
The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium

Salt Lake City, Utah, June 1995.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Domain and Type Enforcement UNIX Prototype

Lee Badger, Daniel F. Sterne, David L. Sherman,
Kenneth M. Walker, and Sheila A. Haghighat

Trusted Information Systems, Inc.



A Domain and Type Enforcement

UNIX� Prototype

Lee Badger

Daniel F� Sterne

David L� Sherman

Kenneth M� Walker

Sheila A� Haghighat

Trusted Information Systems� Inc�

���� Washington Road

Glenwood� Maryland ��	�


Abstract

UNIX system security today often relies on cor�
rect operation of numerous privileged subsystems
and careful attention by expert system administra�
tors� In the context of global and possibly hostile
networks� these traditional UNIX weaknesses raise
a legitimate question about whether UNIX systems
are appropriate platforms for processing and safe�
guarding important information resources� Domain
and Type Enforcement �DTE� is an access control
technology for partitioning host operating systems
such as UNIX into access control domains� Such
partitioning has promise both to enforce organiza�
tional security policies that protect special classes
of information and to generically strengthen operat�
ing systems against penetration attacks� This paper
reviews the primary DTE concepts� discusses their
application to IP networks and NFS� and then de�
scribes the design and implementation of a DTE
UNIX prototype system�

� Introduction
As UNIX systems become a major part of the

National Information Infrastructure� UNIX security
mechanisms are coming under increasing pressure
to resist attacks by highly motivated individuals�
companies� and governments� Currently� UNIX se�
curity rests on protection bits� the root user� and the
setuid�setgid mechanism� which place a great deal

�UNIX is a registered trademark in the United States and

other countries� licensed exclusively through X�Open Com�

pany Ltd�

of security responsibility on privileged application
programs and expert system administration� This
has two important consequences� The �rst is that
UNIX systems often exhibit a 	weakest link
 phe�
nomemon in which compromise of any privileged
subsystem �e�g�� �ngerd� lpd� rdist� makes an en�
tire host vulnerable� The second is that reliance on
numerous privileged applications increases the di��
culty of implementing coordinated security policies
that provide uniform protection to data and pro�
cessing resources� These two problems motivate a
legitimate concern over whether UNIX systems are
appropriate platforms for processing and safeguard�
ing important information resources in global and
possibly hostile networks�

UNIX �and other operating systems� can in the�
ory be hardened against threats inherent in such
environments by adding an access control layer that
restricts privileged processes so that damage result�
ing from compromise or error is limited� This ben�
e�t� however� has not been realized by mainstream
UNIX systems even though a number of access con�
trol mechanisms �
� �� �� �� �� ��� have been avail�
able for years� One reason may be that security en�
hancements often impose signi�cant costs resulting
from more complex system administration� appli�
cation incompatibility �or unavailability�� and ad�
ditional user training� This raises a central ques�
tion for practical UNIX security� can signi�cant en�
hancements be added in a way that is understand�
able� e�ective� and unobtrusive�

This paper presents our experiences with a new



form of access control� Domain and Type Enforce�
ment �DTE� ��� and a prototype DTE UNIX sys�
tem� In recognition of the fact that access control
techniques have not been easily accepted by operat�
ing system vendors �or users�� DTE has been formu�
lated speci�cally to address requirements of greatest
concern for both vendors and users� namely� �exi�
bility� simplicity� operating system interoperability�
binary application compatibility� and performance�
This paper reviews DTE� � discusses how DTE can
be applied to IP networks and NFS and then dis�
cusses design and implementation issues of the DTE
UNIX kernel� Finally this paper reviews related
work and discusses our plans for further develop�
ment of DTE over the next few years�

� DTE
DTE is an enhanced form of type enforcement� a

table�oriented access control mechanism originally
proposed by Boebert and Kain ��� and later re�ned
in the LOCK system ����� As with many access con�
trol schemes� type enforcement views a system as a
collection of active entities �subjects� and a collec�
tion of passive entities �objects�� In type enforce�
ment for UNIX� an access control attribute called a
domain is associated with each subject �process��
and another attribute called a type is associated
with each object ��le� message� shared memory seg�
ment� etc��� A global table� the Domain De�nition
Table �DDT�� represents allowed access modes be�
tween domains and types �e�g�� read� write� exe�
cute�� and another table� the Domain Interaction
Table �DIT�� represents allowed access modes be�
tween domains �e�g�� signal� create� destroy�� As
a system runs� access attempts are mediated using
table lookups� access attempts for modes not au�
thorized in the tables are denied�

Although type enforcement is very �exible� the
access control tables can quickly become too com�
plex� and type enforcement is di�cult to use in prac�
tice� Additionally� the presence of type attributes
on �les appears to require a new and incompatible
�le system format� To address these issues� DTE
enhances type enforcement in two ways�

�� DTE policies are speci�ed in DTE Language
�DTEL�� a high�level language suitable for ex�
pressing reusable access control con�gurations
that are compatible with current applications
and system con�gurations�

�� During system execution� DTE �le security at�
tributes are not stored one�to�one with �les on

�DTE is described in more detail in ����

disk� but are instead maintained implicitly in
a form that capitalizes on the directory hier�
archy to compactly represent portions of a �le
hierarchy that have identical attributes� Using
implicit typing� DTE can therefore be applied
to existing �les with no change to �le system
formats�

DTE is a con�gurable� kernel�level access control
mechanism� At each system boot� a DTE UNIX
system processes a DTEL speci�cation and estab�
lishes access controls during UNIX kernel initializa�
tion� All processes� including root processes� are
subject to DTE controls� DTEL currently provides
four� primary statements for expressing a DTE con�
�guration�

type Declares one or more object types to be avail�
able to other parts of a DTEL speci�cation�

domain Expressed as a list of tuples� de�nes
a restricted execution environment composed
of three parts� �� 	entry point
 programs�
identi�ed by pathname� that a process must
execute in order to enter the domain �e�g��
��bin�login��� �� access rights to types of
objects �e�g�� �rwx��foo t��� and �� access
rights to subjects in other domains �e�g��
�sigkill��user d��� A DTEL domain con�
trols a process�s access to �les� a process�s ac�
cess via signals to processes running in other
domains� and a process�s ability to create pro�
cesses in other domains by executing their en�
try point programs� For backward binary com�
patibility� the domain statement also provides
an access designator to force domain transi�
tions on older programs that are not aware of
DTE� if a domain A has auto access rights to
another domain B� a subject in A automati�
cally creates a subject in B when it executes�
via exec��� an entry point program of B�

initial domain Selects the domain of the �rst pro�
cess�

assign Associates a type with one or more �les� An
assign statement may be recursive� in which
case it applies to a directory and everything
below� and one assign statement may override
another� for instance� an assign statement for
�tmp�foomay override a recursive assign state�
ment for �tmp�

�For brevity we omit peripheral DTEL statements and

features and also restrict our attention here to implemented

features with which we have actual experience�



��

� DTEL Example Policy�

��

type unix t� �� normal UNIX files� programs� etc� ��

specs t� �� engineering specifications ��

budget t� �� budget projections ��

rates t	 �� labor rates ��


define DEFAULT ��bin�sh�� ��bin�csh�� �rxd��unix t� �� macro ��

domain engineer d � DEFAULT� �rwd��specs t�	

domain project d � DEFAULT� �rwd��budget t�� �rd��rates t�	

domain accounting d � DEFAULT� �rd��budget t�� �rwd��rates t�	

domain system d � ��etc�init�� �rwxd��unix t�� �auto��login d�	

domain login d � ��bin�login�� �rwxd��unix t�� �exec��engineer d�

project d�

accounting d�	

initial domain system d	 �� system starts in this domain ��

assign �r unix t �	 �� default for all files ��

assign �r specs t �projects�specs	

assign �r budget t �projects�budget	

assign �r rates t �projects�rates	

Figure �� Example DTEL Policy

An important goal for DTE is to superimpose
useful security policies on existing UNIX con�gura�
tions while using implicit typing to maintain back�
ward compatibility with existing data formats and
applications� Figure � shows a DTEL speci�cation
of a commercial policy designed to provide data pro�
tection and user authorizations in an engineering
organization� To validate that our example speci��
cation is not trivial� we have run it on our prototype
DTE system and found it to provide useful protec�
tion� This speci�cation provides three types of pro�
tected user data� one type of system data� three
user domains� and two supporting system domains�
The user domains correspond to job descriptions�
such as engineer or accountant� and the system do�
mains provide operating system support� Addition�
ally� this speci�cation assigns type attributes to all
�les�

A DTE system running the speci�cation of �g�
ure � starts the �rst process in the system d do�
main� which is then inherited for all other sys�
tem processes except the login program� The spec�
i�cation uses the auto mechanism to run login

in the login d domain even though the existing
getty program does not request the domain tran�
sition� The login d domain has the authority to
create the user domains �engineer d� project d�

and accounting d�� based on user authentications�
Each user login session is con�ned by one of the
user domains controlling access to protected data�
which resides in three directories under �projects�
Though simple� this sample speci�cation can be in�
crementally re�ned to add additional user domains�
distinguish between console and network user ses�
sions� simultaneously support additional organiza�
tional policies� and harden UNIX itself by running
its root daemons in tightly constrained domains�

� DTE Networking

Since UNIX systems are usually networked� DTE
systems must work naturally while communicating
both with other DTE systems and with non�DTE
systems� In particular� multiple DTE systems must
provide mechanisms allowing coordinated protec�
tion of information among themselves� and DTE
systems must protect themselves from non�DTE



systems� To accomplish this� DTE adds two at�
tributes to network communications carrying user
data� �� the type of the data written by the sending
process and �� the domain of the process that sent
the data� the 	source domain�
 A receiving process
can always view the data�s type� which the receiver
must know to adequately protect the data� or pos�
sibly to protect itself from the data� Additionally�
a receiver can always view the sender�s domain� a
DTE server that receives a request can therefore use
the client�s domain to decide whether to perform the
requested function�

To maintain compatibility with existing network
protocols and applications� DTE attributes are car�
ried as IP options� � with no change to packet con�
tents� DTE mediates communications over stan�
dard datagram and stream�oriented services� In
each case� DTE imposes access control mediation
both at send time and receive time� to successfully
send data of type t� a process�s domainmust permit
write access to t� and to successfully receive data of
type t� a process�s domain must permit read access
to t� For datagram protocols such as UDP� a single
type labels the contents of an entire packet� For
stream protocols such as TCP� di�erent portions of
a stream may have di�erent types of data� a se�
quence of contiguous bytes having the same type is
a substream�

These design choices give a high priority to com�
patibility and interoperability� Our datagram ap�
proach is not unusual� and homogeneously typed
datagrams work well for existing applications since
they are unaware of DTE and therefore only gener�
ate one type of data� Our stream approach� how�
ever� is less typical� A simpler approach would bind
a security attribute to a stream socket and there�
fore to all data communicated on it� Typical UNIX
service interactions� however� make this approach
problematic� An important example is inetd� which
receives socket connections for services it spawns�
inetd must be able to connect to a socket and then
hand the descriptor to a child process that may run
in a di�erent domain� The use of substreams re�
moves the need for inetd to run in an all�powerful
domain� Programs like telnet and rlogin provide
other examples� if a user runs a program that pro�
duces output of multiple types� a single connection
can carry the output back to the client in multiple
substreams� but statically typed connections would

�For experimental purposes� we currently assume that

network packets are not stolen or modi	ed� We plan to

take advantage of known and emerging cryptographic tech�

niques and protocols for communications authentication ��
��

integrity� and con	dentiality ���� ��� as appropriate�

force dynamic creation of new TCP connections to
send the data� While multiple connections could be
used to transmit multiple types of data� this would
change application�layer protocols �like rcmd� and
prevent DTE network applications from interoper�
ating with their non�DTE peers�

In addition to maintaining compatibility with
UNIX network abstractions and application�level
protocols� it is also necessary to de�ne how DTE
systems interoperate with non�DTE systems� In or�
der for a DTE system to properly control network
applications� all communications must carry type
and source domain attributes� At the same time�
however� DTE applications must interoperate with
applications running on non�DTE systems that do
not provide DTE attributes� To provide interop�
erability without weakening DTE� DTE hosts as�
sociate a domain with every foreign non�DTE host
and mediate all network tra�c with that host so
that the e�ect of the mediation is as though the
host were actually running DTE and the process
sending �or receiving� from that host were running
in the associated domain� Using DTEL� a DTE
system can associate a single domain with the 	uni�
verse
 of foreign non�DTE hosts� associate a di�er�
ent domain to each class A� B� or C network� and
�nally associate speci�c domains to individual non�
DTE hosts that� for various reasons �such as qual�
ity of administration�� are more or less trustwor�
thy than their LAN� This technique has performed
well in our corporate LAN� allowing us to appropri�
ately 	trust
 speci�ed non�DTE hosts� Although
we are using source�address 	authentication
 for
compatibility at present� our plans include moving
to stronger authentication� such as is envisioned for
IP�� as the overall network infrastructure evolves�

Although our experience with DTE networking is
still somewhat limited� we have been able to run ex�
isting UNIX applications such as rsh� rlogin� telnet�
ping� sup� and mount in suitable DTE domains and
we have encountered no 	show stoppers�
 We have
discovered� however� that although TCP�IP hosts
should drop IP options they don�t recognize� that
doesn�t always happen and SunOS 
���� on Sun �
systems� in particular� crashes when presented with
an unrecognized option� As a result� we have added
features to our systems that prevent the sending
of DTE attributes to hosts that are not known to
be currently running DTE� We are now formulat�
ing the requirements of a DTE protocol that would
maintain timely information on the DTE status of
a machine as well as provide DTE policy negotia�
tion functions that ensure that di�erent machines
	mean
 the same thing by DTE attributes they ex�



DTE System
Existing
File Server

Local Disk

Proprietary Data

Non-sensitive Data

Guest User

Figure �� DTE NFS Clients

change� Although we only have experience to date
with UDP and TCP� our techniques appear to apply
to raw IP� and potentially also to multicast proto�
cols such as ISIS ��� and PSYNC �����

� DTE NFS
The ubiquitous use of NFS highlights the need

for DTE to both support NFS on DTE systems and
also to interoperate with non�DTE systems that use
NFS� An integration of DTE and NFS for DTE�
aware clients and servers is relatively simple and
involves sending and receiving DTE attributes be�
tween DTE systems that then use the attributes for
mediation in the same way they use locally stored
DTE attributes� To make DTE useful in the short
term� however� interoperability with non�DTE NFS
clients and non�DTE NFS servers may be even more
important�

A signi�cant bene�t of implicit typing ��� in this
regard is that DTE client workstations locally as�
sociate types with all �les� even �les provided over
NFS by �le servers that are not DTE�aware� This
ability has allowed us to use DTE workstations to
make selected portions of our corporate �le server
available to selected groups of users with a mini�
mum of administrative e�ort� As electronic com�
merce increases the need for cooperation between
organizations� we expect this scenario to become
more common� Figure � displays the concept� A
guest user has an account only on a DTE system�
This system mounts from an existing �le server and

applies the type 	proprietary data
 to some �les on
the imported �le system and the type 	non sensi�
tive data
 to the others� All guest user processes
running on the DTE system are restricted accord�
ing to the local DTE policy to access only the non�
sensitive data�

DTE network features allow a DTE system to
refuse communication with selected non�DTE hosts
and to prevent important types of data from be�
ing exported to non�DTE hosts �regardless of which
communication service is used�� If communication
with a non�DTE NFS server is allowed� the client�
side DTE�NFS subsystem associates types with im�
ported �les based on their pathnames� A premise of
our work is that access controls must be �exible� it
is up to the system administrator of a DTE system
to determine whether a non�DTE host should be
trusted to properly maintain data of various types�
Although all the data received at the IP layer will be
typed according to the DTE domain associated with
the non�DTE �le server� the DTE�NFS subsystem
on the client system resides in the DTE UNIX ker�
nel and is trusted to override the default communi�
cations type with correct �le types as speci�ed in
the system�s DTEL speci�cation�

Initially� we added DTE only to the NFS client
side� as described above� We are currently testing
a DTE�NFS server that can serve clients on both
DTE and non�DTE systems� When the client is
on a DTE system� all NFS requests are labeled by
the client system with the source domain of the re�



questing process� The DTE�NFS server then uses
the source domain as a client credential to con�
sult the system�s DTEL speci�cation and deter�
mine whether the request is authorized� In addi�
tion� each IP packet that carries the contents of
a �le accessed via DTE�NFS is labeled with the
type associated with that �le� A potential bene�t
of this approach is that both source domain and
type attributes are readily visible to routers and
network �rewalls and could allow future versions of
such devices to consult them when making �ltering
and routing decisions� An additional bene�t is that
the NFS protocol need not be modi�ed� Although
NFS client requests sent by non�DTE systems lack
source domain attributes� the DTE�NFS server�s IP
subsystem attaches them �in accordance with the
DTE system�s DTEL speci�cation� before passing
the requests to the DTE�NFS subsystem for media�
tion� From the non�DTE client�s point of view� the
DTE�NFS server behaves like a non�DTE server�
except that access may be denied for some requests
where� in the absence of DTE� the request would
have been granted�

The NFS protocol is designed so that NFS server
systems may crash� reboot� and resume NFS service
without requiring clients to perform new lookup op�
erations on �les that were open at the time of the
crash� Each NFS request contains an NFS �le han�
dle that identi�es the �le by �le number� which al�
lows a typical UNIX system to access the �le di�
rectly without performing a name translation� Un�
like the permission bits and owner identi�ers asso�
ciated with a �le� however� the implicit DTE at�
tributes are not stored within inodes but in a sepa�
rate attribute database organized by pathname in�
stead of �le number� If a newly rebooted DTE�NFS
�le server could not locate security attribute infor�
mation for an NFS request� it would have to refuse
the request� resulting in a stale �le handle at the
client application� To prevent this� the DTE�NFS
prototype reconstructs pathnames based on inode
numbers by maintaining a cache of parent inode
numbers for non�directory �les accessed via NFS�
thereby permitting it to �nd �le attributes in the
DTE attribute database�

On our DTE�NFS prototype� the NFS daemon�
like all other processes� runs in its own domain
and is constrained in accordance with the system�s
DTEL speci�cation� On most systems� this domain
will likely be con�gured to give the daemon the abil�
ity to access and export many types of informa�
tion� Nevertheless� it is not necessary to make all

types accessible to it� If highly sensitive or critical
types of information are stored on a system� it may

be highly desirable to prevent them from being ex�
ported� Standard NFS provides features for limiting
the exporting of �les� but these features are coarse�
grained� dealing only with whole �le systems and
are available only to a system administrator� By
making certain types of �les inaccessible to the NFS
daemon� DTE provides a strong additional mecha�
nism that can be employed by administers to pre�
vent individual �les on arbitrary �le systems from
being exported�

Our experience with DTE�NFS servers is still
very limited� however� our initial results are en�
couraging� NFS clients on DTE or non�DTE sys�
tems can be granted �ne�grained restricted access
to NFS�exported �le hierarchies without change
to applications or to non�DTE system con�gura�
tions� The DTE prototype system�s security at�
tribute management strategy requires implementa�
tion of a new system cache and secondary storage to
store the cache across system reboots� The cache�
however� requires little human administration and
requires only a small amount of additional I�O that
only occurs in the context of I�O already required
by NFS�

� DTE UNIX Prototype

To gain experience with DTE concepts� we have
implemented a prototype DTE UNIX system based
on OSF�� MK
��� Although our system is based
on a Mach microkernel� the DTE features are lo�
cated in relatively high layers of the UNIX server�s
architecture� require no knowledge of microkernel
interfaces� and are therefore reasonably portable to
kernelized UNIX systems� We have also recently
ported the DTE prototype to run on TMach Version
��� ���� a high�assurance trusted computing base
designed to satisfy DoD security requirements as
speci�ed in the Trusted Computer System Evalua�
tion Criteria ����� Even though TMach employs a
TMach�speci�c �le system format� the integration
required almost no change to the DTE implemen�
tation because the integration points between the
UNIX server and TMach are generally at low layers
in the UNIX architecture� whereas DTE is mostly
implemented in the upper layers of the UNIX 	ker�
nel�


Figure � shows the prototype�s architecture� To
enhance portability� the majority of the DTE im�
plementation is located in an isolated subsystem
consisting of �� ��� lines of commented C code and
�� ��� lines of commented lex and yacc code� Other
UNIX kernel subsystems call into the DTE sub�
system to request security services� This part of
the integration consists of another �� ��� lines of



OSF/1 Server

Hardware

UNIX process

UNIX system call interface DTE interface

DTE UNIX process

DTE subsystem

UNIX process

UNIX process

Interface

Mach Kernel or TMach Kernel+Servers

Figure �� DTE System Architecture

code� bringing the total DTE integration to approx�
imately ��� ��� lines of kernel�resident code� The
DTE prototype�s kernel provides �� new system
calls for DTE�aware applications to use for retriev�
ing security attributes for display to the user and
for implementing security relevant functions�

In addition to kernel changes� we have imple�
mented a DTE version of the login program that
authenticates users for speci�c roles ���� �� ��� and
then con�nes user sessions to speci�c domains using
domain transitions authorized by the DTEL spec�
i�cation� To allow users to view DTE attributes
for processes and �les� we have implemented DTE�
aware versions of a number of UNIX utilities such as
ls and ps� and we have implemented a DTE�aware
version of emacs ����� that displays type attributes
of �le bu�ers and allows users to simultaneously
view and manipulate labeled information in multi�
ple windows�

As the prototype boots� it reads its DTEL spec�
i�cation and con�nes all processes� regardless of
UNIX root privileges� to speci�ed domains� DTE
is active before single�user mode has been reached�
According to its DTEL speci�cation� the prototype

labels �les� network packets� and processes� deter�
mines domain interactions� and mediates process
access requests� We have tested a number of policies
using the prototype� including a policy to partition
the components of a simulated command and con�
trol system� a policy to strengthen UNIX by con�
�ning UNIX root processes in �� separate domains�
and an enterprise data protection policy �similar to
that of �gure ��� Additionally� we use DTE client
workstations to permit but safely limit access by
	guest
 users who are authorized to see some but
not all TIS sensitive data�

The DTE prototype�s design and implementation
have given a high priority to maintaining operat�
ing system interoperability and binary application
compatibility� Three aspects of the DTE prototype
are central to achieving these goals� �� preserving
existing data formats by employing implicit secu�
rity attributes� �� ensuring that implicit attributes
are recoverable in the presence of system shutdowns
and power failures� and �� adding DTE networking
support without change to existing protocols�



��� Implicit Attributes

For entities that must be recreated at each sys�
tem boot �such as process structures or IP data�
grams�� the DTE prototype attaches security at�
tributes explicitly to each object� Compatibility
and performance can be maintained with this strat�
egy because modi�cations need not a�ect secondary
memory data formats or require additional I�O�

Files� however� present a more di�cult case both
because security attributes must be maintained on
disk to survive system reboots and because �les
are usually numerous� To address these issues� the
prototype associates security attributes with �les
	implicitly
 based on their locations within direc�
tory hierarchies� For portability� most of the proto�
type�s functions for �le security attributes are im�
plemented at the Virtual File System �VFS� layer
and build associations between vnodes ���� and se�
curity attributes� Since all currently accessed �les
are represented by vnodes� all �les in use have
associated security attributes� When the proto�
type boots� it creates in kernel memory a tree of
map nodes that describe how security attributes are
bound to the hierarchical �le name space� Although
our current prototype simply keeps this tree entirely
in memory� it can in principle be paged to disk as
necessary�

A sequence of map nodes proceeding from the
root map node to a leaf map node names an exist�
ing path in the hierarchical �lesystem name space�
Each map node optionally associates one or more
security attributes with the path component as�
sociated with it� The prototype currently main�
tains two kinds of security attributes bound to �les�
type names and domain entry points� To represent
attributes implicitly� a map node may also asso�
ciate security attributes with �les whose pathnames
merely include the map node as a pre�x� Such map
nodes represent 	implicit
 associations� For each
security attribute� a map node provides the follow�
ing options�

implicit at The attribute is bound to this path
component� In the absence of higher�priority
map nodes that con�ict with this map node�
the attribute is also bound to all pathnames
having this path component as a pre�x�

implicit under The attribute is not bound to
this path component� but� in the absence of
con�icting higher priority map nodes� the at�
tribute is bound to all pathnames having this
path component as a pre�x�

explicit The attribute is bound to this pathname

only�

Informally� the prototype resolves map node con�
�icts by giving priority to the map node that rep�
resents a longer path� interpreting implicit under

attributes to be 	longer
 than implicit at attributes
for the same path and always giving priority to ex�
plicit attributes�

root_t

unix_t
"/"

critical_t
"dt_policy"

e
a
u

e
a
u

e
a
u

"usr"

e
a
u

"bin"

foo_de
a
u

"login"

Figure 
� Map Nodes

Each path provided to a domain or assign state�
ment potentially generates a map node for ev�
ery component of the path� For example� a path
	�a�b�c
 given in a DTEL statement generates
three map nodes �the root map node is automat�
ically present�� Map nodes are shared� however� so
if a second DTEL statement speci�es 	�a�b�c�d�

only one new map node is generated� DTEL pro�
vides �ags to set the initial options of map nodes�
the DTEL assign statement� which associates types
with �les� takes a 	�r
 option to designate implicit

at and a 	�u
 option to designate implicit under�
DTEL domain statements automatically generate
explicit associations for their entry point attributes�
For example� the following DTEL statements gen�
erate the map nodes displayed in �gure 
�

assign root t �	

assign �u unix t �	

assign critical t �dt policy	

domain foo d � ��usr�bin�login�� ���	

That �gure shows �ve map nodes� one for each
unique component in the paths 	�usr�bin�login

and 	�dt policy�
 Each map node records the name
of its path component and optionally records at�
tribute associations �in �gure 
� 	e
 for explicit� 	a




root_t

unix_t
"/"

critical_t
"dt_policy"

e
a
u

e
a
u

e
a
u

"usr"

e
a
u

"bin"

foo_de
a
u

"login""papers"

"george"

"login"

"bin"

"/"

"usr"

"usenix"
Legend

map node

vnode

Figure �� Attribute Associations

for implicit at� and 	u
 for implicit under�� Fig�
ure 
 shows that the root map node is explicitly
of type 	root t
 and that all �les under the root
	inherit
 the type 	unix t�
 This inherited type
is overridden� however� for the �le 	�dt policy�

which has an explicit type attribute of 	critical t�

The domain 	foo d
 has an entry point program�
	�usr�bin�login�
 and that �le therefore has an ex�
plicit domain attribute and it also inherits the type
	unix t�


Attributes represented by map nodes are related
to �les by association with standard vnode struc�
tures that have been slightly extended to inter�
act with the map node tree� At system initial�
ization� the root vnode is associated with the root
map node� Subsequently� all name resolution op�
erations establish bindings so that every vnode is
related to a map node� In the case that a map
node exists for a �le represented by a vnode� a
name resolution operation attaches the vnode di�
rectly to the map node� If a map node does not
exist� the name resolution mechanism attaches the
vnode to its parent vnode� since every resolution
operation operates from a known absolute or rel�
ative path� every new attachment is relative to a
known vnode� and all vnodes are eventually con�
nected to the map node tree through a chain of
parent vnode pointers� To maintain parent vn�
ode pointers� the DTE prototype references parent

vnodes� resulting in a somewhat increased kernel
memory requirement for active vnodes� Figure �
shows the vnode associations that result from pro�
cess access to the �les 	�usr�george�papers�usenix

and 	�usr�bin�login�
 Because the login program�s
pathname is fully represented by map nodes� vn�
odes for the path attach directly� For the path to
George�s usenix paper� the �rst two vnodes of the
path connect directly to map nodes� and the rest
point to the last map node in the path� Both �les
have the type 	unix t�
 which is provided by the
root map node�

By binding attribute values to vnode structures�
the DTE prototype ensures that attributes are al�
ways available before they are needed even though
the attributes may not be stored one�to�one on sec�
ondary storage� The DTE prototype retrieves at�
tribute values of �les using a simple algorithm that
follows vnode parent pointers up until the �rst map
node is reached and then optionally follows map
nodes until the 	governing
 map node is reached�

E�ciency is a primary concern for the DTE pro�
totype� The overhead of associating new vnodes
with appropriate map nodes during name resolu�
tion is negligible� requiring a small and constant
number of pointer manipulations� The attribute re�
trieval operation is a more likely cause of perfor�
mance degradation� but we believe it is also small�
In the DTE prototype� the UNIX kernel function



iaccess�� �and a handful of similar functions� call
DTE functions that retrieve �le security attributes�
Most UNIX access control functions funnel down
to the iaccess�� function� which is called with great
frequency since every system call requesting an op�
eration on a pathname must call iaccess at least
once for every component of the path� In the worst
case� each attribute retrieval could require a search
to the root map node� Given the modest depth of
typical UNIX pathnames and the in�memory status
of the map node tree� however� this appears small
relative to other overheads of UNIX kernels� At the
cost of additional complexity� however� various op�
timizations could be taken to short�circuit attribute
retrieval searches as required�

��� Recovery Mechanisms

Although useful security con�gurations can be
constructed that 	lock down
 the mappings be�
tween areas of the hierarchical �lesystem name
space and security attributes� resulting in a static
tree of map nodes� a more common case in our ex�
perience is to allow the map node tree to evolve
as �les are moved and created to re�ect the needs
of applications that use �les� For example� an ap�
plication might create a �le of type 	foo t
 in an
area of the name space that inherits 	bar t�
 such
an event would add a DTEL assign statement� with
its map nodes� to the system con�guration� Sim�
ilarly� a rename�� operation may require that the
map node tree be edited so that the rename op�
eration doesn�t inadvertently change the type of a
�le as a side e�ect� In general� the DTE proto�
type emulates the semantics of one�to�one attribute
storage even though the attributes are not in fact
maintained in that manner�

Given the criticality of accurate security at�
tribute associations� dynamism in the map node
tree introduces the need to maintain up�to�date as�
sociations even in the presence of system reboots
or crashes� Writing map nodes to secondary stor�
age poses an obvious risk to performance� the DTE
prototype addresses this using a combination of al�
ternate snapshot �les and logging� Every thirty sec�
onds� the map nodes are written to disk�� Addi�
tionally� more timely information is kept in two al�
ternate log �les� at system reboot� the most recent
snapshot and log �le is read to reconstruct the most
recent valid state� The batched writes of the pol�
icy impose little overhead since no program waits
for the writes to complete� In contrast� the log �les
require synchronous I�O and must be updated as

�For large policies� the mechanism could be enhanced to

periodically write out only the changed portion�

little as possible�
Two basic classes of operations a�ect the map

node tree� create operations and rename operations�
In each case� the DTE prototype incurs no addi�
tional overhead if the operation does not produce an
edit of the map node tree� If the operation creates
a new object �e�g�� a new empty �le at an unused
pathname� or a rename to an unused pathname�� re�
covery is simple since the attributes can be written
�rst� Maintenance of DTE recovery information in
this case requires one synchronous write operation
in addition to the two synchronous write operations
performed by UNIX to create or rename a �le� If
an operation overwrites an existing object� however�
the use of implicit attributes complicates the recov�
ery strategy� because every �le is always associated
with attributes inherited from the root directory�
neither order of operations�

�� replace a �le �rst and then record the new at�
tribute� or

�� record the new attribute �rst and then replace
the �le�

prevents mislabeling if the system crashes between
the two operations� To address this� the DTE pro�
totype records this information as a sequence of
optimized transactions that makes sparing use of
synchronous I�O and� most importantly� that never
converts a memory�speed operation to disk speed�

Both the create and rename VFS�layer opera�
tions can overwrite an existing �le as a side e�ect�
In the case of create� the UNIX VFS layer knows if
there is an existing �le to overwrite and truncates
it for reuse with a new identity� To prevent a crash
from relabeling existing �le contents� the DTE pro�
totype adds an fsync operation� ensuring that the
�le is empty� and then writes the new attribute to
the log �le� resulting in a worst�case scenario of two
additional synchronous I�O operations for �le cre�
ation�

A rename operation rename�	foo
� 	bar
� is es�
sentially�

unlink�	bar
��
link�	foo
� 	bar
��
unlink�	foo
��

If bar exists� an update to a log �le must be made
conditional on successful completion of the rename
operation or the log �le update may relabel the orig�
inal bar� The log �le update cannot be written after

the rename operation because a system crash could
prevent writing of the update� For this operation�



the DTE system writes an uncommitted transac�
tion to the log �le containing the �le number of the
�le to be moved and� on the next write to the log
�le� piggy�backs the commit of the previous trans�
action� During system recovery� the last transaction
can be veri�ed through an examination of on�disk
�le numbers� This strategy holds the recovery I�O
burden to at most one synchronous I�O for every
rename operation�

In general� the prototype design requires no ad�
ditional disk access on a per�system call basis�
This approach promotes high performance since
most DTE�related overhead is in memory opera�
tions where data structures can be optimized� For
recovery� however� it is necessary to add disk writes
during �le creates that cause changes in the at�
tribute association database� Depending on a sys�
tem�s con�guration� it could be that none� some� or
all �le creates would cause attribute associations to
change�

��� Network Implementation

In addition to associating attributes with �les
and processes and performing access control over
those entities� the DTE prototype also inserts DTE
attributes into IP datagrams and provides media�
tion of network messages� A fundamental goal of
DTE network mediation is to preserve interoper�
ability with non�DTE systems� this requires using
existing IP� UDP� TCP� and NFS services and� as
much as possible� preserving application layer pro�
tocols such as rsh and rlogin� Although we expect
that it will be useful to add DTE awareness to some
network applications such as rcp and rdist� we be�
lieve that DTE systems must �rst be useful in net�
works of non�DTE systems�

Our general scheme is to add DTE attributes in
the IP option space� these attributes are tokenized
and currently consume �� bytes of the 
��byte IP
option space� DTE networking support at other
layers is carried in these attributes at the IP layer�
Due to the use of pipes and sockets in UNIX� a
UNIX process may cause numerous IP datagrams
to be generated and may not be aware of the net�
work consequences of its actions� For the DTE pro�
totype� each message is generated in the context of
a process�s domain and carries the domain�s iden�
tity as the message�s 	source domain�
 Addition�
ally� each message carries a type attribute� typically�
each DTE domain has a default output type that la�
bels messages generated from normal UNIX system
calls such as write�� and send���

For each standard UNIX system call that can
generate a message� the DTE kernel retrieves the
calling process�s domain and default output type

from the DTE policy database generated using
DTEL� Traditionally� UNIX systems employ a data
structure� called an mbuf� that allows bu�ers of data
to be chained together in a manner that facilitates
the prepending and stripping of protocol headers in
di�erent layers of a UNIX kernel�s protocol stacks�
The DTE prototype uses a slightly extended form
of the typical mbuf structure that provides header
space for storing source domain and type identi�ers�
Standard UNIX system calls that send messages
save these attributes in extended mbuf chains� at
the bottom of the protocol stack� these attributes
are extracted from the chains and encoded as IP
options on a per�datagram basis� For received mes�
sages� the mechanism works in reverse� extracting
received IP options and encoding them in mbuf
chains for retrieval by receiving processes�

In addition to support for ordinary UNIX sys�
tem calls� the DTE prototype provides a number of
analogous DTE�speci�c system calls that allow pro�
cesses to specify the type of data that they wish to
send� DTE access control prevents processes from
generating data types unless they have appropriate
authorizations as speci�ed in the DTEL speci�ca�
tion�

In general� the DTE prototype treats every IP
datagram as homogeneously typed� this simpli�es
access control over datagrams since a process us�
ing the raw IP interface� for example� can be al�
lowed or denied access to a datagram based on
its domain�s access to the datagram�s type� This
strategy� although simple� does allow several am�
biguous situations� for example� if a protocol such
as TCP piggy�backs control information in pack�
ets that also carry user data� should those packets
have a protocol�speci�c type or a user type� Cur�
rently� our approach is to label packets with user
types when they contain any user data and with
protocol�speci�c types when they contain only pro�
tocol data� In the future� a natural extension to the
strategy may include a secondary 	subsystem
 label
for use by protocol subsystems that are trusted to
accurately carry user data� To minimize security
mechanism� however� we are deferring secondary
packet labels until a de�nite need has been demon�
strated� In either case� the use of homogeneously
typed datagrams simpli�es the implementation of
TCP substreams since TCP substreams are always
made up of complete IP packets�

UNIX system calls that write data onto a TCP
connection enqueue onto a single chain of mbufs as�
sociated with a TCP socket� the TCP sliding win�
dow processing breaks the data stream into sepa�
rate IP datagrams based on a variety of critera to



optimize performance and guarantee that receipt of
all the data is acknowledged before it is forgotten
on the sending side� On the sending side� the DTE
prototype implements TCP substreams by breaking
the single mbuf chain into multiple chains where all
the data of each chain has the same type attribute�
The TCP sliding window processing has been mod�
i�ed slightly to generate a new datagram at chain
boundaries� On the receiving side� this mechanism
works in reverse to return substream type informa�
tion that is then used both to mediate receive oper�
ations by processes and to deliver type information
for use by DTE�aware processes�

A signi�cant extension to the DTE prototype
was required to implement DTE�NFS servers� Es�
sentially� NFS �le handles specify inode numbers
that have no direct relation to the map nodes that
implement implicit attributes for the prototype� A
means was therefore required for mapping from in�
ode numbers to map nodes� For directories accessed
via NFS� the solution is simple since every direc�
tory contains a 	��
 entry� using the 	��
 entries�
it is possible to reconstruct the portion of a path�
name required to establish attribute values� The
prototype currently carries out this reconstruction
at every NFS �le handle reception� however� tem�
porarily raising the reference counts of heavily used
vnodes probably would increase performance and
prevent DTE overhead from being an NFS server
bottleneck�

For �les� the on�disk representations do not im�
ply parents without an exhaustive search of �le sys�
tem inodes� To avoid this� the DTE prototype
stores ��le�inode�number� parent�directory�inode�
number� pairs during NFS lookup operations in a
cache� These entries provide a mechanism to reach
the �rst directory that then allows pathnames to be
reconstructed as necessary� To prevent any possi�
bility of introducing additional stale �le handles at
client applications� the cache must be maintained
on secondary storage� For intentional DTE�NFS
server shutdowns� the cache can be written out only
before shutdown� To avoid stale �le handles after
DTE�NFS server crashes� the cache must be main�
tained during operation� In this case also� the cache
contents can be batch written at timed intervals� re�
sulting in a minimal impact on performance�

� Related Work
The work most related to DTE and its UNIX

implementation falls into two general classes� access
control systems and UNIX security mechanisms�

DTE is most closely related to mandatory ac�
cess control techniques �
� �� �� ��� �� and type�

enforcing systems ��� ��� ��� �
� ���� In general�
DTE policies are a proper superset of the DoD lat�
tice model �
� and its integrity variation ���� DTE
can be con�gured to provide a lattice but can also
enforce nonhierarchical security policies such as as�
sured pipelines ��� that drive information through
policy�speci�ed pathways of arbitrary connectivity
and complexity� DTE can also be con�gured to pro�
vide integrity categories as in ���� and to support
the transformation procedures and constrained data
items of the Clark�Wilson model ����

Type enforcement was �rst proposed in ��� for
the Secure Ada Target� a system later renamed
LOCK ����� LOCK provides a Trusted Comput�
ing Base �TCB� on top of which a UNIX emu�
lation layer provides UNIX services� As a conse�
quence� the type enforcement mechanism controls
UNIX emulations instead of individual UNIX ap�
plications and does not distinguish among multiple
applications running on a single UNIX emulation�
This limitation also exists for a Mach�based LOCK
derivative ��
�� which adds type enforcement to the
Mach port� task� and virtual memory abstractions
but provides no type enforcement within the UNIX
emulation layer�

In ��
�� type enforcement was added to Trusted
XENIX as a TCB subset� This system provides type
enforcement at the UNIX system�call interface and
can individually control UNIX applications� The
TCB subset architecture prohibited change to low�
level disk formats and mandated use of a separate
runtime database to manipulate such attributes�
This strategy is a precursor of the DTE runtime
implicit type concept� Type enforcement has also
been integrated into at least one Internet �rewall
product� the SCC Sidewinder� system ����� but the
authors are not aware of any published technical
details�

A number of UNIX security controls and
tools have been developed� Access Control
Lists �ACLs����� provide greater �exibility in
UNIX discretionary access controls� and user�mode
capabilities���� also allow �ner�grained control over
propagation of access rights� but both mechanisms
are discretionary in nature and provide little protec�
tion against error�prone root programs� A variety
of trusted UNIX systems have been implemented
and evaluated against the Trusted Computer Sys�
tem Evaluation Criteria ����� These systems typi�
cally provide MLS security but lack the �exibility of
DTE� Additionally� tools such as COPS ���� check

�Sidewinder is a trademark of Secure Computing Corpo�

ration� Inc�



for system misco�gurations but do not improve on
the base UNIX security mechanisms themselves�

The Trusted Systems Interoperability Group
�TSIG� has developed Internet draft standards for
NFS and other protocols that support Multi�Level
Secure �MLS� networking� These standards com�
municate signi�cant amounts of information to rep�
resent security labels on subjects and objects that
may 	�oat
 up dynamically and to represent pro�
cess privileges that may be communicated across
networks� For DTE� all of the required security
information is contained in the relatively space�
e�cient type and domain identi�ers carried in the
IP�layer tra�c� avoiding most changes to higher�
layer protocols�

� Future Directions

We are actively exploring several directions for
DTE� The most immediate and important one is the
integration of DTE into Internet �rewalls� Over the
next two years� we will integrate DTE into �rewalls
in three phases�

DTE Firewalls An integration of DTE into an In�
ternet �rewall and selected hosts� This inte�
gration will add defense�in�depth to the �re�
wall security perimeter� The DTE �rewall will
direct tra�c from speci�ed external hosts or
of speci�ed protocols only to �ow to internal
DTE hosts that can contain any malicious ef�
fects� Our primary goal here is to allow more
network services to be safely imported into a
LAN than is now prudent�

Distributed DTE Firewalls An integration of
IP�layer encryption with the DTE �rewall�
This phase will connect multiple DTE enclaves
across the Internet�

Domain and Type Authority Service A
DNS�like network service that will distribute
portions of DTEL policies� Communicating
DTE hosts will authenticate to this service and
use its DTE policy information as a basis for
establishing appropriate inter�host trust rela�
tions and also for agreement on how data of
speci�c types should be protected by commu�
nicating hosts�

In order to accomplish these goals� we will soon
begin investigating howmultiple hosts can exchange
DTE information to negotiate network DTE poli�
cies� how DTE mechanisms can most e�ectively use
encryption to protect DTE network attributes� how

DTEL can be modularized to reduce policy com�
plexity� and how DTE policies can be dynamically
and safely extended or modi�ed at runtime�

� Conclusions
A central question in practical UNIX security

is whether signi�cant enhancements can be added
in a way that is understandable� e�ective� and un�
obtrusive� This is a di�cult question because ap�
plications and systems have evolved over time and
now interact in subtle ways� practical security en�
hancements must allow existing programs to func�
tion properly while preventing unsafe interactions�
DTE is an access control mechanism that uses a
speci�cation language to add simplicity and uses
implicit typing to maintain compatibility and inter�
operability� This paper reports on recent extensions
to DTE to provide greater security for IP�based net�
working and NFS services� and on design consider�
ations of a DTE UNIX prototype� Our primary
results are positive and� although the DTE proto�
type is a research tool� we have used it internally to
provide guest users with safely restricted access to
our corporate data�

In sum� DTE has provided a useful research plat�
form for building a hardened� compartmentalized
UNIX system� In addition� DTE mechanisms ap�
pear suitable for interoperating and enforcing poli�
cies within networks of existing systems having no
DTE controls� This capability is critical because
any enhanced protection system must interoperate
with existing systems through an extended transi�
tion phase as access controls are gradually adopted�

References
��� L� Badger� D� F� Sterne� D� L� Sherman� K�

M� Walker� S� A� Haghighat� 	Practical Domain
and Type Enforcement for UNIX�
 ���� IEEE
Symposium on Security and Privacy� Oakland
CA� May �����

��� L� Badger� 	A Model for Specifying Multi�
Granularity Integrity Policies�
 ���� IEEE Sym�
posium on Security and Privacy� p� ���� Oak�
land� CA� May �����

��� R�W� Baldwin� 	Naming and Grouping Privi�
leges to Simplify Security Management in Large
Databases�
 Proceedings of the ���� IEEE Sym�
posium on Security and Privacy� p� ���� Oak�
land� CA� May �����

�
� D�E� Bell and L� Lapadula� 	Secure Computer
System� Uni�ed Exposition and Multics In�
terpretation�
 �Technical Report No� ESD�TR�



������� Electronics Systems Division� AFSC�
Hanscom AF Base� Bedford MA� ������

��� K�P� Birman� T� Joseph� K� Kane� F� Schmuck�
	The ISIS Programming Manual and User�s
Guide�
 Department of Computer Science� Cor�
nell University� June �����

��� K�J� Biba� 	Integrity Considerations for Secure
Computer Systems�
 USAF Electronic Systems
Division� Bedford� MA� ESD�TR�������� �����

��� M� Branstad� H� Tajalli� F� Mayer� D� Dalva�
	Access Mediation in a Message Passing Ker�
nel�
 ���� IEEE Symposium on Security and
Privacy� p� ��� Oakland� CA� May �����

��� D�D� Clark and D�R� Wilson� 	A Comparison
of Commercial and Military Computer Security
Policies�
 Proceedings of the ���� IEEE Sym�
posium on Security and Privacy� Oakland� CA�
p� ��
� �����

��� W�E� Boebert and R�Y� Kain� 	A Practical
Alternative to Hierarchical Integrity Policies�

Proceedings of the �th National Computer Secu�
rity Conference� Gaithersburg� MD� p� ��� �����

���� J� Ioannidis� M� Blaze� 	The Architecture and
Implementation of Network�Layer Security Un�
der Unix�
 Presented at the USENIX Summer
���
 Technical Conference� Boston MA�

���� NBS� 	Data Encryption Standard�
 Jan� �����
Federal Information Processing Standards Pub�
lication 
��

���� D� Farmer� 	The COPS Security Checker Sys�
tem�
 Proceedings of the Summer ���� USENIX
Conference� Anaheim� CA� p� ����

���� G� Fernandez� L� Allen� 	Extending the UNIX
Protection Model with Access Control Lists�

Proceedings of the Summer ���� USENIX Con�
ference� San Francisco� CA� ����� p� ����

��
� T� Fine and S� E� Minear� 	Assuring Dis�
tributed Trusted Mach�
 ���� IEEE Computer
Society Symposium on Research in Security and
Privacy� Oakland� CA� p� ���� �����

���� J� Kohl and C� Neuman� 	The Kerberos Net�
work Authentication Service �V���
 RFC �����
September �����

���� D� Klein� 	A Capability Based Protection
Mechanism Under Unix�
 Proceedings of the
���� Winter USENIX Conference� Dallas�
Texas� p� ����

���� C�E� Landwehr� C�L� Heitmeyer� and J�
McLean� 	A Security Model for Military Mes�
sage Systems�
 ACM Transactions on Computer
Systems� Vol� �� No� �� August ���
� pp� ����
����

���� S�B� Lipner� 	Non�Discretionary Controls for
Commercial Applications�
 Proceedings of the
���� IEEE Symposium on Security and Privacy�
Oakland� CA� p� �� �����

���� M� K� McKusick� 	The Virtual Filesystem In�
terface in 
�
BSD�
 USENIX Computing Sys�
tems� Vol �� Winter ����� p� ��

���� National Computer Security Center� 	Depart�
ment of Defense Trusted Computer System
Evaluation Criteria�
 DoD ��������STD� Dec�
�����

���� R� O�Brien and C� Rogers� Developing Ap�
plications on LOCK� In Proc� ��th National

Computer Security Conference� pages �
������
Washington� DC� October �����

���� L�L� Peterson� N�C� Buchholz� R�D� Schlicht�
ing� 	Preserving and Using Context Information
in Interprocess Communication�
 ACM Trans�
actions on Computer Systems� ����������
��
Aug� �����

���� Secure Computing Corporation� Sidewinder
Press Release� October ��� ���
�

��
� D� Sterne� 	A TCB Subset for Integrity and
Role�Based Access Control�
 Proc� ��th Na�

tional Computer Security Conference� pages
�������� Baltimore� MD� �����

���� O�S� Saydjari� J�M� Beckman� and J�R� Lea�
man� 	LOCK Trek� Navigating Uncharted
Space�
 Proceedings of the ���� IEEE Sympo�

sium on Security and Privacy� Oakland� CA� p�
���� �����

���� D� J� Thomsen� 	Role�based Application De�
sign and Enforcement�
 In Proc� of the Fourth

IFIP Workshop on Database Security� Halifax�
England� September �����

���� S� Wiseman� 	A Secure Capability Computer
System�
 Proceedings of the ���� IEEE Sympo�
sium on Security and Privacy� Oakland� CA� p�
��� �����


