i

The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium
Salt Lake City, Utah, June 1995.

A Domain and Type Enforcement UNIX Prototype

Lee Badger, Daniel F. Sterne, David L. Sherman,
Kenneth M. Walker, and Sheila A. Haghighat
Trusted Information Systems, Inc.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

A Domain and Type Enforcement
UNIX* Prototype

Lee Badger
Daniel F. Sterne
David L. Sherman
Kenneth M. Walker
Sheila A. Haghighat

Trusted Information Systems, Inc.
3060 Washington Road
Glenwood, Maryland 21738

Abstract

UNIX system security today often relies on cor-
rect operation of numerous privileged subsystems
and careful attention by expert system administra-
tors. In the context of global and possibly hostile
networks, these traditional UNIX weaknesses raise
a legitimate question about whether UNIX systems
are appropriate platforms for processing and safe-
guarding important information resources. Domain
and Type Enforcement (DTE) is an access control
technology for partitioning host operating systems
such as UNIX into access control domains. Such
partitioning has promise both to enforce organiza-
tional security policies that protect special classes
of information and to generically strengthen operat-
ing systems against penetration attacks. This paper
reviews the primary DTE concepts, discusses their
application to IP networks and NFS, and then de-
scribes the design and implementation of a DTE
UNIX prototype system.

1 Introduction

As UNIX systems become a major part of the
National Information Infrastructure, UNIX security
mechanisms are coming under increasing pressure
to resist attacks by highly motivated individuals,
companies, and governments. Currently, UNIX se-
curity rests on protection bits, the root user, and the
setuid/setgid mechanism, which place a great deal

*UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Com-

pany Ltd.

of security responsibility on privileged application
programs and expert system administration. This
has two important consequences. The first is that
UNIX systems often exhibit a “weakest link” phe-
nomemon in which compromise of any privileged
subsystem (e.g., fingerd, lpd, rdist) makes an en-
tire host vulnerable. The second is that reliance on
numerous privileged applications increases the diffi-
culty of implementing coordinated security policies
that provide uniform protection to data and pro-
cessing resources. These two problems motivate a
legitimate concern over whether UNIX systems are
appropriate platforms for processing and safeguard-
ing important information resources in global and
possibly hostile networks.

UNIX (and other operating systems) can in the-
ory be hardened against threats inherent in such
environments by adding an access controllayer that
restricts privileged processes so that damage result-
ing from compromise or error is limited. This ben-
efit, however, has not been realized by mainstream
UNIX systems even though a number of access con-
trol mechanisms [4, 2, 6, 9, 8, 18] have been avail-
able for years. One reason may be that security en-
hancements often impose significant costs resulting
from more complex system administration, appli-
cation incompatibility (or unavailability), and ad-
ditional user training. This raises a central ques-
tion for practical UNIX security: can significant en-
hancements be added in a way that is understand-
able, effective, and unobtrusive?

This paper presents our experiences with a new

form of access control, Domain and Type Enforce-
ment (DTE) [1] and a prototype DTE UNIX sys-
tem. In recognition of the fact that access control
techniques have not been easily accepted by operat-
ing system vendors (or users), DTE has been formu-
lated specifically to address requirements of greatest
concern for both vendors and users, namely: flexi-
bility, simplicity, operating system interoperability,
binary application compatibility, and performance.
This paper reviews DTE, ! discusses how DTE can
be applied to IP networks and NFS and then dis-
cusses design and implementation issues of the DTE
UNIX kernel. Finally this paper reviews related
work and discusses our plans for further develop-
ment of DTE over the next few years.

2 DTE

DTE is an enhanced form of type enforcement, a
table-oriented access control mechanism originally
proposed by Boebert and Kain [9] and later refined
in the LOCK system [21]. As with many access con-
trol schemes, type enforcement views a system as a
collection of active entities (subjects) and a collec-
tion of passive entities (objects). In type enforce-
ment for UNIX, an access control attribute called a
domain is associated with each subject (process),
and another attribute called a type is associated
with each object (file, message, shared memory seg-
ment, etc.). A global table, the Domain Definition
Table (DDT), represents allowed access modes be-
tween domains and types (e.g., read, write, exe-
cute), and another table, the Domain Interaction
Table (DIT), represents allowed access modes be-
tween domains (e.g., signal, create, destroy). As
a system runs, access attempts are mediated using
table lookups: access attempts for modes not au-
thorized in the tables are denied.

Although type enforcement is very flexible, the
access control tables can quickly become too com-
plex, and type enforcement is difficult to use in prac-
tice. Additionally, the presence of type attributes
on files appears to require a new and incompatible
file system format. To address these issues, DTE
enhances type enforcement in two ways:

1. DTE policies are specified in DTE Language
(DTEL), a high-level language suitable for ex-
pressing reusable access control configurations
that are compatible with current applications
and system configurations.

2. During system execution, DTE file security at-
tributes are not stored one-to-one with files on

!DTE is described in more detail in [1].

disk, but are instead maintained implicitly in
a form that capitalizes on the directory hier-
archy to compactly represent portions of a file
hierarchy that have identical attributes. Using
implicit typing, DTE can therefore be applied
to existing files with no change to file system
formats.

DTE is a configurable, kernel-level access control
mechanism. At each system boot, a DTE UNIX
system processes a DTEL specification and estab-
lishes access controls during UNIX kernel initializa-
tion. All processes, including root processes, are
subject to DTE controls. DTEL currently provides
four? primary statements for expressing a DTE con-
figuration:

type Declares one or more object types to be avail-
able to other parts of a DTEL specification.

domain Expressed as a list of tuples, defines
a restricted execution environment composed
of three parts: 1) “entry point” programs,
identified by pathname, that a process must
execute in order to enter the domain (e.g.,
(/bin/login)), 2) access rights to types of
objects (e.g., (rwx->foot)), and 3) access
rights to subjects in other domains (e.g.,
(sigkill->user d)). A DTEL domain con-
trols a process’s access to files, a process’s ac-
cess via signals to processes running in other
domains, and a process’s ability to create pro-
cesses in other domains by executing their en-
try point programs. For backward binary com-
patibility, the domain statement also provides
an access designator to force domain transi-
tions on older programs that are not aware of
DTE: if a domain A has auto access rights to
another domain B, a subject in A automati-
cally creates a subject in B when it executes,
via exec(), an entry point program of B.

initial domain Selects the domain of the first pro-
cess.

assign Associates a type with one or more files. An
assign statement may be recursive, in which
case it applies to a directory and everything
below, and one assign statement may override
another; for instance, an assign statement for
/tmp/foo may override a recursive assign state-
ment for /tmp.

2For brevity we omit peripheral DTEL statements and
features and also restrict our attention here to implemented

features with which we have actual experience.

/*

* DTEL Example Policy.

*/

type unix t, /* normal UNIX files, programs, etc. */
specs_t, /* engineering specifications */
budget_t, /* budget projections */
rates_t; /* labor rates */

#define DEFAULT

domain engineer.d =
domain projectd

domain accounting.d =
domain system.d =
domain login.d =

initial domain system.d;

assign -r unix_t
assign -r specs_t
assign -r budget_t
assign -r rates_t

(/bin/sh), (/bin/csh), (rxd->unix_t) /#* macro */

DEFAULT, (rwd->specs_t);

= DEFAULT, (rwd->budget.t), (rd->rates_t);
DEFAULT, (rd->budgett), (rwd->rates_t);
(/etc/init), (rwxd->unixt), (auto->logind);
(/bin/login), (rwxd->unixt), (exec->engineerd,

project.d,
accounting d);

/* system starts in this domain */

/; /* default for all files */
/projects/specs;
/projects/budget;
/projects/rates;

Figure 1: Example DTEL Policy

An important goal for DTE is to superimpose
useful security policies on existing UNIX configura-
tions while using implicit typing to maintain back-
ward compatibility with existing data formats and
applications. Figure 1 shows a DTEL specification
of a commercial policy designed to provide data pro-
tection and user authorizations in an engineering
organization. To validate that our example specifi-
cation is not trivial, we have run it on our prototype
DTE system and found it to provide useful protec-
tion. This specification provides three types of pro-
tected user data, one type of system data, three
user domains, and two supporting system domains.
The user domains correspond to job descriptions,
such as engineer or accountant, and the system do-
mains provide operating system support. Addition-
ally, this specification assigns type attributes to all
files.

A DTE system running the specification of fig-
ure 1 starts the first process in the system.d do-
main, which is then inherited for all other sys-
tem processes except the login program. The spec-
ification uses the auto mechanism to run login

in the login d domain even though the existing
getty program does not request the domain tran-
sition. The login d domain has the authority to
create the user domains (engineer d, project.d,
and accounting d), based on user authentications.
Each user login session is confined by one of the
user domains controlling access to protected data,
which resides in three directories under /projects.
Though simple, this sample specification can be in-
crementally refined to add additional user domains,
distinguish between console and network user ses-
sions, simultaneously support additional organiza-
tional policies, and harden UNIX itself by running
its root daemons in tightly constrained domains.

3 DTE Networking

Since UNIX systems are usually networked, DTE
systems must work naturally while communicating
both with other DTE systems and with non-DTE
systems. In particular, multiple DTE systems must
provide mechanisms allowing coordinated protec-
tion of information among themselves, and DTE
systems must protect themselves from non-DTE

systems. To accomplish this, DTE adds two at-
tributes to network communications carrying user
data: 1) the type of the data written by the sending
process and 2) the domain of the process that sent
the data, the “source domain.” A receiving process
can always view the data’s type, which the receiver
must know to adequately protect the data, or pos-
sibly to protect itself from the data. Additionally,
a receiver can always view the sender’s domain; a
DTE server that receives a request can therefore use
the client’s domain to decide whether to perform the
requested function.

To maintain compatibility with existing network
protocols and applications, DTE attributes are car-
ried as IP options, ® with no change to packet con-
tents. DTE mediates communications over stan-
dard datagram and stream-oriented services. In
each case, DTE imposes access control mediation
both at send time and receive time: to successfully
send data of type t, a process’s domain must permit
write access to t, and to successfully receive data of
type t, a process’s domain must permit read access
to t. For datagram protocols such as UDP, a single
type labels the contents of an entire packet. For
stream protocols such as TCP, different portions of
a stream may have different types of data; a se-
quence of contiguous bytes having the same type is
a substream.

These design choices give a high priority to com-
patibility and interoperability. Our datagram ap-
proach is not unusual, and homogeneously typed
datagrams work well for existing applications since
they are unaware of DTE and therefore only gener-
ate one type of data. Our stream approach, how-
ever, is less typical. A simpler approach would bind
a security attribute to a stream socket and there-
fore to all data communicated on it. Typical UNIX
service interactions, however, make this approach
problematic. An important example is inetd, which
receives socket connections for services it spawns:
inetd must be able to connect to a socket and then
hand the descriptor to a child process that may run
in a different domain. The use of substreams re-
moves the need for inetd to run in an all-powerful
domain. Programs like telnet and rlogin provide
other examples: if a user runs a program that pro-
duces output of multiple types, a single connection
can carry the output back to the client in multiple
substreams, but statically typed connections would

3For experimental purposes, we currently assume that
network packets are not stolen or modified. We plan to
take advantage of known and emerging cryptographic tech-
niques and protocols for communications authentication [15],

integrity, and confidentiality [10, 11] as appropriate.

force dynamic creation of new TCP connections to
send the data. While multiple connections could be
used to transmit multiple types of data, this would
change application-layer protocols (like remd) and
prevent DTE network applications from interoper-
ating with their non-DTE peers.

In addition to maintaining compatibility with
UNIX network abstractions and application-level
protocols, it is also necessary to define how DTE
systems interoperate with non-DTE systems. In or-
der for a DTE system to properly control network
applications, all communications must carry type
and source domain attributes. At the same time,
however, DTE applications must interoperate with
applications running on non-DTE systems that do
not provide DTE attributes. To provide interop-
erability without weakening DTE, DTE hosts as-
sociate a domain with every foreign non-DTE host
and mediate all network traffic with that host so
that the effect of the mediation is as though the
host were actually running DTE and the process
sending (or receiving) from that host were running
in the associated domain. Using DTEL, a DTE
system can associate a single domain with the “uni-
verse” of foreign non-DTE hosts, associate a differ-
ent domain to each class A, B, or C network, and
finally associate specific domains to individual non-
DTE hosts that, for various reasons (such as qual-
ity of administration), are more or less trustwor-
thy than their LAN. This technique has performed
well in our corporate LAN, allowing us to appropri-
ately “trust” specified non-DTE hosts. Although
we are using source-address “authentication” for
compatibility at present, our plans include moving
to stronger authentication, such as is envisioned for
IP6, as the overall network infrastructure evolves.

Although our experience with DTE networking is
still somewhat limited, we have been able to run ex-
isting UNIX applications such as rsh, rlogin, telnet,
ping, sup, and mount in suitable DTE domains and
we have encountered no “show stoppers.” We have
discovered, however, that although TCP/IP hosts
should drop IP options they don’t recognize, that
doesn’t always happen and SunOS 4.1.1 on Sun 3
systems, in particular, crashes when presented with
an unrecognized option. As a result, we have added
features to our systems that prevent the sending
of DTE attributes to hosts that are not known to
be currently running DTE. We are now formulat-
ing the requirements of a DTE protocol that would
maintain timely information on the DTE status of
a machine as well as provide DTE policy negotia-
tion functions that ensure that different machines
“mean” the same thing by DTE attributes they ex-

Guest User
Existing
DTE System File Server
|
Local Disk

Proprietary Data

>Non—sensitive Data

Figure 2: DTE NFS Clients

change. Although we only have experience to date
with UDP and TCP, our techniques appear to apply
to raw IP, and potentially also to multicast proto-
cols such as ISIS [5] and PSYNC [22].

4 DTE NFS

The ubiquitous use of NFS highlights the need
for DTE to both support NFS on DTE systems and
also to interoperate with non-DTE systems that use
NFS. An integration of DTE and NFS for DTE-
aware clients and servers is relatively simple and
involves sending and receiving DTE attributes be-
tween DTE systems that then use the attributes for
mediation in the same way they use locally stored
DTE attributes. To make DTE useful in the short
term, however, interoperability with non-DTE NFS
clients and non-DTE NFS servers may be even more
important.

A significant benefit of implicit typing [1] in this
regard is that DTE client workstations locally as-
sociate types with all files, even files provided over
NFS by file servers that are not DTE-aware. This
ability has allowed us to use DTE workstations to
make selected portions of our corporate file server
available to selected groups of users with a mini-
mum of administrative effort. As electronic com-
merce increases the need for cooperation between
organizations, we expect this scenario to become
more common. Figure 2 displays the concept. A
guest user has an account only on a DTE system.
This system mounts from an existing file server and

applies the type “proprietary data” to some files on
the imported file system and the type “non sensi-
tive data” to the others. All guest user processes
running on the DTE system are restricted accord-
ing to the local DTE policy to access only the non-
sensitive data.

DTE network features allow a DTE system to
refuse communication with selected non-DTE hosts
and to prevent important types of data from be-
ing exported to non-DTE hosts (regardless of which
communication service is used). If communication
with a non-DTE NFS server is allowed, the client-
side DTE/NFS subsystem associates types with im-
ported files based on their pathnames. A premise of
our work 1s that access controls must be flexible: it
is up to the system administrator of a DTE system
to determine whether a non-DTE host should be
trusted to properly maintain data of various types.
Although all the data received at the IP layer will be
typed according to the DTE domain associated with
the non-DTE file server, the DTE/NFS subsystem
on the client system resides in the DTE UNIX ker-
nel and is trusted to override the default communi-
cations type with correct file types as specified in
the system’s DTEL specification.

Initially, we added DTE only to the NFS client
side, as described above. We are currently testing
a DTE/NFS server that can serve clients on both
DTE and non-DTE systems. When the client is
on a DTE system, all NFS requests are labeled by
the client system with the source domain of the re-

questing process. The DTE/NFS server then uses
the source domain as a client credential to con-
sult the system’s DTEL specification and deter-
mine whether the request is authorized. In addi-
tion, each IP packet that carries the contents of
a file accessed via DTE/NFS is labeled with the
type associated with that file. A potential benefit
of this approach is that both source domain and
type attributes are readily visible to routers and
network firewalls and could allow future versions of
such devices to consult them when making filtering
and routing decisions. An additional benefit is that
the NFS protocol need not be modified. Although
NFS client requests sent by non-DTE systems lack
source domain attributes, the DTE/NFS server’s IP
subsystem attaches them (in accordance with the
DTE system’s DTEL specification) before passing
the requests to the DTE/NFS subsystem for media-
tion. From the non-DTE client’s point of view, the
DTE/NFS server behaves like a non-DTE server,
except that access may be denied for some requests
where, in the absence of DTE, the request would
have been granted.

The NF'S protocol is designed so that NFS server
systems may crash, reboot, and resume NFS service
without requiring clients to perform new lookup op-
erations on files that were open at the time of the
crash. Each NFS request contains an NFS file han-
dle that identifies the file by file number, which al-
lows a typical UNIX system to access the file di-
rectly without performing a name translation. Un-
like the permission bits and owner identifiers asso-
ciated with a file, however, the implicit DTE at-
tributes are not stored within inodes but in a sepa-
rate attribute database organized by pathname in-
stead of file number. If a newly rebooted DTE/NFS
file server could not locate security attribute infor-
mation for an NFS request, it would have to refuse
the request, resulting in a stale file handle at the
client application. To prevent this, the DTE/NFS
prototype reconstructs pathnames based on inode
numbers by maintaining a cache of parent inode
numbers for non-directory files accessed via NFS,
thereby permitting it to find file attributes in the
DTE attribute database.

On our DTE/NFS prototype, the NFS daemon,
like all other processes, runs in its own domain
and is constrained in accordance with the system’s
DTEL specification. On most systems, this domain
will likely be configured to give the daemon the abil-
ity to access and export many types of informa-
tion. Nevertheless, it is not necessary to make all
types accessible to it. If highly sensitive or critical
types of information are stored on a system, it may

be highly desirable to prevent them from being ex-
ported. Standard NFS provides features for limiting
the exporting of files, but these features are coarse-
grained, dealing only with whole file systems and
are available only to a system administrator. By
making certain types of files inaccessible to the NFS
daemon, DTE provides a strong additional mecha-
nism that can be employed by administers to pre-
vent individual files on arbitrary file systems from
being exported.

Our experience with DTE/NFS servers is still
very limited; however, our initial results are en-
couraging: NFS clients on DTE or non-DTE sys-
tems can be granted fine-grained restricted access
to NFS-exported file hierarchies without change
to applications or to non-DTE system configura-
tions. The DTE prototype system’s security at-
tribute management strategy requires implementa-
tion of a new system cache and secondary storage to
store the cache across system reboots. The cache,
however, requires little human administration and
requires only a small amount of additional I/O that
only occurs in the context of I/O already required

by NFS.

5 DTE UNIX Prototype

To gain experience with DTE concepts, we have
implemented a prototype DTE UNIX system based
on OSF/1 MK4.0. Although our system is based
on a Mach microkernel, the DTE features are lo-
cated in relatively high layers of the UNIX server’s
architecture, require no knowledge of microkernel
interfaces, and are therefore reasonably portable to
kernelized UNIX systems. We have also recently
ported the DTE prototype to run on TMach Version
0.2 [7], a high-assurance trusted computing base
designed to satisfy DoD security requirements as
specified in the Trusted Computer System Evalua-
tion Criteria [20]. Even though TMach employs a
TMach-specific file system format, the integration
required almost no change to the DTE implemen-
tation because the integration points between the
UNIX server and TMach are generally at low layers
in the UNIX architecture, whereas DTE is mostly
implemented in the upper layers of the UNIX “ker-
nel.”

Figure 3 shows the prototype’s architecture. To
enhance portability, the majority of the DTE im-
plementation is located in an isolated subsystem
consisting of 7,300 lines of commented C code and
3,600 lines of commented lex and yacc code. Other
UNIX kernel subsystems call into the DTE sub-
system to request security services. This part of
the integration consists of another 7,200 lines of

DTE UNIX process

UNIX system call inferflace | |

|DTE interface

| DTE subsystem

OSF/1 Server

Interface

Mach Kernel or TMach Kernel+Servers

Hardware

Figure 3: DTE System Architecture

code, bringing the total DTE integration to approx-
imately 17,000 lines of kernel-resident code. The
DTE prototype’s kernel provides 20 new system
calls for DTE-aware applications to use for retriev-
ing security attributes for display to the user and
for implementing security relevant functions.

In addition to kernel changes, we have imple-
mented a DTE version of the login program that
authenticates users for specific roles [17, 3, 26] and
then confines user sessions to specific domains using
domain transitions authorized by the DTEL spec-
ification. To allow users to view DTE attributes
for processes and files, we have implemented DTE-
aware versions of a number of UNIX utilities such as
lIs and ps, and we have implemented a DTE-aware
version of emacs 19.22 that displays type attributes
of file buffers and allows users to simultaneously
view and manipulate labeled information in multi-
ple windows.

As the prototype boots, it reads its DTEL spec-
ification and confines all processes, regardless of
UNIX root privileges, to specified domains. DTE
is active before single-user mode has been reached.
According to its DTEL specification, the prototype

labels files, network packets, and processes; deter-
mines domain interactions; and mediates process
access requests. We have tested a number of policies
using the prototype, including a policy to partition
the components of a simulated command and con-
trol system, a policy to strengthen UNIX by con-
fining UNIX root processes in 27 separate domains,
and an enterprise data protection policy (similar to
that of figure 1). Additionally, we use DTE client
workstations to permit but safely limit access by
“guest” users who are authorized to see some but
not all TIS sensitive data.

The DTE prototype’s design and implementation
have given a high priority to maintaining operat-
ing system interoperability and binary application
compatibility. Three aspects of the DTE prototype
are central to achieving these goals: 1) preserving
existing data formats by employing implicit secu-
rity attributes, 2) ensuring that implicit attributes
are recoverable in the presence of system shutdowns
and power failures, and 3) adding DTE networking
support without change to existing protocols.

5.1 Implicit Attributes

For entities that must be recreated at each sys-
tem boot (such as process structures or IP data-
grams), the DTE prototype attaches security at-
tributes explicitly to each object. Compatibility
and performance can be maintained with this strat-
egy because modifications need not affect secondary
memory data formats or require additional I/0.

Files, however, present a more difficult case both
because security attributes must be maintained on
disk to survive system reboots and because files
are usually numerous. To address these issues, the
prototype associates security attributes with files
“implicitly” based on their locations within direc-
tory hierarchies. For portability, most of the proto-
type’s functions for file security attributes are im-
plemented at the Virtual File System (VFS) layer
and build associations between vnodes [19] and se-
curity attributes. Since all currently accessed files
are represented by vnodes, all files in use have
associated security attributes. When the proto-
type boots, it creates in kernel memory a tree of
map nodes that describe how security attributes are
bound to the hierarchical file name space. Although
our current prototype simply keeps this tree entirely
in memory, it can in principle be paged to disk as
necessary.

A sequence of map nodes proceeding from the
root map node to a leaf map node names an exist-
ing path in the hierarchical filesystem name space.
Each map node optionally associates one or more
security attributes with the path component as-
sociated with it. The prototype currently main-
tains two kinds of security attributes bound to files:
type names and domain entry points. To represent
attributes implicitly, a map node may also asso-
ciate security attributes with files whose pathnames
merely include the map node as a prefix. Such map
nodes represent “implicit” associations. For each
security attribute, a map node provides the follow-
ing options:

implicit at The attribute is bound to this path
component. In the absence of higher-priority
map nodes that conflict with this map node,
the attribute is also bound to all pathnames
having this path component as a prefix.

implicit under The attribute is not bound to
this path component, but, in the absence of
conflicting higher priority map nodes, the at-
tribute is bound to all pathnames having this
path component as a prefix.

explicit The attribute is bound to this pathname

only.

Informally, the prototype resolves map node con-
flicts by giving priority to the map node that rep-
resents a longer path, interpreting mplicit under
attributes to be “longer” than smplicit at attributes
for the same path and always giving priority to ex-
plicit attributes.

_.root_t
w/m al--=
--unix_t

[)

[=}

o]--critical_t

el--=

"usr" EY il "dt policy"a| " =
ul--+F ul~-~'+
e|--=

"hin® al--=
uf--=-
]--foo_d

"login" al|"" ¥
u|===

Figure 4: Map Nodes

Each path provided to a domain or assign state-
ment potentially generates a map node for ev-
ery component of the path. For example, a path
“/a/b/c” given in a DTEL statement generates
three map nodes (the root map node is automat-
ically present). Map nodes are shared, however, so
if a second DTEL statement specifies “/a/b/c/d,”
only one new map node is generated. DTEL pro-
vides flags to set the initial options of map nodes:
the DTEL assign statement, which associates types
with files, takes a “-r” option to designate implicit
at and a “-u” option to designate implicit under.
DTEL domain statements automatically generate
explicit associations for their entry point attributes.
For example, the following DTEL statements gen-
erate the map nodes displayed in figure 4.

assign root_t /;

assign -u unix.t /;

assign criticalt /dt _policy;
domain food = (/usr/bin/login), ...;

That figure shows five map nodes, one for each
unique component in the paths “/usr/bin/login”
and “/dt_policy.” Each map node records the name
of its path component and optionally records at-
tribute associations (in figure 4, “e” for explicit, “a”

o]--root_t
> u/m al--=
ul--unix_t
o]--= o]--Critical_t
=== "dt_policy"a|" ™'+
uf--= uf-- =

"papers"

.-
.-
-

nhinn

:

"login"

£ o0

..foo_d
Bl
u|= "=

o 0O

Legend

map node D
vnode O

Figure 5: Attribute Associations

for implicit at, and “u” for implicit under). Fig-
ure 4 shows that the root map node is explicitly
of type “root_t” and that all files under the root
“inherit” the type “unix_t.” This inherited type
is overridden, however, for the file “/dt_policy,”
which has an explicit type attribute of “critical_t.”
The domain “foo_.d” has an entry point program,
“/usr/bin/login,” and that file therefore has an ex-
plicit domain attribute and it also inherits the type
“unix_t.”

Attributes represented by map nodes are related
to files by association with standard vnode struc-
tures that have been slightly extended to inter-
act with the map node tree. At system initial-
ization, the root vnode is associated with the root
map node. Subsequently, all name resolution op-
erations establish bindings so that every vnode is
related to a map node. In the case that a map
node exists for a file represented by a vnode, a
name resolution operation attaches the vnode di-
rectly to the map node. If a map node does not
exist, the name resolution mechanism attaches the
vnode to its parent vnode; since every resolution
operation operates from a known absolute or rel-
ative path, every new attachment is relative to a
known vnode, and all vnodes are eventually con-
nected to the map node tree through a chain of
parent vnode pointers. To maintain parent vn-
ode pointers, the DTE prototype references parent

vnodes, resulting in a somewhat increased kernel
memory requirement for active vnodes. Figure 5
shows the vnode associations that result from pro-
cess access to the files “/usr/george/papers/usenix”
and “/usr/bin/login.” Because the login program’s
pathname is fully represented by map nodes, vn-
odes for the path attach directly. For the path to
George’s usenix paper, the first two vnodes of the
path connect directly to map nodes, and the rest
point to the last map node in the path. Both files
have the type “unix_t,” which is provided by the
root map node.

By binding attribute values to vnode structures,
the DTE prototype ensures that attributes are al-
ways avallable before they are needed even though
the attributes may not be stored one-to-one on sec-
ondary storage. The DTE prototype retrieves at-
tribute values of files using a simple algorithm that
follows vnode parent pointers up until the first map
node is reached and then optionally follows map
nodes until the “governing” map node is reached.

Efficiency is a primary concern for the DTE pro-
totype. The overhead of associating new vnodes
with appropriate map nodes during name resolu-
tion is negligible, requiring a small and constant
number of pointer manipulations. The attribute re-
trieval operation is a more likely cause of perfor-
mance degradation, but we believe it is also small.
In the DTE prototype, the UNIX kernel function

iaccess() (and a handful of similar functions) call
DTE functions that retrieve file security attributes.
Most UNIX access control functions funnel down
to the iaccess() function, which is called with great
frequency since every system call requesting an op-
eration on a pathname must call iaccess at least
once for every component of the path. In the worst
case, each attribute retrieval could require a search
to the root map node. Given the modest depth of
typical UNIX pathnames and the in-memory status
of the map node tree, however, this appears small
relative to other overheads of UNIX kernels. At the
cost of additional complexity, however, various op-
timizations could be taken to short-circuit attribute
retrieval searches as required.

5.2 Recovery Mechanisms

Although useful security configurations can be
constructed that “lock down” the mappings be-
tween areas of the hierarchical filesystem name
space and security attributes, resulting in a static
tree of map nodes, a more common case in our ex-
perience is to allow the map node tree to evolve
as files are moved and created to reflect the needs
of applications that use files. For example, an ap-
plication might create a file of type “foo_t” in an
area of the name space that inherits “bar_t;” such
an event would add a DTEL assign statement, with
its map nodes, to the system configuration. Sim-
ilarly, a rename() operation may require that the
map node tree be edited so that the rename op-
eration doesn’t inadvertently change the type of a
file as a side effect. In general, the DTE proto-
type emulates the semantics of one-to-one attribute
storage even though the attributes are not in fact
maintained in that manner.

Given the criticality of accurate security at-
tribute associations, dynamism in the map node
tree introduces the need to maintain up-to-date as-
sociations even in the presence of system reboots
or crashes. Writing map nodes to secondary stor-
age poses an obvious risk to performance; the DTE
prototype addresses this using a combination of al-
ternate snapshot files and logging. Every thirty sec-
onds, the map nodes are written to disk.* Addi-
tionally, more timely information is kept in two al-
ternate log files: at system reboot, the most recent
snapshot and log file is read to reconstruct the most
recent valid state. The batched writes of the pol-
icy impose little overhead since no program waits
for the writes to complete. In contrast, the log files
require synchronous I/O and must be updated as

“For large policies, the mechanism could be enhanced to

periodically write out only the changed portion.

little as possible.

Two basic classes of operations affect the map
node tree: create operations and rename operations.
In each case, the DTE prototype incurs no addi-
tional overhead if the operation does not produce an
edit of the map node tree. If the operation creates
a new object (e.g., a new empty file at an unused
pathname, or a rename to an unused pathname), re-
covery is simple since the attributes can be written
first. Maintenance of DTE recovery information in
this case requires one synchronous write operation
in addition to the two synchronous write operations
performed by UNIX to create or rename a file. If
an operation overwrites an existing object, however,
the use of implicit attributes complicates the recov-
ery strategy: because every file is always associated
with attributes inherited from the root directory,
neither order of operations:

1. replace a file first and then record the new at-
tribute, or

2. record the new attribute first and then replace

the file,

prevents mislabeling if the system crashes between
the two operations. To address this, the DTE pro-
totype records this information as a sequence of
optimized transactions that makes sparing use of
synchronous I/O and, most importantly, that never
converts a memory-speed operation to disk speed.

Both the create and rename VFS-layer opera-
tions can overwrite an existing file as a side effect.
In the case of create, the UNIX VFS layer knows if
there is an existing file to overwrite and truncates
it for reuse with a new identity. To prevent a crash
from relabeling existing file contents, the DTE pro-
totype adds an fsync operation, ensuring that the
file is empty, and then writes the new attribute to
the log file, resulting in a worst-case scenario of two
additional synchronous I/O operations for file cre-
ation.

A rename operation rename(“foo”, “bar”) is es-
sentially:

unlink(“bar”);
link(“foo”, “bar”);

unlink(“foo”);

If bar exists, an update to a log file must be made
conditional on successful completion of the rename
operation or the log file update may relabel the orig-
inal bar. The log file update cannot be written after
the rename operation because a system crash could
prevent writing of the update. For this operation,

the DTE system writes an uncommitted transac-
tion to the log file containing the file number of the
file to be moved and, on the next write to the log
file, piggy-backs the commit of the previous trans-
action. During system recovery, the last transaction
can be verified through an examination of on-disk
file numbers. This strategy holds the recovery I/0O
burden to at most one synchronous I/O for every
rename operation.

In general, the prototype design requires no ad-
ditional disk access on a per-system call basis.
This approach promotes high performance since
most DTE-related overhead is in memory opera-
tions where data structures can be optimized. For
recovery, however, it is necessary to add disk writes
during file creates that cause changes in the at-
tribute association database. Depending on a sys-
tem’s configuration, it could be that none, some, or
all file creates would cause attribute associations to
change.

5.3 Network Implementation

In addition to associating attributes with files
and processes and performing access control over
those entities, the DTE prototype also inserts DTE
attributes into IP datagrams and provides media-
tion of network messages. A fundamental goal of
DTE network mediation is to preserve interoper-
ability with non-DTE systems: this requires using
existing IP, UDP, TCP, and NFS services and, as
much as possible, preserving application layer pro-
tocols such as rsh and rlogin. Although we expect
that it will be useful to add DTE awareness to some
network applications such as rcp and rdist, we be-
lieve that DTE systems must first be useful in net-
works of non-DTE systems.

Our general scheme is to add DTE attributes in
the IP option space; these attributes are tokenized
and currently consume 12 bytes of the 40-byte IP
option space. DTE networking support at other
layers is carried in these attributes at the IP layer.
Due to the use of pipes and sockets in UNIX, a
UNIX process may cause numerous IP datagrams
to be generated and may not be aware of the net-
work consequences of its actions. For the DTE pro-
totype, each message is generated in the context of
a process’s domain and carries the domain’s iden-
tity as the message’s “source domain.” Addition-
ally, each message carries a type attribute; typically,
each DTE domain has a default output type that la-
bels messages generated from normal UNIX system
calls such as write() and send().

For each standard UNIX system call that can
generate a message, the DTE kernel retrieves the
calling process’s domain and default output type

from the DTE policy database generated using
DTEL. Traditionally, UNIX systems employ a data
structure, called an mbuf, that allows buffers of data
to be chained together in a manner that facilitates
the prepending and stripping of protocol headers in
different layers of a UNIX kernel’s protocol stacks.
The DTE prototype uses a slightly extended form
of the typical mbuf structure that provides header
space for storing source domain and type identifiers.
Standard UNIX system calls that send messages
save these attributes in extended mbuf chains; at
the bottom of the protocol stack, these attributes
are extracted from the chains and encoded as IP
options on a per-datagram basis. For received mes-
sages, the mechanism works in reverse, extracting
received IP options and encoding them in mbuf
chains for retrieval by receiving processes.

In addition to support for ordinary UNIX sys-
tem calls, the DTE prototype provides a number of
analogous DTE-specific system calls that allow pro-
cesses to specify the type of data that they wish to
send; DTE access control prevents processes from
generating data types unless they have appropriate
authorizations as specified in the DTEL specifica-
tion.

In general, the DTE prototype treats every IP
datagram as homogeneously typed; this simplifies
access control over datagrams since a process us-
ing the raw IP interface, for example, can be al-
lowed or denied access to a datagram based on
its domain’s access to the datagram’s type. This
strategy, although simple, does allow several am-
biguous situations: for example, if a protocol such
as TCP piggy-backs control information in pack-
ets that also carry user data, should those packets
have a protocol-specific type or a user type? Cur-
rently, our approach is to label packets with user
types when they contain any user data and with
protocol-specific types when they contain only pro-
tocol data. In the future, a natural extension to the
strategy may include a secondary “subsystem” label
for use by protocol subsystems that are trusted to
accurately carry user data. To minimize security
mechanism, however, we are deferring secondary
packet labels until a definite need has been demon-
strated. In either case, the use of homogeneously
typed datagrams simplifies the implementation of
TCP substreams since TCP substreams are always
made up of complete IP packets.

UNIX system calls that write data onto a TCP
connection enqueue onto a single chain of mbufs as-
sociated with a TCP socket; the TCP sliding win-
dow processing breaks the data stream into sepa-
rate IP datagrams based on a variety of critera to

optimize performance and guarantee that receipt of
all the data is acknowledged before it is forgotten
on the sending side. On the sending side, the DTE
prototype implements TCP substreams by breaking
the single mbuf chain into multiple chains where all
the data of each chain has the same type attribute.
The TCP sliding window processing has been mod-
ified slightly to generate a new datagram at chain
boundaries. On the receiving side, this mechanism
works in reverse to return substream type informa-
tion that is then used both to mediate receive oper-
ations by processes and to deliver type information
for use by DTE-aware processes.

A significant extension to the DTE prototype
was required to implement DTE/NFS servers. Es-
sentially, NFS file handles specify inode numbers
that have no direct relation to the map nodes that
implement implicit attributes for the prototype. A
means was therefore required for mapping from in-
ode numbers to map nodes. For directories accessed
via NFS, the solution is simple since every direc-
tory contains a “..” entry: using the “..” entries,
it is possible to reconstruct the portion of a path-
name required to establish attribute values. The
prototype currently carries out this reconstruction
at every NFS file handle reception; however, tem-
porarily raising the reference counts of heavily used
vnodes probably would increase performance and
prevent DTE overhead from being an NFS server
bottleneck.

For files, the on-disk representations do not im-
ply parents without an exhaustive search of file sys-
tem inodes. To avoid this, the DTE prototype
stores (file-inode-number, parent-directory-inode-
number) pairs during NFS lookup operations in a
cache. These entries provide a mechanism to reach
the first directory that then allows pathnames to be
reconstructed as necessary. To prevent any possi-
bility of introducing additional stale file handles at
client applications, the cache must be maintained
on secondary storage. For intentional DTE/NFS
server shutdowns, the cache can be written out only
before shutdown. To avoid stale file handles after
DTE/NFS server crashes, the cache must be main-
tained during operation. In this case also, the cache
contents can be batch written at timed intervals, re-
sulting in a minimal impact on performance.

6 Related Work
The work most related to DTE and its UNIX
implementation falls into two general classes: access
control systems and UNIX security mechanisms.
DTE is most closely related to mandatory ac-
cess control techniques [4, 9, 6, 18, 8] and type-

enforcing systems [9, 21, 25, 24, 27]. In general,
DTE policies are a proper superset of the DoD lat-
tice model [4] and its integrity variation [6]: DTE
can be configured to provide a lattice but can also
enforce nonhierarchical security policies such as as-
sured pipelines [9] that drive information through
policy-specified pathways of arbitrary connectivity
and complexity. DTE can also be configured to pro-
vide integrity categories as in [18] and to support
the transformation procedures and constrained data
items of the Clark/Wilson model [8].

Type enforcement was first proposed in [9] for
the Secure Ada Target, a system later renamed
LOCK [25]. LOCK provides a Trusted Comput-
ing Base (TCB) on top of which a UNIX emu-
lation layer provides UNIX services. As a conse-
quence, the type enforcement mechanism controls
UNIX emulations instead of individual UNIX ap-
plications and does not distinguish among multiple
applications running on a single UNIX emulation.
This limitation also exists for a Mach-based LOCK
derivative [14], which adds type enforcement to the
Mach port, task, and virtual memory abstractions
but provides no type enforcement within the UNIX
emulation layer.

In [24], type enforcement was added to Trusted
XENIX as a TCB subset. This system provides type
enforcement at the UNIX system-call interface and
can individually control UNIX applications. The
TCB subset architecture prohibited change to low-
level disk formats and mandated use of a separate
runtime database to manipulate such attributes.
This strategy is a precursor of the DTE runtime
implicit type concept. Type enforcement has also
been integrated into at least one Internet firewall
product, the SCC Sidewinder® system [23], but the
authors are not aware of any published technical
details.

A number of UNIX security controls and
tools have been developed. Access Control
Lists (ACLs)[13] provide greater flexibility in
UNIX discretionary access controls, and user-mode
capabilities[16] also allow finer-grained control over
propagation of access rights, but both mechanisms
are discretionary in nature and provide little protec-
tion against error-prone root programs. A variety
of trusted UNIX systems have been implemented
and evaluated against the Trusted Computer Sys-
tem Evaluation Criteria [20]. These systems typi-
cally provide MLS security but lack the flexibility of
DTE. Additionally, tools such as COPS [12] check

5Sidewinder is a trademark of Secure Computing Corpo-

ration, Inc.

for system miscofigurations but do not improve on
the base UNIX security mechanisms themselves.

The Trusted Systems Interoperability Group
(TSIG) has developed Internet draft standards for
NFS and other protocols that support Multi-Level
Secure (MLS) networking. These standards com-
municate significant amounts of information to rep-
resent security labels on subjects and objects that
may “float” up dynamically and to represent pro-
cess privileges that may be communicated across
networks. For DTE, all of the required security
information is contained in the relatively space-
efficient type and domain identifiers carried in the
IP-layer traffic, avoiding most changes to higher-
layer protocols.

7 Future Directions

We are actively exploring several directions for
DTE. The most immediate and important one is the
integration of DTE into Internet firewalls. Over the
next two years, we will integrate DTE into firewalls
in three phases:

DTE Firewalls An integration of DTE into an In-
ternet firewall and selected hosts. This inte-
gration will add defense-in-depth to the fire-
wall security perimeter. The DTE firewall will
direct traffic from specified external hosts or
of specified protocols only to flow to internal
DTE hosts that can contain any malicious ef-
fects. Our primary goal here is to allow more
network services to be safely imported into a
LAN than is now prudent.

Distributed DTE Firewalls An integration of
IP-layer encryption with the DTE firewall.
This phase will connect multiple DTE enclaves
across the Internet.

Domain and Type Authority Service A
DNS-like network service that will distribute
portions of DTEL policies. Communicating
DTE hosts will authenticate to this service and
use its DTE policy information as a basis for
establishing appropriate inter-host trust rela-
tions and also for agreement on how data of
specific types should be protected by commu-
nicating hosts.

In order to accomplish these goals, we will soon
begin investigating how multiple hosts can exchange
DTE information to negotiate network DTE poli-
cies, how DTE mechanisms can most effectively use
encryption to protect DTE network attributes, how

DTEL can be modularized to reduce policy com-
plexity, and how DTE policies can be dynamically
and safely extended or modified at runtime.

8 Conclusions

A central question in practical UNIX security
is whether significant enhancements can be added
in a way that is understandable, effective, and un-
obtrusive. This is a difficult question because ap-
plications and systems have evolved over time and
now interact in subtle ways: practical security en-
hancements must allow existing programs to func-
tion properly while preventing unsafe interactions.
DTE is an access control mechanism that uses a
specification language to add simplicity and uses
implicit typing to maintain compatibility and inter-
operability. This paper reports on recent extensions
to DTE to provide greater security for IP-based net-
working and NFS services, and on design consider-
ations of a DTE UNIX prototype. Our primary
results are positive and, although the DTE proto-
type is a research tool, we have used it internally to
provide guest users with safely restricted access to
our corporate data.

In sum, DTE has provided a useful research plat-
form for building a hardened, compartmentalized
UNIX system. In addition, DTE mechanisms ap-
pear suitable for interoperating and enforcing poli-
cies within networks of existing systems having no
DTE controls. This capability is critical because
any enhanced protection system must interoperate
with existing systems through an extended transi-
tion phase as access controls are gradually adopted.

References

[1] L. Badger, D. F. Sterne, D. L. Sherman, K.
M. Walker, S. A. Haghighat, “Practical Domain
and Type Enforcement for UNIX,” 1995 IEEE
Symposium on Security and Privacy, Oakland
CA, May 1995.

[2] L. Badger, “A Model for Specifying Multi-
Granularity Integrity Policies,” 1989 IEEE Sym-
posium on Security and Privacy, p. 269, Oak-
land, CA, May 1989.

[3] R.W. Baldwin, “Naming and Grouping Privi-
leges to Simplify Security Management in Large
Databases,” Proceedings of the 1990 IEEE Sym-
posium on Security and Privacy, p. 116, Oak-
land, CA, May 1990.

[4] D.E. Bell and L. Lapadula, “Secure Computer
System: Unified Exposition and Multics In-
terpretation,” (Technical Report No. ESD-TR-

75-306, Electronics Systems Division, AFSC,
Hanscom AF Base, Bedford MA, 1976).

[5] K.P. Birman, T. Joseph, K. Kane, F. Schmuck,
“The ISIS Programming Manual and User’s
Guide,” Department of Computer Science, Cor-
nell University, June 1988.

[6] K.J. Biba, “Integrity Considerations for Secure
Computer Systems,” USAF Electronic Systems
Division, Bedford, MA, ESD-TR-76-372, 1977.

[7] M. Branstad, H. Tajalli, F. Mayer, D. Dalva,
“Access Mediation in a Message Passing Ker-
nel,” 1989 IEEE Symposium on Security and
Privacy, p. 66, Oakland, CA, May 1989.

[8] D.D. Clark and D.R. Wilson, “A Comparison
of Commercial and Military Computer Security
Policies,” Proceedings of the 1987 IEEE Sym-
posium on Security and Privacy, Oakland, CA,
p. 184, 1987.

[9] W.E. Boebert and R.Y. Kain, “A Practical
Alternative to Hierarchical Integrity Policies,”
Proceedings of the 8th National Computer Secu-
rity Conference, Gaithersburg, MD, p. 18, 1985.

[10] J. Ioannidis, M. Blaze, “The Architecture and
Implementation of Network-Layer Security Un-
der Unix,” Presented at the USENIX Summer
1994 Technical Conference, Boston MA.

[11] NBS, “Data Encryption Standard,” Jan. 1977.
Federal Information Processing Standards Pub-
lication 46.

[12] D. Farmer, “The COPS Security Checker Sys-
tem,” Proceedings of the Summer 1990 USENIX
Conference, Anaheim, CA, p. 165.

[13] G. Fernandez, L. Allen, “Extending the UNIX
Protection Model with Access Control Lists,”
Proceedings of the Summer 1988 USENIX Con-
ference, San Francisco, CA, 1988, p. 119.

[14] T. Fine and S. E. Minear, “Assuring Dis-
tributed Trusted Mach,” 1993 IEEE Computer
Society Symposium on Research in Security and
Privacy, Oakland, CA, p. 206, 1993.

[15] J. Kohl and C. Neuman, “The Kerberos Net-
work Authentication Service (V5),” RFC 1510,
September 1993.

[16] D. Klein, “A Capability Based Protection
Mechanism Under Unix,” Proceedings of the
1985 Winter USENIX Conference, Dallas,
Texas, p. 152.

[17] C.E. Landwehr, C.L. Heitmeyer, and J.
McLean, “A Security Model for Military Mes-
sage Systems,” ACM Transactions on Computer
Systems, Vol. 2, No. 3, August 1984, pp. 198-
222.

[18] S.B. Lipner, “Non-Discretionary Controls for
Commercial Applications,” Proceedings of the
1982 IEEE Symposium on Security and Privacy,
Oakland, CA, p. 2, 1982.

[19] M. K. McKusick, “The Virtual Filesystem In-
terface in 4.4BSD,” USENIX Computing Sys-
tems, Vol 8, Winter 1995, p. 3.

[20] National Computer Security Center, “Depart-
ment of Defense Trusted Computer System
Evaluation Criteria,” DoD 5200.28-STD, Dec.
1985.

[21] R. O’Brien and C. Rogers. Developing Ap-
plications on LOCK. In Proc. 14th National
Computer Security Conference, pages 147-156,
Washington, DC, October 1991.

[22] L.L. Peterson, N.C. Buchholz, R.D. Schlicht-
ing, “Preserving and Using Context Information
in Interprocess Communication,” ACM Trans-
actions on Computer Systems, 7(3):217-246,
Aug. 1989.

[23] Secure Computing Corporation, Sidewinder
Press Release, October 10, 1994.

[24] D. Sterne, “A TCB Subset for Integrity and
Role-Based Access Control,” Proc. 15th Na-
tional Computer Security Conference, pages
680-696, Baltimore, MD, 1992,

[25] O.S. Saydjari, J.M. Beckman, and J.R. Lea-
man, “LOCK Trek: Navigating Uncharted
Space,” Proceedings of the 1989 IEEE Sympo-
stum on Security and Privacy, Oakland, CA, p.
167, 1989.

[26] D. J. Thomsen, “Role-based Application De-
sign and Enforcement,” In Proc. of the Fourth
IFIP Workshop on Database Security, Halifax,
England, September 1990.

[27] S. Wiseman, “A Secure Capability Computer
System,” Proceedings of the 1986 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, p.
86, 1986.

