the direct�
ory structure occupies perhaps �� of the total�

user detections � AutoHack �s reported detection
rate was quite low in the early days� estimated
to be about � detection for every ��� hosts at�
tacked�

This can be explained through a combination of
in	uences� involving an administration culture
that is �safe� behind the �rewall� and the related
phenomenon of �blithe trust��

Another reason for the initial low detection rate
may be that AutoHack was initially designed to
tread lightly upon hosts and upon the network�
probing only those services which would generate
little or no audit trail in a system� Hosts which
were equipped with TCP Wrappers�Ven��� or
similar fared well in the detection stakes� so long
as the user checked the logs frequently� several
�detections� were reported some weeks after the
fact�

Once AutoHack was �rmly established as a pro�
ject� however� the probes �especially those re�
lating to Sendmail became considerably less
�quiet�� It is not now possible to specify a mean�
ingful detection rate� because reports arrive in�

��
� � �or� as they were initially� ignorant�� �



frequently� and only from users who have not en�
countered AutoHack �s activities before�

One particularly vexing problem with the strategy
of sanctioned and vigorous auditing is the risk of �cry�
ing wolf�� the fear that systems administrators will
become desensitised by the assaults that AutoHack
makes upon their machines� and that a host could
then be con�gured to masquerade as the well�known
AutoHack machine� and could rove freely around the
network� attacking everything whilst being ignored by
everyone�
The only solution that we have yet found for this

problem is to promote an adversarial�but�friendly at�
titude amongst the systems administrators� congrat�
ulating them upon detecting probes by the real Auto�
Hack� and encouraging them to report their detections
back to us� with comment if they so wish�
This solution is both cheap and quite popular� be�

cause it opens up opportunities for education and pro�
motes general interest in security issues throughout
the company� whilst providing us with feedback about
AutoHack� and yielding the data necessary to detect
unsanctioned probes�

On another topic related to �noisiness�� it is
perhaps worthwhile noting that one function Auto�
Hack does not currently perform is that of nis
domainname�guessing and subsequent theft of pass�
word �les�
This has not been been implemented yet chie	y

because within a corporate organisation there is no
need to guess domainnames � after all� you can just
ask the administrator concerned� where necessary �
and moreover it was felt that checking passwords be�
longed more to the �eld of host auditing� rather than
network auditing�
The problem that a nis password map can be stolen

remotely �using ypx or similar is a facet of a wider
problem � that of rpc authentication � and should be
dealt with as such� This particular probe functional�
ity may one day be added to AutoHack for the sake
of completeness� but for now the problem is being
addressed in a holistic manner�

Conclusions�

AutoHack is far from complete as a security tool �
much could be done to it in terms of performance

enhancing its probing ability� speeding it up with en�
hanced versions of the �lters that it already uses�
making use of asynchronous I�O rather than simply�
bu�ered pipes for inter�process communications� etc�
but there are also new features being discussed which

should be part of future versions� for instance� ad�
dition of udp datagram support and pty �pseudo�
terminalmanagement to banter would enhance Auto�
Hack �s probing capabilities immensely�
Obvious structural improvements include the im�

plementation of some form of history mechanism to
automatically mark as �high priority� any security
hole which remained un�xed for an extended period
of time� so that escalation reports can be generated
and passed directly to senior management who have
an interest in security�
This is probably most simply e�ected by front�

ending the report�writer script with the history mech�
anism� but since this runs against the blithe �throw it
away when you don�t need it anymore� mindset be�
hind AutoHack �s design �the history mechanism re�
quiring a reduced copy of the database to be kept for
an extended period of time � the implementation of
this feature is under very careful consideration�
An interesting comment was made by a member of

our networking team� he noted that there did not ap�
pear to be a readily�available dual to the TCP Wrap�
pers suite for detecting suspicious protocol tra�c as
it passes along network backbone�
Network monitoring software that we currently use

is keyed towards detection of suspiciously high tra�c
loads� or for watching for tra�c being sent to or from
unregistered subnets and illegal ip�addresses �com�
monly caused by miscon�gured hosts� Nothing in
the software we had was designed to trigger an alarm
upon detection of unusual protocols on the wire�
Creation of a tool for this purpose may be an inter�

esting project for someone so inclined� perhaps a pro�
gram designed to learn the pro�le of normal network
usage as described by tcpdump or similar� with the
knowledge engine reporting anomalies in real time�

What lessons have we learned�
If nothing else� the experience of AutoHack has

borne out several old prejudices
 �standardisation�
is both a pain and a panacea in computer secur�
ity� Where bugs exist in �standardised� machines�
they are rife� because an error in one con�guration
or security policy is propagated to many other hosts�
either by wholesale duplication of the host�s software�
or identical installation methods�
On the other hand� administrative tribes who take

�standardisation� seriously are usually well�equipped
to deal with the roll�out of a security patch across
all of their hosts� Users who run their own sys�
tems tend to be slower to �x holes unless they are
presented with unequivocal evidence of the bug�s ex�
istence � something that the AutoHack database is
well equipped to do for them�
The one overpowering lesson� however� from the



creation of AutoHack and the response it has gener�
ated� is this
 network security does not evolve� either
in terms of the security of the installed base of hosts
in a network� or in terms of software development�
except in a hostile environment�
Only in the presence of a threat to security � a

clear� present� and well�advertised threat� less shad�
owy than �hackers�� more de�nite than �the potential
for viruses� � will people act in order to improve their
security�
If the threat can be not merely be contained so as

not to cause malicious damage� but can further be
controlled so as to �inoculate� the network� so much
the better�
AutoHack is by design a benign but de�nite threat�

and it serves this purpose well�

Availability�

At the time of writing� AutoHack is only available for
use within Sun Microsystems Computer Company� to
audit its internal network�

References

�BL��� Tim Berners�Lee� Hypertext Transfer Pro�
tocol� ftp	��ftp�w
�org�pub�www�doc�http�
spec�txt� �����

�CB��� WilliamCheswick and Steven Bellovin� Fire�
walls and Internet Security� Addison Wes�
ley� �����

�Far��� Dan Farmer� personal communicaton� �����

�FV��� Dan Farmer and Wietse Venema� Improving
the Security of your UNIX system by break�
ing into it� �����

�Hed��� Charles Hedrick� Routing Information Pro�
tocol� RFC������ �����

�Ran��� Marcus J� Ranum� Thinking about �rewalls�
In Proceedings of the Second International
Conference on Systems and Network Secur�
ity and Management �SANS�II�� �����

�Ven��� Wietsa Venema� TCP WRAPPER
 Network
monitoring� access control and booby traps�
In Proceedings of the third USENIX Unix Se�
curity Symposium� �����

Most of the software cited in this paper may be
retrieved from the COAST computer security archive


FTP� ftp�coast�cs�purdue�edu

WWW� http	��www�cs�purdue�edu�coast�coast�html

Acknowledgments� etc� � �

The author would like to thank Brad Powell for his
long term help in acting as a sounding�board for ideas
related to development of AutoHack and this paper�
and is grateful to Chris Samuel and Simon Halsall
of D�R�A� for their exceedingly useful review work�
Many thanks also to Marcus Ranum for saying that
the topic sounded interesting enough to be worth writ�
ing up�
Finally� many thanks to Gillian Anderson for �usu�

ally letting the author get away with all of those late
nights associated with the preparation of this docu�
ment�

Alec Mu�ett lives near Oxford and works for Sun
as a member of the Network Security Group� respons�
ible for policing and auditing Sun�s internal network�
evaluating security products and architectures� and
incident handling�

�SPARCStation�� �Sun�� �nis� are trademarks of
Sun Microsystems Computer Company� All other
trademarks referenced in this document are owned
by their owners�


