The following paper was originally published in the

Proceedings of the"8JSENIX Security Symposium

Washington, D.C., USA, August 23-26, 1999

THE FLASK SECURITY ARCHITECTURE:
SYSTEM SUPPORT
FOR DIVERSE SECURITY POLICIES

Ray Spencer, Stephen Smalley, Peter Loscocco,
Mike Hibler, Dave Andersen, and Jay Lepreau

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved
For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWWhttp://www.usenix.org
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

The Flask Security Architecture: System Support for Diverse Security Policies

Ray Spencer Secure Computing Corporation
Stephen Smalley, Peter Loscoccd\ational Security Agency
Mike Hibler, David Andersen, Jay Lepreawniversity of Utah

http://www.cs.utah.edu/flux/flask/

Abstract and even many types of policies [1, 43, 48]. To be gen-
rally acceptable, any computer security solution must
e flexible enough to support this wide range of security
policies. Even in the distributed environments of today,
cies. Such flexibility requires controlling the propaga- this pollt_:y flexibility must pe supported by the security
tion of access rights, enforcing fine-grained access rightsm echamsms of the opera_tllng.system [32]'_)
and supporting the revocation of previously granted ac- SuPPorting policy flexibility in the operating system is
cess rights. Previous systems are lacking in at least orfé hard problem that goes beyond just supporting multi-
of these areas. In this paper we present an operating® Policies. The system must be capable of supporting
system security architecture that solves these problem&ne-grained access controls on low-level objects used to
Control over propagation is provided by ensuring thatperform hlgher-[gvel functions controlled by the secu-
the security policy is consulted for every security deci-'ity policy. Additionally, the system must ensure that
sion. This control is achieved without significant perfor- tN€ Propagation of access rights is in accordance with
mance degradation through the use of a security decisiofff® Security policy. Lastly, policies are not, in general,
caching mechanism that ensures a consistent view of poftatic. To cope with policy changes or dynamic policies,
icy decisions. Both fine-grained access rights and revoth® System must have a mechanism for revoking previ-
cation support are provided by mechanisms that are diously granted access rights. Earlier systems have pro-
rectly integrated into the service-providing componentsV'ded mechanisms that allovy several security policies to
of the system. The architecture is described througtP€ SuPported, but they are inadequate to generally sup-
its prototype implementation in the Flask microkernel- port policy flexibility because they fail to address at least
based operating system, and the policy flexibility of theOne of these three areas.

prototype is evaluated. We present initial evidence that This paper describes an operating system security ar-
the architecture’s impact on both performance and codéhitecture that demonstrates the feasibility of policy flex-
complexity is modest. Moreover, our architecture is ap-ibility. This is done by presenting its prototype imple-
plicable to many other types of operating systems andnentation, the Flask microkernel-based operating sys-

Operating systems must be flexible in their supportg
for security policies, providing sufficient mechanisms for
supporting the wide variety of real-world security poli-

environments. tem, that successfully overcomes these obstacles to pol-
icy flexibility. The cleaner separation of mechanism and
1 Introduction policy specified in the security architecture enables a

richer set of security policies to be supported with less

A phenomenal growth in connectivity through the In- policy-specific customization than has previously been
ternet has made computer security a paramount concerfpssible. Flask includes a security policy server to make
but no single definition of security suffices. Different access control decisions and a framework in the micro-
computing environments, and the applications that rurkernel and other object managers in the system to en-
in them, have different security requirements. Becausgorce those access control decisions. Although the pro-
any notion of security is captured in the expression of &otype system is microkernel-based, the security mecha-
security policy, there is a need for many different policiesnisms do not depend on a microkernel architecture and

This research was supported in part by the Defense Advance(Y\”” easily generalize beyond it.
Research Projects Agency in conjunction with the Department of the The resulting system provides policy flexibility. It sup-

Army under contract DABT63-94-C-0058 and with the Air Force ; ; i
. orts a wide variety of policies. It controls the prop-
Research Laboratory, Rome Research Site, USAF, under agreement y P Prop

F30602—96—2-0269. It was also supported in part by the Marylanoag""‘tlo'jl of access I’Ights by ensuring th.a.t the security
Procurement Office, contract MDA904-97-C-3047. policy is consulted for every access decision. Enforce-

Authors: {sds,pa}@epoch.ncsc.mil, {mike,danderse,leprepy ment mechanisms, directly integrated into the service-
@cs.utah.edu, saltalk@Ilakenet.com (Spencer). providing components of the system, enable fine-grained

access controls and dynamic policy support that allowsbility in such a system will naturally depend upon the
the revocation of previously granted access rights. Initiaikcompleteness of both the set of controlled operations and
performance results, as well as statistics on the scale arttie portion of the current system state that is available to
invasiveness of the code changes, indicate that the impatiie security policy. Furthermore, the granularity of the
of policy flexible security on the system can be kept to acontrolled operations affects the degree of flexibility be-
minimum. cause it impacts the granularity at which sharing can be

The remainder of the paper begins by elaborating orfontrolled.
the meaning of policy flexibility. After a discussion of This description of policy flexibility seems limiting in
why two popular mechanisms employed in systems tahree ways. It allows some operations to proceed outside
provide security are limiting to policy flexibility, some of the control of the security policy, restricts the opera-
related work is described. The Flask architecture is thertions that may be injected by the security policy, and per-
presented through a discussion of its prototype desigmits some system state to exist beyond the scope of the
and implementation. The paper concludes with an evalsecurity policy. In actuality, each of these apparent limi-
uation of the policy flexibility of the system, an assess-tations is a desirable property since many of the internal
ment of the performance impact, and a discussion of th@perations and state of any system are of no apparent use

scale and invasiveness of the Flask changes. or concern to any security policy. Section 6.1 will dis-
cuss how these limitations were interpreted for the Flask
2 Policy Flexibility system.

,)))) . A system that is policy flexible must be capable of
_When first attempting to define security policy flexi- g 0n6rting a wide variety of security policies. Security
bility, it is tempting to generate a list of all known secu- jicies may be classified according to certain character-
rity policies and define flexibility through that list. This istics, including such things as: the need to revoke pre-
ensures that the defi.ni.tion will reflect a real-.worlld vi_ew viously granted accesses, the type of input required to
of the degree of flexibility. Unfortunately, this simplis- 516 access decisions, the sensitivity of policy decisions
tic definition is unreahstlc._ Real-world security .pollces to external factors like history or environment, and the
in computer systems are limited by the mechanisms curgansitivity of access decisions [43, Sec. 6]. The remain-
rently provided in such systems, and itis not always cleaye, of this section focuses on revocation, which is the
how security policies enforced in the “pencil-and-paper” g gjfficult of these characteristics to support.
world translate to computer systems, if at all [3, 48]. As Since even the simplest security policies undergo

such, a better definition is needed. S .
.) , . - change €.g, as user authorizations change), a policy

. It is more useful to define security policy flexibility by' flexible system must be capable of supporting policy
viewing a computer system abstractly as a state maching,ynges.” since policy changes may be interleaved with
performing atomic operations to transition from one stat€e eyecution of controlled operations, there is the risk
to the next. Within such a model, a system could be cony, ¢ the system will enforce access rights according to
S|dergd to p_rowde tptal security polllcy flexibility if the an obsolete policy. Thus, there must be effective atom-
security policy can interpose atomically on any operaci in the interleaving of policy changes and controlled
tion performed by the system, allowing the operation tooperations.

r nying th ration, or even injectin ra- - . L . .
b oceeq, denying the operation, or eve cht g opera The fundamental difficulty in achieving this atomic-
tions of its own. In such a system, the security policy can.t is ensuring that previously aranted permissions can
make its decisions using knowledge of the entire curren% revoked ag e ui?ed by a yogljic charf) e When a per-
system state, where the current system state can be Com_ission is to be C1evokedy thre) S)s/tem rr?uét ensure Ft)hat
sidered to encompass the history of the system. Because . ' ystem :

o) : o any service controlled by the permission will no longer
it is possible to interpose on all access requests, it is po

: : . ; : 559 provided unless the permission is later granted again.
sible to modlfy the existing security policy and to revoke Revocation can be a very difficult property to satisfy be-
any prewously gran.te.d_ access. cause permissions, once granted, have a tendency to mi-
This second definition more correctly captures theg a6 throughout the system. The revocation mechanism
essence of policy flexibility, but practical considerations ., st guarantee that all of these migrated permissions are
force a slightly more limited point of view. Itis unlikely ;4aad revoked.
that a real system could base security policy decisions
for all possible operations on the entire current systerrlJ

state. Instead, a more realistic approach is to identif)%o?:::'e dTkaele?]Ct(;\ZStsfilieigzlognz)cjr v;:gr:geto rZr:LIee dlsepr?nri-s-
that portion of the system state that is potentially secu- P ' 9 P

. . sion is cached in the file description for efficient valida-
rity relevant and to control operations that affect or aretion of write access during write operations. Revokin
affected by that portion of the state. The degree of flex- 9 P ' 9

A basic example of a migrated permission surfaces in

write access to that file in Unix only prevents future at- because they allow the holder of a capability to control
tempts to open the file with write access and has no effedhe direct propagation of that capability, whereas a crit-
on the migrated permissions in existing file descriptionsical requirement for supporting security policies is the
This revocation support may be insufficient to meet theability to control the propagation of access rights in ac-
needs of a security policy. This type of situation is notcordance with the policy. The enhancements introduced
uncommon, and migrated permissions can be found iy Hydra and KeyKOS are intended to limit such propa-
other places throughout a system including: capabilitiesgation, but the resulting systems still generally only sup-
access rights in page tables, open IPC connections, amubrt the specific policies they were designed to satisfy,
operations currently in progress. More complicated sysat the cost of significant complexity that diminishes the
tems are likely to yield more places to which permissionsattraction of the capability model in the first place.
can migrate. Primarily with an interest in solving the problem

In most cases, revocation can be accomplished simplgf supporting a multilevel security policy within a
by altering a data structure. However, it is more com-capability-based system, a few capability-based systems
plicated to revoke a permission when there is an operafe.g, SCAP [25], ICAP [18], Trusted Mach [4]) intro-
tion in progress that has checked the permission alreadguced mechanisms that validated every propagation or
The revocation mechanism must be able to identify allin-use of a capability against the security policy. Kain
progress operations affected by such revocation requestsd Landwehr [23] developed a taxonomy to character-
and deal with each of them in one of three possible waysize such systems. In these systems, the simplicity of the
The first is to abort the in-progress operation, returningcapability mechanism is retained, but capabilities serve
an error status. Alternately, it could be restarted, allow-only as a least privilege mechanism rather than a mech-
ing another check for the retracted permission. The thirdanism for recording and propagating the security policy.
option is just to wait for the operation to complete on its This is a potentially valuable use of capabilities. How-
own. In general, only the first two are safe. Only whenever, the designs for these systems do not define the
the system can guarantee that the operation can completeechanisms by which the security policy is queried to
without causing the revocation request to block indefi-validate capabilities, and those mechanisms are essential
nitely (e.qg, if all appropriate data structures have alreadyto providing policy flexibility. The Flask architecture de-
been locked and there are no external dependencies) magribed in this paper could be employed to provide the
the third option be taken. This is critical because block-security decisions needed to validate the capabilities in
ing the revocation effectively denies the revocation re-these systems. In the Flask prototype, the architecture is
guest and causes a security violation. used in exactly this way.

3 Insufficiency of Popular Mechanisms 3.2 Intercepting Requests

This section discusses two popular mechanisms that A common approach used to add Security to a Sys-
are often employed to provide security to systems andem is to intercept service requests or to otherwise in-
the reasons Why both are ||m|t|ng to pO“Cy ﬂeX|b|I|ty in terpose a |a_yer of Security code between all app”ca_
normal usage. However, each has benefits despite its limons and the operating systera.q, Kernel Hypervi-
itations, and both can be used within Flask in restrictedsors [37], SPIN [20]), or between particular applica-
ways that allow some of their benefits without incurring tions or sets of applicationg (g, L3/L4 [30], Lava [22],

their limitations. KeySAFE [28]). This may be done in capability systems
. or non-capability systems, and when applied to an oper-
3.1 Capability-Based Systems ating system the security layer may lie within the oper-

The goal of a single operating system mechanism caating system itself (as in Spring [36]) or in a component
pable of supporting a wide range of security policiesoutside of the operating system to which all requests are
is not a new goal. The Hydra operating system develredirected (as in Janus [17]).
oped in the 1970’s separated its access control mecha- However, this approach has some serious limitations.
nisms from the definition of its security policy [29, 52]. In order to add security by intercepting requests, the ex-
Hydra was a capability-based system, although the deisting functional interface must expose all abstractions
velopers of the system recognized the limitations of aand information flows that the security policy wishes
simple capability model and introduced several enhanceto control. To avoid maintaining redundant state in the
ments to the basic capability mechanisms. The Hydra apaccess control layer, the functional interface must en-
proach was taken even further by the KeyKOS [40] andsure that all security-relevant attributes are either directly
EROS [47] systems. Though popular, capability mech-available as parameters or easily derived from parame-
anisms are poorly suited to providing policy flexibility, ters. A policy that requires the use of some internal state

of the object manager as an input to the decision can naevoking previously granted capabilities, though none
be implemented without either changing the manager tavere actually implemented. Spring [49] implemented
export the state or, if possible, replicating the state mana capability revocation technique, though only the ca-
agement in the enforcer itself. The level of abstractionpabilities were revoked, not migrated permissions. Re-
provided by the interface may be inappropriate or mayocation of memory permissions is naturally provided
cause difficulties in guaranteeing unigueness or atomicby microkernel-based systems with external paging sup-
ity. For example, typical name-based calls suffer fromis-port, such as Mach [31], though revocation is not ex-
sues of aliasing, multi-component lookups, and preservtended to other permissions. DTOS provided the secu-
ing the tranquility of the name-to-object mapping from rity server with the ability to remove permissions previ-
the time-of-check to the time-of-use. Finally, this ap- ously granted and stored in the microkernel’s permission
proach is limited in that the security layer can only af- cache. However, except for memory permissions where
fect the operation of the system as requests pass througtiach’s mechanisms could be used, DTOS did not pro-
it. Hence, it is often impossible for the system to reflectvide for revocation of migrated permissions [38].
subsequent changes to the security policy, in particular, The Flask prototype is implemented within a
the revocation of migrated permissions. microkernel-based operating system with hardware-
As was the case with capabilities, implementing ac-enforced address space separation between processes.
cess control within a security layer is a good approactSeveral recent effortg(g, SPIN [5], VINO [46] and the
when these disadvantages can be avoided through the uava protection models in [50]) have presented software-
of other mechanisms. However, it is important to recog-enforced process separation. The distinction is essen-
nize that other mechanisms are necessary, often mechgaally irrelevant for the Flask architecture. It is essential
nisms that are more invasive than intercepting requestshat some form of separation between processes be pro-
in order to provide any degree of flexibility in supporting vided, but the particular mechanism is not mandated by

security policies. the Flask architecture. The general applicability of key
aspects of the Flask architecture to other systems was
4 Related Work concretely demonstrated by the adoption of the DTOS

i) i i , architecture in the security framework of SPIN [20]. In-
The previous section described the relationship bedeed, we believe the abstract Flask architecture, and the

tween Flask and a variety of efforts that involved \ogqons it teaches, can be applied to software other than
capability-based systems or the interception of reqUGSt%perating systems, such as middleware or distributed

This section describes the relationship between Flask and stems “although of course vulnerability to insecurities
other efforts not previously mentioned. We focus on the; | the underlying operating systems would remain.
research most directly related to Flask, although there are

many other efforts with some relation to our work. 5 Flask Desian and Implementation
The security architecture of the Flask system is de- 9 P

rived from the architecture of our previous prototype This section defines the components of the Flask secu-
system DTOS [35], which had similar goals. However, rity architecture and identifies the requirements on each
while the DTOS security mechanisms were independentomponent necessary to meet the goals of the system.
of any particular security policy, the mechanisms wereThe Flask security architecture is described here in the
not sufficiently rich to support some policies [43], espe-context of its implementation within a microkernel-based
cially dynamic security policies. multiserver operating system. However, the security ar-
At the highest level of abstraction, the flexible secu-chitecture only requires that the operating system include
rity model for Flask is consistent with the Generalized@ reference monitor [16, Ch. 10]. In particular, the ar-
Framework for Access Control (GFAC) [2]. However, chitecture requires the completeness and isolation prop-
the GFAC model assumes that all controlled operationgrties, although verifiability is also ultimately necessary
in the system are performed in the same atomic operatiofPr confidence in any implementation of the architecture.
in which the policy is consulted, which is very difficultto = The Flask prototype was derived from the Fluke
achieve in a practical system and is the primary obstaclenicrokernel-based operating system [14]. The Fluke mi-
that the Flask system has had to overcome. crokernel is especially well-suited for implementing the
The specific issue of revocation is not a new issue iFlask architecture due to its lack of global resources [14]
operating system design, although it has received surpridnd the atomic properties of its API [13]. However, the
ingly little recognition. Multics [39] effectively provided original Fluke system was capability-based and was not
immediate revocation of all memory permissions by in_in itself adequate to meet the requirements of the Flask
validating segment descriptors. Redell and Fabry [42]architecture.
Karger [24] and Gong [18] all describe approaches for The remainder of this section starts by providing an

i I i security policy.
| Object managers are responsible for defining a mech-
Object Request | anism for assigning labels to their objects. A control
] | Query] policy, which specifies how security decisions are used
Object Manager } Security Server to control the services provided by the object manager,
|

must be defined and implemented by each object man-
ager. This control policy addresses threats in the most
general fashion by providing the security policy with
control over all services provided by the object manager
and by permitting these controls to be configurable based
on threat. Each object manager must define handling
Figure 1:The Flask architecture. Components which enforce secu—mu“m:‘IS which are galled m, “?Sponse to pqllcy changes.
rity policy decisions are referred to abject managersComponents ~ FOr all uses of polyinstantiation, each object manager
which provide security decisions to the object managers are referred tonust define the mechanism by which the proper instanti-
assecurity serversThe decision making subsystem may include other ation of a resource is chosen.

components such as administrative interfaces and policy databases, but
the interfaces among these components are policy-dependent and are

therefore not addressed by the architecture. 5.2 General Support Mechanisms

Policy
Enforcement T
Decision|

Security
Policy

Enforcement i Policy

This section describes general support mechanisms
overview of the Flask architecture. Then, it describesthat were introduced for all of the object managers in
general support mechanisms required for the basic Flasirder to support policy flexibility. Despite the simplic-
architecture. It discusses the specific changes requirgty of the Flask architecture, some subtleties arise in the
for the microkernel. It explains how the complications implementation, as will be discussed below.
caused by the need for revocation were overcome. This
section ends by describing the prototype security servers.2.1 Object Labeling All objects that are controlled

by the security policy are also labeled by the security
5.1 Architecture Overview policy with a set of security attributes, referred to as a

The Flask security architecture [44], as shown in Fig-security context. A fundamental issue in the architec-
ure 1, describes the interactions between subsystems thte is how the association between objects and security
enforce Security p0||cy decisions and a Subsystem whiclgontexts is maintained. The simplest solution would be
makes those decisions, and the requirements on the corif define a single policy-independent data type which is
ponents within each subsystem_ The primary goa| of thdart of the data associated with each object. However, no
architecture is to provide for flexibility in the security Single data type is well-suited to all of the differing ways
p0|icy by ensuring that these subsystems a|Ways hav.@ which labels are used in a system. The Flask architec-
a consistent view of policy decisions regardless of howture addresses these conflicting needs by providing two
those decisions are made or how they may change ovédolicy-independent data types for labeling.
time. Secondary goals for the architecture include appli- A security contextthe first policy-independent data
cation transparency, defense-in-depth, ease of assurandgpe, is a variable-length string which can be interpreted
and minimal performance impact. by any application or user with an understanding of the

The Flask security architecture provides three primarysecurity policy. A security context might consist of sev-
elements for obiect managers. First' the architecturQI’al attributes, such as a user identity, a classification
provides interfaces for retrieving access, labeling andevel, a role and a type enforcement [6] domain, but this
polyinstantiation decisions from a security server. Ac-depends on the particular security policy. As long as
cess decisions specify whether a particular permission i§ is treated as an opaque string, a security context can
granted between two entities, typically between a subjecke handled by an object manager without compromising
and an object. Labeling decisions specify the security atthe policy flexibility of the object manager. However,
tributes to be assigned to an object. Polyinstantiation deusing security contexts for labeling and policy decision
cisions Specify which member of a p0|yinstantiated Se[IOOkUpS would be inefficient and would increase the like-
of resources should be accessed for a particular requedfiood of policy-specific logic being introduced into the
Second, the architecture providesamtess vector cache Object managers.

(AVC) module that allows the object manager to cache The second policy-independent data type, $keeu-
access decisions to minimize the performance overheadity identifier (SID), is defined by Flask to be a fixed-
Third, the architecture provides object managers the abilsize value which can be interpreted only by the security
ity to register to receive notifications of changes to theserver and is mapped by the security server to a particu-

[Client (SID C)] need to uniquely distinguish subjects and objects of cer-
tain classes even if they are created in the same security

(C) \| Create Object Request

context. For such policies, the SID must be computed

Object Manager 3 ~Security Saver from the sequrity context and a unique identifier chosen
_ | by the security server.
Objects | SID/Context
Obj |a] [Obj|a| [New ! Map . i . .
[‘”’J [‘U’J [Obl J | $ 5.2.2 Client and Server Identification Object man-
Nenl SID P agers must be able to identify the SID of a client making
L, : an;:/;;gg a request when this SID is part of a security decision. It
T New SIDRequest is also useful for clients to be able to identify the SID of

a server to ensure that a service is requested from an ap-
propriate server. Hence, the Flask architecture requires
that the underlying system provide some form of client
Figure 2: Object labeling in Flask. A client requests the creation and server identification for inter-process communica-
of a new object from an object manager, and the microkernel suppliegion (IPC). However, this feature is not complete with-
the object manager with the SID of the cll_ent. The object managerq ¢ providing the client and server a means of overriding
sends a request for a SID for the new object to the security server,, .. e . . .
with the SID of the client, the SID of a related object and the object t_he.'r _'dent!f'_(:at'on- For 'nStance’ the need of a subject to
type as parameters. The security server consults the labeling rules ihmit its privileges when making a request on behalf of
the policy logic, determines a security context for the new object, andgnother subject is one justification for capability-based
ret_urns a SID tha_t corresponds to that security conFext. Finally, themechanisms [21]_ In addition to Iimiting privileges, over-
object manager binds the returned SID to the new object. . . e . .
riding the actual identification can be used to provide

anonymity in communications or to allow for transparent

lar security context. Possession or knowledge of a SiDnterposition, such as through a network IPC server con-
for a given security context does not grant any authorizahecting the client and server in a distributed system [11].
tion for that security context. The SID mapping cannot The Flask microkernel provides this service directly as
be assumed to be consistent across executions (reboofgrt of IPC processing, rather than relying upon compli-
of the security server nor across security servers on difeated and potentially expensive external authentication
ferent nodes. Consequently, SIDs may be lightweightprotocols such as those in Spring and the Hurd [7]. The
in the implementation, SIDs are simply 32-bit integers.microkernel provides the SID of the client to the server
There is no specified internal structure to a SID; any in-along with the client’s request. The client can identify the
ternal structure is known only by the security server. TheSID of the server by making a kernel call on the capabil-
SID allows most object manager interactions to be indeity to be used for communication. When making an IPC
pendent of not just the content but even the format of aequest, the client can specify a different SID as its effec-
security context, simplifying object labeling and the in- tive SID to override its identification to the server. The
terfaces that coordinate the security policy between theerver can also specify an effective SID when preparing
security server and object managers. However, in somto receive requests. In both cases, permission to specify a
cases, such as labeling persistent objects or labeling olparticular effective SID is decided by the security server
jects which are exported to other nodes, object managei@nd enforced by the microkernel. Thus, the Flask mi-
must handle security contexts. This is described furthecrokernel supports the basic access control and labeling
in the discussion of the file server and network server inoperations required for the architecture and it provides
Section A.1 and Section A.2. the flexibility needed for least privilege, anonymity or

When an object is created, it is assigned a SID that reptransparent interposition.
resents the security contextin which the object is created.
This context typically depends upon the client requesting?-2.3 Requesting and Caching Security Decisions
the object creation and upon the environment in which itin the simplest implementation, the object manager can
is created. For example, the security context of a newlynake a request to the security server every time a secu-
created file is dependent upon the security context of théity decision is needed. However, to alleviate the perfor-
directory in which it is created and the security context ofmance impact of communicating with the security server
the client that requested its creation. Since the computdor each decision and of the computation of the decision
tion of a Security context for a new or transformed objeCtWithin the security server, the Flask architecture provides
may involve policy-specific logic, it cannot be performed caching of security decisions within the object manager.
by the object manager itself. The labeling of a new object The caching mechanisms in Flask provide much more
is depicted in Figure 2. For some security policies, suctthan simply caching individual security decisions. The
as an ORCON policy [19, 34], the security policy may access vector cache (AVC) module, which is a common

|
Enforcement | Policy

[Client (SID C)] [Client (SID C) }

| |
(©) \| Modify Object Request l (C) \|/ Create Object Request l
| |
. | S — . |
Object Manager ! Security Server Object Manager :
Object ! —
. 1ects i SID/Context a | Security Server
[Obj‘o} ,,,,,,,, [Obj‘o} | Map OB g | |
o | $ a 3 | | SID/Context
Acc&: Query 2 : Map
AVC ‘ licy Logi a ‘ |
Access Check e ! Policy Logic OBl g | T
(SID, SID, Perms) — AccessRuling Mbj SID Policy Logic
I

Member SID | ()
g (SID, SID, Obj Type) Mbr SID|Request Member Rules
Enforcement | Policy |Req

Enforcement : Policy

Figure 3: Requesting and caching security decisions in Flask. A

client requests the modification of an existing object from an object _.

manager. The object manager queries its access vector cache (AV&'gure 4:P0|yin$tantiati0n in Flask. A client requests the creation of

module for an access ruling for the (client SID, object SID, requested@ New object from an object manager, and the microkernel supplies the

permissions) triple. If no valid entry exists, then the AVC module sendsobject manager with the SID of the client. The object manager sends a

an access query to the security server. The security server consults tfigquest for a SID for the member object to the security server, with the

access rules in the policy logic, determines an access ruling, and returrig!D of the client, the SID of the polyinstantiated object and the object

the access ruling to the AVC module. type as parameters. The security server consults the polyinstantiation
rules in the policy logic, determines a security context for the member,
and returns a SID that corresponds to that security context. Finally,
the object manager selects a member based on the returned SID, and

library shared by the object managers, provides for thereates the object as a child of the member.

coordination of the policy between the object manager

and the security server. This coordination addresses both

requests from the object manager for policy decisions! CP or UDP port spaces, as discussed in Section A.2.
and requests from the security server for policy changes! he Flask architecture supports polyinstantiation by pro-

The first of these is discussed in this section, while the/iding an interface by which the security server may
second is discussed in Section 5.4. identify which instantiation can be accessed by a partic-

For a typical controlled operation in Flask, an Objectular client. Both the client and the instance are identified
’ By SIDs. The instantiations are referred tonasmbers

manager must determine whether a subject is allowed tTh I t selecti ber is deicted
access a object with some permission or set of permis- € generaj sequence ot selecting a member s depicte

sions. The sequence of requesting and caching securifp Figure 4.

decisions is depicted in Figure 3. To minimize the over- _ -

head of security computations and requests, the securi§-3 Microkernel-specific Features

server can provide more decisions than requested, and thg previous sections described the security functions
the AVC module will store these decisions for future use.ihat are common to all of the Flask object managers. In
When a request for a security decision is received by thenis section, we discuss the specific features that have
security server, it will return the current state of the secUy,qen added to the microkernel. Support for revocation
rity policy for a set of permissions with @ecess vector pq\ever, will be discussed separately in Section 5.4. The

An access vector is a collection of related permissiongyaific features that were added to some of the other
for the pair of SIDs provided to the security server. For 55k object managers are described in Appendix A.
instance, all file access permissions are grouped into a

, Due to the requirements of Fluke’s architecture, each
single access vector.

active kernel object is associated with a small chunk of
physical memory [14]. Though “memory” is not it-
5.2.4 Polyinstantiation Support A security policy self an object within the microkernel, the microkernel
may need to restrict the sharing of a fixed resourceprovides the base service for memory management and
among clients by polyinstantiating the resource and parbinds a SID to each memory segment. The SID of each
titioning the clients into sets which can share the sameékernel object is identical to the SID of the memory seg-
instantiation of the resource. For example, multi-levelment with which it is associated. This relationship be-
secure Unix systems frequently partition the /tmp direc-tween the label of memory and the label of kernel objects
tory, maintaining separate subdirectories for each secuassociated with that memory permits the Flask microker-
rity level [51]; the corresponding solution for Flask is nel controls to leverage the existing protection model of
discussed in Section A.1. A similar issue arises with theFluke, rather than introducing an orthogonal protection

SOURCE TARGET PERMISSION have equal SIDs, while others involve explicit permis-

Client SID Effective Client SID | SpecifyClient . - . g
Server SID Effective Server SID| SpecifyServer sions, as described in detail in [44' Sec. 3]'

Effective Client SID | Effective Server SID| Connect

5.4 Revocation Support Mechanisms

Table 1: Permission requirements for an IPC connection to exist. The most difficult complication in the Flask architec-
The s_pecify permissio_ns are only require_d when a SL_iject specifie; afure is that the object managers effectively keep a local
ggzgm ;'g 'i slerL?:Ibtjc?(i:tts(;c::Tj aT%tI;‘_)ec'fy an effective SID, then its .y of certain security decisions, both explicitly in an
access vector cache and implicitly in the form of mi-
grated permissions. Therefore a change to the security
policy requires coordination between the security server
model as in DTOS. However, it also creates a potentiabnd the object managers to ensure that their representa-
loss of labeling flexibility, since the memory allocation tions of the policy are consistent. This section is devoted
granularity is much coarser than the allocation granularto a more detailed discussion of the requirements on the
ity for kernel objects. components of the architecture during a change in secu-

Flask provides direct security policy control over the fity policy.
propagation of memory access modes by associating a The need for effective atomicity stated in Section 2 is
Flask permission with each mode, based on the SID o&chieved by imposing two requirements on the system.
the address space and the SID of the memory segmenthe first is that after completion of a policy change, the
These memory access modes also act as capabilities beehavior of the object manager must reflect that change.
kernel objects associated with the memory. During theNo further controlled operations requiring a revoked per-
initial attempt to access mapped memory, the microkermission can be performed without a subsequent policy
nel verifies that the security policy explicitly grants per- change. The second requirement is that object managers
mission for each requested access mode. Memory pemust complete policy changes in a timely manner.
missions cannot be computed at the level of any interface This first requirement is only a requirement on the
in Fluke, and are computed instead during page faultspbject managers, but it results in effective atomicity of
hence, these controls prOVide an example where merelyystem-wide p0||cy when Coup|ed with a well-defined
intercepting requests would be insufficient. Since theprotocol between the security server and the object man-
SID of a memory segment is not allowed to change, theagers. This protocol involves three steps. First, the se-
Flask permissions need only be revalidated if a policycyrity server notifies all object managers that may have
change occurs, as discussed in Section 5.4. been previously provided any portion of the policy that

In Fluke, a port reference serves as a capability fothas changed. Second, each object manager updates its
performing an IPC to a server thread waiting on the cor-internal state to reflect the change. Finally, each object
responding port set. Control over propagation in Flukemanager notifies the security server that the change is
may be performed through typical interposition tech-complete. Sequence numbers are used to address the
nigues. In contrast, Flask provides direct control overinterleaving of messages providing policy decisions to
the use of such port references by only allowing an IPCthe object managers and messages requesting changes to
connection between two subjects if the appropriate perthe policy. Both the synchronization protocol, which has
missions shown in Table 1 are satisfied. These direct corbeen implemented, and an alternative approach based on
trols permit the policy to regulate the use of capabilities,theories of database consistency are described in [45,
addressing the concerns of Section 3.1. Sec. 6]. The latter solution was drawn from a model

An interesting aspect of the Flask microkernel is theOf transactional consistency, but solutions related to dis-
controls that are imposed on relationships between obfributed shared memory consistency may also serve as
jects. In Fluke, these relationships are defined throughseful models.
the use of object references(.the state ofathread con- The last step of the protocol is essential to support
tains an address space reference). Unfortunately, thegmlicies that require policy changes to occur in a partic-
references are used in many different ways, in contrast talar order. For instance, a policy may require that cer-
the way in which read and write access modes are usethin permissions be revoked prior to granting new per-
to control access to kernel objects. For example, a refmissions. The security server cannot consider a policy
erence to an address space may be used to map mexhange to be completed until it is completed by all af-
ory into the space or to export memory from the spacefected object managers. This allows effective atomicity
Hence, Flask introduces separate controls over these ref system-wide policy changes since the security server
lationships and provides finer-grained control than Fluke can determine when the policy change is effective for all
Some of the controls simply require the two objects torelevant object managers.

portability of thread state and guarantees that all kernel
operations are either atomic or cleanly subdivided into
user-visible atomic stages [13]. The first property per-

Revocation Req
Security # Rt mits the kernel revocation mechanism to assess the ker-
Server P Permissions nel's state, including operations currently in progress.
Complete The revocation mechanism may safely wait for opera-

tions currently in progress to complete or restart due to

the promptness guarantee. The second property permits
Flask permission checks to be encapsulated in the same
atomic operation as the service that they control, thereby

Figure 5:A revocation of microkernel permissions. Upon receipt of - . .
a revocation request from the security server, the microkernel first up—avoIdlrlg any occurrences of the service after a revocation

dates its access vector cache, and then proceeds to examine thread d@fluest has completed.
memory state and perform revocations as necessary. The atomic prop-

erties of Fluke were leveraged to ease implementation of the revocation .
mechanism. 5.5 The Security Server

As stated earlier, the security server is required to pro-
vide security policy decisions, to maintain the mapping
This protocol does notimpose an undue burdenin statgetween SIDs and security contexts, to provide SIDs
management on the security server. The number of obfor newly created objects, to provide SIDs of member
ject managers in many systems is relatively small and th@pjects, and to manage object manager access vector
only transactions which require additional state are thosgaches. Additionally, most security policy server im-
where an object manager initially issues an access quefylementations will provide functionality for loading and
for a permission that is granted. Furthermore, the Sechanging po”cies_ A security server m|ght also bene-
curity server may track permission grantings at variousit from providing its own caching mechanism, in addi-
granularities to reduce the amount of state recorded byion to those contained in the object managers, to hold
the security server. the results of access computations. This may prove ad-
The form of atomicity provided by the protocol is rea- vantageous because the security server can improve its
sonable because of the timeliness requirement impose@sponse time by using cached results from previous,
on the object managers. It must not be possible for thgotentially expensive, access computations requested by
revocation request to be arbitrarily delayed by actions ofany client.
untrusted software. Each object manager must be capa- The security server also is typically a policy enforcer
ble of updating its own state without being indefinitely over its own services. First of all, if the security server
blocked by its clients. When this timeliness requirementprovides interfaces for Changing the po”cy, it must en-
is generalized for system-wide policy changes, it also inforce the policy over which subjects can access this in-
volves two other elements of the system: the microkerterface. Second, it may limit the subjects that can request
nel, which must provide timely communication between policy information. This is especially important in a pol-
the security server and object managers, and the schefty where permission requests alter the policy, such as a
uler, which must provide the object manager with CPUdynamic conflict of interest policy. If the confidentiality
resources. of the policy information is important, then object man-
The general AVC module handles the initial process-agers that cache policy information must also be respon-
ing of all policy change requests and updates the cachsible for its protection.

appropriately. The only other operation that must be per- |n a distributed or networked environment, it is tempt-
formed is revocation of migrated permissions. After up-ing to suggest that the security server of each node
dating the CaChe, the AVC module invokes any Ca”baCkﬁnere|y act as a local cache of the environment’s p0|-
which have been registered by the object manager for recy. However, to support heterogeneous policy environ-
voking migrated permissions. The file server supportsments, it is desirable for each node to have its own secu-
revocation of permissions which have migrated into filerity server with a locally defined policy component, with
description objects, but currently lacks support for inter-some degree of coordination at a higher level. Even in a
rupting in-progress operations. Complete callbacks fohomogeneous policy environment, a core portion of the
revoking migrated permissions have currently been imsecurity policy must be locally defined for the node in
plemented only within the Flask microkernel, as shownorder to securely bootstrap the system into a state where
in Figure 5. it may consult the environment's policy. The develop-
Two properties of the Fluke API simplify revocation ment of a distributed security server for coordinating the
in the microkernel: it provides prompt and complete ex-per-node security servers within an environment remains

as future work. For many policies, the security server6 Results
should easily be scalable and replicable, since most poli- This section describes the results of the effort in three

cies will require little interaction among the individual - . L .
: . . .areas: policy flexibility, performance impact, and the
nodes’ security servers. However, some security poli- : .
: : . . scale and invasiveness of the code changes.
cies, such as history-based policies, may require greater

dinati th it : L .
coordination among the Securtly servers 6.1 Flexibility in the Flask Implementation

The security policy encapsulated by the Flask secu- i o
rity server is defined through a combination of its code _ Ve evaluate the policy flexibility that the system pro-

and a policy database. Any security policy that can be/ides based upon the description of policy flexibility in
expressed through the prototype’s policy database |an‘§ect.|on 2. The mo.st.lmp.ortant cr|te'r.|on discussed in that
guage may be implemented simply by altering the po|_sect|0n was “atomicity,” i.e., the ability of the system to

icy database. Supporting additional security policies re€nsure that all operations in the system are controlled

quires changes to the security server's internal po”C)yvith respect to the current security policy. Section 5.4

framework through code changes or by completely re_described how the Flask architecture provides an effec-

placing the security server. It is important to note thattVe atomicity for policy changes and how the microker-

even security policies that require altering the code of thé'€! in particular achieves atomicity for policy changes

security server do not require any changes to the objed£!ating to its objects. Achieving this atomicity for the
managers. other object managers remains to be done.

The current Flask security server prototype imple- Section 2 also identifies three other potential weak-

ments a security policy that is a combination of four Nesses in policy flexibility. The first is the range of oper-
subpolicies: multi-level security (MLS) [3], type en- ations that the system can control. As described in Sec-

forcement [6], identity-based access control and dynami@©n 5-3 and Appendix A, each Flask object manager de-
role-based access control (RBAC) [10]. The access déin€s permissions for all services which observe or mod-
cisions provided by the security server must meet the rellY the state of its objects and provides fine-grained dis-

quirements of each of these four subpolicies. The policy/Nctions among its services. The advantages of the Flask
logic for the multi-level security policy is largely defined controls over merely intercepting requests were clearly

through the security server code, aside from the labeldlUstrated.
themselves. The policy logic for the other subpolicies is The second potential source of inflexibility is the limi-
primarily defined through the policy database languagetation on the operations that may be invoked by the secu-
These four subpolicies are not all the policies supportedity policy. In Flask, the security server may use any of
by the architecture or its implementation in Flask. Theythe interfaces provided by the object managers. Further-
were chosen for implementation in the security servefmore, the Flask architecture provides the security server
prototype in order to exercise the major features of thewith the additional interfaces provided by the AVC mod-
architecture. ule in each object manager. However, this is obviously
Because the Flask effort has focused on policy enhot the same as having access to any arbitrary operation.

forcement mechanisms and the coordination betweef©" €xample, if the security policy requires the ability
these mechanisms and the security policy, the set of ado invoke an operation which is strictly internal to some

ditional security policies that can be implemented solelyPPiect manager, the object manager would have to be

through changes to this policy database is currently lim-changed to support that policy.

ited. This is s|mp|y a Shortcoming of the current proto- The third potential source of |nf|eX|b|I|ty is the amount
type rather than a characteristic of the architecture. W@f state information available to the security policy for
have yet to explore the development of a more expresaking security decisions. Based upon our previous
sive policy specification language or policy configura-analysis of policies for DTOS, the provision of a pair of
tion tool for Flask. Such a tool would facilitate the def- SIDs is sufficient for most policies [43, Sec. 6.3]. How-
inition of new security policies in the current prototype. €ver, the limitation to two SIDs is a potential weakness
There have been several recent projects that do considét the current Flask design. The description of the Flask
flexible tools for configuring the security policies (e.g., file serverin Section A.1 identifies one case where a per-
Adage [53], ASP [8], Dynamic DTE [15], ARBAC [41]) Mission ultimately depends upon three SIDs and must
that nicely complement the Flask effort by potentially be reduced to a collection of permissions among pairs of

providing ways to manage the mechanisms provided by!Ds. An even worse situation is if the security decision
Flask. should depend upon a parameter to a request that is not

represented as a SID. Consider a request to change the
scheduling priority of a thread. Here the security policy
must certainly be able to make a decision based in part on

the requested priority. This parameter can be considered _ _ Flask _
within the current implementation by defining separate| Fluke | nawve | client client
L.) message sizg (us) identification | impersonation
permissions for some classes of changes, for instancerrgi™ 135 | +2% 9% +6%
increasing the priority can be a different permission tharn 16-byte 15.0 | +2% +4% +6%
decreasing the priority. But it is not practical to define| 128-byte 158 | +1% +2% +5%
a separate permission for every possible change to thelk-bvte 219 | +2% 2% 4%
==t 4k-byte 429 | +1% +1% +2%
priority. 8k-byte 785 | +1% +5% +1%
This is not a weakness in the architecture itself, and_64k-byte 503 | +0% +6% +0%

the design could easily be changed to allow for a se-

curity decision to be represented as a function of arbitapje 2: performance of IPC in Flask relative to the base Fluke sys-

trary parameters. However, the performance of the sysem. A “Null” IPC actually transfers a minimal message, 8 bytes in the

tem would certainly be impacted by such a change, becurrent implementation. 1Rluke the tests use the standard Fluke IPC

cause an access vector cache Supporting arbitrary parariﬁt_erfaces in a system configured with no Flask enforcement mecha-
. nisms. Absolute times are shown in this column as a basis for com-

eters would be mUCh_more complicated than th_e Currer";Sarison.Naiveruns the same tests on the Flask microkernekliemt

cache. A better solution may be to expand the interfac@ientification the tests have been modified to use the Flask-specific

only for those specific operations that require decisionserver-side IPC interface to obtain the SID of the client on every call.

based upon more complex parameters and to provid@#e”t impersonatioruses the client-side IPC interface to specify an

. . ' . effective SID for every call.
separate caching mechanisms for those decisions. The
Flask prototype provides a research platform for explor-

ing the need for a richer interface to better support policy

flexibility. cache at the location identified by a “hint” within the port
reference structure. While we have provided the data
6.2 Performance structures to allow for fast queries of previously com-

Eputed security decisions, we have not done any specific

All measurements in this section were taken using th d imization t d up th i Theref
time-stamp counter register on a 200MHz Pentium prg0¢€ optimization to speed up the execution. Theretore

processor with a 256KB L2 cache and 64MB of RAM It was encouraging to find that the addition of these data

. . Str r lonei fficien Im mpletely elimi-
While a complete assessment of performance requwes:‘,t uctures alone s sufficient to almost completely e

analysis of all object managers, we limit ourselves to '[henate any measurable impact of the permission checks.

microkernel, and primarily to IPC since it is a critical ~ The most interesting case in Table 2 is ti@vecol-
path which must be factored into all higher level mea-umn, because it represents the most common form of IPC

surements. in the Flask system. Along this path there is only a sin-
gleConnecpermission check. The results show a worst-
6.2.1 Object Labeling The segment SID for any case 2%{50 machine cycle) performance hit. As would
piece of mapped physical memory is readily available,Pe expected, the relative effect of the single access check
since it is computed when a virtual-to-physical addresgliminishes as the size of the data transfer increases and
translation is created and is stored along with that transteémory copy costs become the dominating factor. The
lation. As the address translation must be obtained aglient identificationcolumn has a larger than expected
object creation time anyway, the additional cost of label-impact due to the fact that, in the currentimplementation,
ing is minimal. We verified this by measuring the cost to the client SID is passed across the interface to the server
create the simplest kernel object in both Fluke and Flaskin & register normally used for data transfer. This forces

showing the worst case overhead. Flask added 1% to tdh extra memory copy (particularly obvious in the Null
operation (3.62 versus 3.66). IPC test). The significant effect on large data transfers is

unexpected and needs to be investigated. dieat im-
6.2.2 IPC Operations This section presents perfor- personationcolumn shows the impact of checking both
mance measurements for IPC operations under variou§€ ConneciandSpecifyClienpermissions.
message sizes and also measures the impact of cachingThe effect of not finding the permission through the
within the microkernel. Table 2 presents timings for a va-hintis shown in Table 3, which presents the relative costs
riety of client-server IPC microbenchmarks for the baseof retrieving a security decision from the cache and from
Fluke microkernel and under different scenarios in thethe security server. The operation being performed is the
Flask system. The tests measure cross-domain transfer nfost sensitive of the IPC operations, round trip of trans-
varying amounts of data, from client to server and backfer of a “null” message between a client and a server and
again. is consequently representative of the worst case.

For all of the tests performed on Flask in Table 2, the Thecachecolumn shows that the use of the hint is sig-
required permissions are available in the access vectaificant in that it reduces the overhead from 7% to 2%.

Flask connections| revocation time

using using | calling | calling 1 1.55ms

Fluke hint cache| trivSS realSS 2 1.56 ms

“Null” 13.5us | 13.8us | 14.4us | 43.4us | 82.5us 4 1.57ms
+2% +7% | +221% | +511% 8 1.60 ms

16 1.65ms

Table 3: Marginal cost of security decisions in Flask. The first

two columns repeat data from Table 2, identifying the relative cost of Table 4: Measured cost of revoking IPC connections. A connection
Flask when the required permission is found in the access vector cachi§ established from a client to a server and then is immediately revoked.
(AVC) using the hint. The third column is the time required when the Increasing numbers of interposed threads are used to increase the work
hint was incorrect but the permission was still found in the AVC. The done for each revocation.

trivSScolumn is the time required when the permission is not found in

the AVC, and a “trivial” security server, which immediately returns an

access ruling with all permissions granted, is used. réaESScolumn of the affected threads is small in relation. and as ex-
is the time required when the permission is not found in the AVC and d | l | ith th b i ’ .
an access ruling is computed by our prototype security server. pecte : scales linearly with the nu_m er of connections.
Changing the Fluke kernel to permit greater concurrency
. o _ during the processing of a revocation request remains as
ThetrivSScolumn shows a more than tripling of the time fyture work.
required in the base Fluke case. The IPC interaction be- 1,4 frequency of policy changes is obviously policy

tween the microkernel and security.server requires tra,nsdependent, but the usual examples of policy changes are
fer of.20 bytes of data to the security SErver (along W',thexternally driven and therefore will be infrequent. More-
the client SID) and return of 20 bytes. Since the permis- e, 4 performance loss in a system with frequent policy
sion for this IPC interaction is found using the hint, we changes should not be unexpected as it is fundamentally
see from Table 2 that over half of the additional overhead, .y feature provided by the system. Obviously, even

is due to the IPC. The remainder of the overhead is dugnese yncommon operations should be completed as fast
to the identification of the request for a security decision ¢ possible, but that has not been a major consideration
construction of the security server request in the kernel, 1o curreﬁt implementation.

and the unmarshaling and marshaling of parameters in

the security server itself. The additional overhead in the

realSScolumn compared to the previous case is the timeP-2-4 Macrobenchmark A macrobenchmark evalu-
required to compute a security decision within our proto-&tion of the Flask prototype is difficult to perform. Since
type security server. Though no attempt has been madgl@sk is a research prototype, it has only limited POSIX
to optimize the security server computations, this resulSUPPOrt and many of the servers are not robust or well
points out that the access vector cache can potentially b&ned. As aresult, it is difficult to run non-trivial bench-
important regardless of whether interactions with the seMark applications. Nevertheless, we performed a sim-

curity server require an IPC interaction. ple comparison, runningiake to compile and link an
application consisting of 2@c and 4.h files for a to-

6.2.3 Revocation Operations The possible micro- tal of 8060 lines of code (including comments and white

kernel revocation operations are described in Section 5.4P2c€), about 190KB total.

For demonstration purposes we chose to evaluate the The test environment included three object managers
most expensive of those operations, IPC revocation. Talthe kernel, BSD filesystem server and POSIX process
ble 4 shows the results with varying numbers of activemanager) along with a shell and all the GNU utilities
connections. The large base case is due to the need f¢cessary to build the applicatiangke, gcc, Id , etc.).
stop all threads in the system when an IPC revocatioﬂ—he Flask configuration of the test includes the security
is processed. The Fluke kernel provides a mechanisriérver with the three object managers configured to in-
to cancel a thread and wait for it to enter a Stopped Staté'Ude the Security features described in Section 5.3 and
when the kernel wishes to examine or modify the thread’dAPpendix A. For each configuration, we ramake five
state. The stop operation cannot be blocked indefiniteljimes, ignored the first run, and averaged the time of the
by the thread’s activities nor by the activities of any otherfinal four runs (the initial run primed the data and meta-
thread. Since a thread must be stopped prior to examinalata caches in the filesystem). To give a sense of the
tion in order to ensure that it is in a well-defined state,absolute performance of the base Fluke system, we also
the current Flask implementation must stop all thread$an the test under FreeBSD 2.1.5 on the same machine
when an IPC revocation is processed. Thus, the currer@nd filesystem. Table 5 summarizes the experiment.
implementation meets the completeness and timeliness The slowdown for Flask over the base Fluke system is
requirements of the architecture but is quite costly. Inless than 5%. By running the Flask kernel with unmodi-
contrast, the actual cost to examine and update the stafied Fluke object managerslask-FFS-PN), we see that

[OS Config | Time (sec) | Resolution
BSD 18.6 Object Total using using | calling
Eluke 399 Manager | queries hint cache SS
Flask 41.7 (4.5%) Kernel 603735 | 175585 | 428121 29
Flask-FFS-PM| 40.9 (2.5%) FFS 76708 N/A 76700 8
Fluke-memfs | 24.7 PM 892 N/A 890 2
Flask-memfs | 27.4 (11%)

Table 6: Resolution of requested security decisions during the com-
Table 5: Results of runningmake to compile and link a sim- pilation benchmark. Numbers are from thlask configuration of Ta-
ple application in various OS configurationBSDis FreeBSD 2.1.5, Ple 5 and includes all five runs afake andmake clean .
Flask-FFS-PMis the Flask kernel with the unmodified Fluke filesys-
tem server and process manager, andrbenfsentries use a memory-)
based filesystem in place of the disk-based filesystem. Percentages dore completely exploring the performance overhead of
the slowdowns vs. the appropriate base Fluke configurations. the Flask security architecture remains as future work,
and will likely be done in the context of a Linux or OS-
the overhead is pretty evenly divided between the kerX't |mpIer|1.1er1tat|or|llof :jhe artc):hnecture. Eh's will permit
nel and the other object managers (primarily the filesysMOre realistic workloads to be measured.
tem server). However, this modest slowdown is against

a Fluke system which is over twice as slow on the samé&.3 Scale and Invasiveness of Flask Code

test as a competitive Unix systeB&D). The bulk of this In Table 7 we present data that give a rough estimate of
slowdown is due to the prototype filesystem server whichhe scale and complexity of adding fine-grained security
does not do asynchronous or clustered I/O operations. Tenforcement to the base Fluke components. Overall, the
factor this out, we reran the tests using a memory-basefljyke components increased in size less than 8%. Al-
filesystem which supports the same access checks as thgyugh the kernel increased the most at 19%, for large
disk-based filesystem. The last two lines of Table 5 ShOV‘bbject managers the percentage is reassuringly small (4—
the results of these tests. Note that the Flask overhea@b/o)_ Of these modifications, we examined the magni-
has increased to 11%, as less is masked by the disk I/@,de of changes involved by classifying each changed
latency. location as “trivial” changese(g, one-line changes,
Table 6 reports the number of security decisions thattdefine changes, name or parameter changes, etc.)
were requested by each object manager during testing @fr “non-trivial.” For the process manager, 57% of the
theFlaskconfiguration and how those decisions were re-changes fell into the trivial category. For the kernel, a
solved. The numbers include all five runsrobke as similar percentage of the changes were trivial, 61%, de-
well as the intervening removal of the object files. Thesespite the fact that the kernel is an order of magnitude
results reaffirm the effectiveness of caching security detarger and more complicated than the process manager.

cisions, with well over 99% of the requests never reach- The changes required to implement the Flask security
ing the security server. architecture did not involve any modifications to the ex-
isting Fluke API. Extended calls were added to the exist-
6.2.5 Performance Conclusions Initial microbench- ing API to permit security-aware app"caﬂons to use the
mark numbers suggest that the overhead of the Flask midditional security functionality, such as the client and
crokernel mechanisms can be made negligible througBerver identification support. All applications that run

the use of the access vector cache and local hints whesh the base Fluke system can be executed unchanged on
appropriate. They also highlight the need for an ac-Flask.

cess vector cache so that communications with the secu-
rity server and security computations within the security7
server are minimized. They also point to several areas for
potentiai Optimization, such as the AVC implementation, This paper describes an Operating system Security ar-
the communications infrastructure and the prototype sechitecture capable of supporting a wide range of security
curity server computations. A complete analysis of thepolicies, and the implementation of this architecture as
effectiveness of the AVC remains as future work. Issuesart of the Flask microkernel-based operating system. It
such as the optimal cache size and the sensitivity of thgrovides a usable definition of policy flexibility, identi-
AVC hit ratios to policy changes remain to be explored. fies limitations of this definition and highlights the need
Results of the simple macrobenchmark test are inconfor atomicity. It shows that capability systems and in-
clusive. Although the performance impact numbers arderposition techniques are inadequate for achieving pol-
encouraging (5-11% slowdown), the bad absolute pericy flexibility. It presents the Flask architecture and de-
formance of the prototype system cannot be ignoredscribes how Flask overcomes the obstacles to achieving

Summary

Component| Fluke LOC | +Flask | %lncr. | #Locs. | %Locs. Secure File Server File System
Kernel 9271 1795 19.3 258 2.4 o

FFS 21802 | 1342 6.2 14 .06
Proc. Mgr 925 | 196 | 21.2 85 9.2 Labd
Net Server 24549 | 1071 4.4 224 9.1 w
Total 58435 | 4575 7.8 647 1.1 Context Map

Inode Table

SID/PSID
Map

Inode/PSID
Map
ll

and Files

Table 7: “Filtered” source code size for various Flask components
and the number of discrete locations in the base Fluke code that were
modified. This count of source code lines filters out comments, blank ;
lines, preprocessor directives, and punctuation-only lines, and typically [Security Server } =
is 1/4 to 1/2 the size of unfiltered code. The network server count
includes the ISAKMP and IPSEC distributions, counting as modifica-
tions all Flask-specific changes to them and the base Fluke network
component. Figure 6: Labeling of persistent objects. The file server maintains a
table within each file system which identifies the security context of the
file system and every directory and file within the file system, thereby

policy flexibility including the need for atomicity. Al- ensuring that the security attributes of these objects are preserved even

h hth f | . fthe Flask if the file system is moved to another system. This table is partitioned
though the performance evaluation ot the Flas prowtyp?ﬂto a mapping between each security context and an inpaEgsistent

is incomplete, this paper demonstrates that the architeip (PSID) and a mapping between each object and its persistent SID.
ture is practical to implement and flexible to use. More-These persistent SIDs are purely an internal abstraction within the file

; ; ystem and have a distinct name space for each file system. Hence, per-
over, the architecture should be appllcable to many Othezistent SIDs may be lightweight and the allocation of persistent SIDs

Context<—>SID

operating systems. may be optimized for each file system.
Availability
The Flask software and documentation are available aéxample, whereas Unix permits a process to invatieé
<http://lwww.cs.utah.edu/flux/flask/> : or unlink on a file purely on the basis of the process’
access to the file’s parent directory, the Flask file server
A Other Flask object managers checksGetattrandUnlink permissions to control access

to the file itself in addition to the directory-based permis-

This appendix describes the specific features t.hat ha‘@lons. Such controls are necessary to generally support
been added to some of the Flask user-space object mapy jiscretionary security policies. The Flask file server
agers. Although the following subsections are not neces;

: - also supports fine-grained distinctions among services,
sary for understanding the Flask architecture, they Prog ch as separaWrite and Appendpermissions for files

vid<=T hglpful insight into the details of providing policy and separatddd nameand Removenamepermissions
flexibility in a complete system. for directories, which is important for supporting policy
i flexibility.

A1 File Server The file server provides operations to relabel files and

The Flask file server provides four types of controlled directories, since the relabel operation has the potential
(labeled) ObjeCtS: file SyStemS, directories, fileS, and fll%f being much more efficient than mere|y Copying such
description objects. Since file systems, directories an@pjects into new objects with different labels. There are
files are persistent objects, their labels must also be peg couple of complications of relabeling. First, migrated
sistent. The binding of persistent labels to these objectgermissions pertaining to the file may need to be revoked.
is shown in Figure 6. The file server supports persis+or instance, changing the SID of a file may affect the
tent labels without SaCfiﬁCing pOllcy erXIbIIIty or perfor- permission to write to a file that is stored in a file de-
mance by treating security contexts as opaque strings angtription object. Hence, all such permissions are recom-
by mapping these labels to SIDs by a query to the secuputed and revoked if necessary. Second, a relabeling op-
rity server for internal use in the file server. Control over eration cannot be simply controlled through the SID of
file description objects is separated from control over thehe client subject and the SID of the file, but must also
files themselves so that propagation of access to file dgnyolve the newly requested SID. This is addressed by
scription objects may be controlled by the policy. As requiring three permissions for a relabel to complete, as
noted in Section 3.1, the ability to control the propaga-shown in Table 8. The provision of a single relabel oper-
tion of access rights is critical to policy flexibility. ation is also helpful from a policy flexibility perspective,

In contrast to the Unix file access controls, the Flasksince the policy logic can be directly expressed in terms
file server defines a permission for each service that obef any of these three possible SID pairs. In contrast, im-
serves or modifies the state of a file or directory. Forplementing the same policy logic in terms of the permis-

SOURCE TARGET | PERMISSION SOURCE TARGET LAYER
Subject SID | File SID RelabelFrom Process SID | Socket SID Socket
Subject SID | New SID | RelabelTo Message SID| Socket SID Transport
File SID New SID | Transition Message SID| Node SID Network

Node SID Net Interface SID

Table 8: Permission requirements for relabeling a file. Additionally,

the subject must posseSgarchpermission to every directory in the Table 9: Layered controls in the network protocol stack. Each layer
path. applies controls based upon the SIDs of the abstractions directly ac-
cessible at that layer. Node SIDs are provided to the network server
by a separate network security server, which may query distributed
databases for security attributes, and network interface SIDs may be

sions controlling operations involved in copying an ob- locally configured.

ject would be complicated by the much weaker coupling
among the relevant SIDs.

The file server design proposes the use of the Flask ar- - . . .
chitecture’s polyinstantiation support feecurity union f|neq .W'th'n the policy. Extendlng the cqncept 9f policy
directories(SUDs): however, the design for SUDs has flexibility to a networked enwrpnme'nt will require such
not yet been implemented. SUDs are a generalization o§upport for complex trust relationships.
the partitioned directory approach taken by multi-level The principal controlled object type for the network
secure Unix systems for dealing with /tmp. The SUD Server is the socket. For socket types that maintain mes-
mechanism is designed to use the polyinstantiation sup3@ge boundarieg(g, datagram), the network server also
port to determine the preferred member directory forbinds a separate SID to each message sent or received on
each client to access by default. However, unlike the sim@ Socket. For other socket types, each message is implic-
ple partitioned directory approach, the SUD mechanisnitly associated with the SID of its sending socket. Since
provides a unified view of all accessible members withinmessages cross the boundary of control of the network
the polyinstantiated directory to clients based upon acServer, and may even cross a policy domain boundary,

cess decisions between the client and the member dire&)® network server may need to apply cryptographic pro-
tories. tections to messages in order to preserve the security re-

As was noted in Section 3.2, file server operations pro_quirements of the policy and must bind the security at-
' tributes of the message to the message. Our prototype

vide a simple example of the problems with implement- g
ing security controls at the server’s external interface.newvork server uses the IPSEC [26] protocols for this

The Flask file server draws its file system implementa-p Urpose, with security associgtipns established by the ne-
tion from the OSKit [12] whose exported COM inter- gotiation server. The negptlanon server may no.t pass
faces are similar to the internal VFS interface [27] used; ID‘Qf across the networI.<, since they are only local identi-
by many Unix file systems. It was possible to implementf'ers' instead, the negotiation server must pass the actual

the Flask security controls at that interface where theséecurlty atfributes to its peer, \.Nh'Ch can then establish
problems do not exist. its own SID for the corresponding security context. Al-

though the negotiation server must handle security con-
texts, it does not interpret them, and thus remains policy-
A.2 Network Server flexible. Attribute translation and interpretation must be

Abstractly, the Flask network server ensures that eviPerformed by the corresponding security servers in ac-
ery network IPC is authorized by the security policy. cordance with the policy reconciliation.
Of course, a network server cannot independently en- The network server controls are layered to match the
sure that a network IPC is authorized by the policy of itsnetwork protocol layering architecture. Hence, the ab-
node, since it does not have end-to-end control over datstract control over the high-level network IPC services
delivery to processes on peer nodes. Instead, a netwodonsists of a collection of controls over the abstractions
server must extend some level of trust to its peer netat each layer, as shown in Table 9. The layered controls
work servers to enforce its own security policy, in com- provide the policy with the ability to precisely regulate
bination with their own security policies, over the peer network operations, using all the information relevant to
processes. This requires a reconciliation of security polisecurity decisions, and they allow the policy to take ad-
cies, which would be handled by a separate negotiationantage of specific characteristics of the different proto-
server. The current negotiation server is limited to ne-cols (e.g, the client/server relationship in TCP). The net-
gotiating network security protocols and cryptographicwork server provides another example of the problems
mechanisms using the ISAKMP [33] protocol. The pre-with implementing security controls at the server’s exter-
cise form of trust and the precise level of trust extendechal interface. This is due to the need to control abstrac-
to peer network servers can vary widely and would be detions and interpose on operations which are not exported

by the network server’s external interface.

work server design, and other members of the Flux group

Since the TCP and UDP port spaces are fixed refor help in numerous ways.

sources, the network server uses the Flask architecture’s

polyinstantiation support fasecurity union port spaces References

(SUPs). SUPs are analogous to the SUDs discussed in
Section A.1. The polyinstantiation support is used to [1]
determine the preferred member port space when a port
number is associated with a socket and when an incom-,
ing packet has a destination port number which exists in
multiple member port spaces. The SUP mechanism pro-
vides a unified view of all accessible port spaces within
the polyinstantiated port space based on access decision§ll

Many of the details of the Flask network server and
other servers that support it are beyond the scope of this[4]
paper. A much more detailed description of an earlier
version of the Flask network server can be found in [9].

A.3 Process Manager (5]

The Flask process manager implements the POSIX
process abstraction, providing support for functions such
asfork andexecve These higher-level process abstrac-
tions are layered on top of Flask processes, which con-[6]
sist of an address space and its associated threads. The
process manager provides one controlled object type, the
POSIX process, and binds a SID to each POSIX process!’]
Unlike the SID of a Flask process, the SID of a POSIX

process may change throughexecve Such SID transi- 8]
tions are controlled by the proceBsnsitionpermission
between the old and new SIDs. This control permits the]

policy to regulate a process’ ability to transition to differ-
ent security domains. Default transitions may be defined
by the policy through the default object labeling mecha—[lo]
nism described in Section 5.2.1.

In combination with the file server and the micro-
kernel, the process manager is responsible for ensurin
that each POSIX process is securely initialized. The fil L
server ensures that the memory for the executable is la-
beled with the SID of the file. The microkernel ensures[lZ]
that the process may only execute memory to which it
hasExecuteaccess. The process manager initializes the
state of transformed POSIX processes, sanitizing their

environment if the policy requires it. [13]

Acknowledgments

We especially thank Jeff Turner for his many con-[14]
tributions to the Flask vision and architecture. Duane
Olawsky contributed much to our understanding of the
features required for policy flexibility. We also thank
Dan Wallach, Grant Wagner, Andy Muckelbauer, Ruth!1®!
Taylor, Charlie Payne, Tom Keefe and the anonymous re-
viewers for reviewing earlier drafts of this paper, Roland
McGrath for recent Fluke implementation, Ajay Chitturi 16
for implementing an earlier version of our secure net-

M. D. Abrams. Renewed understanding of access control poli-
cies. InProceedings of the 16th National Computer Security
Conferencepages 8796, Oct. 1993.

] M. D. Abrams, L. J. LaPadula, K. W. Eggers, and I. M. Olson. A

generalized framework for access control: An informal descrip-
tion. InProceedings of the 13th National Computer Security Con-
ference pages 135-143, Oct. 1990.

D. E. Belland L. J. La Padula. Secure computer systems: Mathe-
matical foundations and model. Technical Report M74-244, The
MITRE Corporation, Bedford, MA, May 1973.

T. C. V. Benzel, E. J. Sebes, and H. Tajalli. Identification of sub-
jects and objects in a trusted extensible client server architecture.
In Proceedings of the 18th National Information Systems Security
Conferencepages 83—-99, 1995.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczyn-
ski, D. Becker, C. Chambers, and S. Eggers. Extensibility, safety,
and performance in the SPIN operating systemPioc. of the
15th ACM Symp. on Operating Systems Principfesges 267—
284, Copper Mountain, CO, Dec. 1995.

W. E. Boebert and R. Y. Kain. A practical alternative to hierar-
chical integrity policies. IrProceedings of the Eighth National
Computer Security Conferencia85.

M. 1. Bushnell. Towards a new strategy of OS desigdNU’s
Bulletin, 1(16), Jan. 1994.

M. Carney and B. Loe. A comparison of methods for imple-
menting adaptive security policies. Rioceedings of the Seventh
USENIX Security Symposiupages 1-14, Jan. 1998.

A. Chitturi. Implementing mandatory network security in a
policy-flexible system. Master’s thesis, University of Utah, 1998.
pp. 70. http://www.cs.utah.edu/flux/flask/.

D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn. Role-Based Access
Control (RBAC): Features and motivations. Mmoceedings of
the Eleventh Annual Computer Security Applications Conference
Dec. 1995.

] T.Fine and S. E. Minear. Assuring Distributed Trusted Mach. In

Proceedings IEEE Computer Society Symposium on Research in
Security and Privacypages 206-218, May 1993.

B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The Flux OSKit: A substrate for OS and language research. In
Proc. of the 16th ACM Symp. on Operating Systems Pringiples
pages 38-51, St. Malo, France, Oct. 1997.

B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann.
Interface and Execution Models in the Fluke KernelPhoceed-

ings of the 3rd USENIX Symposium on Operating Systems Design
and Implementationpages 101-116, Feb. 1999.

B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines. In
Proceedings of the Symposium on Operating Systems Design and
Implementationspages 137-151, Oct. 1996.

T. Fraser and L. Badger. Ensuring continuity during dynamic
security policy reconfiguration in dte. Proceedings of the 1998
IEEE Symposium on Security and Privagages 15-26, May
1998.

M. Gasser.Building a Secure Computer Systenvan Nostrand
Reinhold Company, 1988.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure[36]
environment for untrusted helper applications Phoceedings of
the 6th Usenix Security Symposiuialy 1996.

L. Gong. A secure identity-based capability systemPtaceed-
ings of the 1989 IEEE Symposium on Security and Privaages
56-63, May 1989.

R. Graubart. On the need for a third form of access control. In
Proceedings of the 12th National Computer Security Conference [38]
pages 296-304, Oct. 1989.

R. Grimm and B. N. Bershad. Providing policy-neutral and trans-
parent access control in extensible systems. In J. Vitek and3g]
C. Jensen, editorssecure Internet Programming: Security Is-
sues for Distributed and Mobile Objec¢tglume 1603 of ecture
Notes in Computer Scienc8pringer-Verlag, June 1999.

(37

[40]

N. Hardy. The confused deputyOperating Systems Review
22(4):36-38, Oct. 1988.

T. Jaeger, J. Liedtke, and N. Islam. Operating system protection[41]
for fine-grained programs. Rroceedings of the Seventh USENIX
Security Symposiunpages 143-157, Jan. 1998.

R. Kain and C. Landwehr. On access checking in capability-
based systems. IRroceedings of the 1986 IEEE Symposium on [42]
Security and Privacypages 66—77, May 1986.

P. A. Karger. New methods for immediate revocation. Pho-
ceedings of the 1989 IEEE Symposium on Security and Privacy[43]
pages 48-55, May 1989.

P. A. Karger and A. J. Herbert. An augmented capability archi-
tecture to support lattice security and traceability of access. In
Proceedings of the 1984 IEEE Symposium on Security and Pri—[44]
vacy, pages 2-12, May 1984.

S. Kent and R. Atkinson. Security architecture for the Internet
Protocol. RFC 2401, Internet Engineering Task Force, Nov. 1998.
ftp://ftp.isi.edu/in-notes/rfc2401.txt.

S. R. Kleiman. Vnodes: An architecture for multiple file system
types in Sun UNIX. IrProc. of the Summer 1986 USENIX Conf.
pages 238-247, Atlanta, GA, June 1986.

C. R. Landau. Security in a secure capability-based sys@pa.
erating Systems Revigpages 2—4, Oct. 1989.

R. Levin, E. Cohen, W. Corwin, P. F., and W. Wulf. Pol-
icy/mechanism separation in hydra. Pmoceedings of the Fifth

Symposium on Operating Systems Principleages 132-140,

Unversity of Texas at Austin, Nov. 1975. ACM/SIGOPS.

J. Liedtke. Clans and chiefs. Architektur von Rechensystemen
Springer-Verlag, Mar. 1992.

(46]

(47]

(48]
K. Loepere.Mach 3 Kernel InterfacesOpen Software Founda-
tion and Carnegie Mellon University, Nov. 1992.

P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Tay-

lor, S. J. Turner, and J. F. Farrell. The inevitability of failure: [49]
The flawed assumption of security in modern computing envi-
ronments. InProceedings of the 21st National Information Sys-
tems Security Conferencpages 303—-314, Oct. 1998. http://-

csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf.

(50]

D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet
security association and key management protocol (ISAKMP).[5l]
RFC 2408, Internet Engineering Task Force, Nov. 1998. ftp://-
ftp.isi.edu/in-notes/rfc2408.txt.

C. J. McCollum, J. R. Messing, and L. Notargiacomo. Beyond [52]
the pale of mac and dac - defining new forms of access control.

In Proceedings of the 1990 IEEE Symposium on Security and Pri{53]
vacy, pages 190-200, May 1990.

S. E. Minear. Providing policy control over object operations in
a Mach based system. Rroceedings of the Fifth USENIX UNIX
Security Symposiurpages 141-156, June 1995.

J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A.
Khalidi, P. Kougiouris, P. W. Madany, M. N. Nelson, M. L. Pow-
ell, and S. R. Radia. An overview of the Spring system.Aln
Spring Collection Sun Microsystems, Inc., 1994.

T. Mitchem, R. Lu, and R. O'Brien. Using kernel hypervisors
to secure applications. IRroceedings of the Annual Computer
Security Applications Conferenddec. 1997.

D. Olawsky, T. Fine, E. Schneider, and R. Spencer. Developing
and using a “policy neutral” access control policyProceedings
of the New Security Paradigms Worksh&@&M, Sept. 1996.

E. I. Organick.The Multics System : An Examination of its Struc-
ture. MIT Press, 1972.

S. A. Rajunas, N. Hardy, A. C. Bomberger, W. S. Frantz, and
C. R. Landau. Security in KeyKOS. Iroceedings of the 1986
IEEE Symposium on Security and Privapages 78-85, Apr.
1986.

S. G. Ravi Sandhu, Venkata Bhamidipati and C. Youman. The ar-
bac97 model for role-based administration of roles: Preliminary
description and outline. IRroceedings of the Second ACM Work-
shop on Role-Based Access Contpages 41-50, Nov. 1997.

D. Redell and R. Fabry. Selective revocation of capabilities. In
Proceedings of the International Workshop on Protection in Op-
erating Systemgpages 192-209, Aug. 1974.

Secure Computing Corp. DTOS Generalized Security
Policy Specification. DTOS CDRL A019, 2675 Long
Lake Rd, Roseville, MN 55113, June 1997. http://-
www.securecomputing.com/randt/HTML/dtos.html.

Secure Computing Corp. Assurance in the Fluke Microkernel:
Formal Security Policy Model. CDRL A003, 2675 Long Lake
Rd, Roseville, MN 55113, Feb. 1999. http://www.cs.utah.edu/-
flux/flask/.

Secure Computing Corp. Assurance in the Fluke Microkernel:
Formal Top-Level Specification. CDRL A004, 2675 Long Lake
Rd, Roseville, MN 55113, Feb. 1999. http://www.cs.utah.edu/-
flux/flask/.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
disaster: Surviving misbehaved kernel extension$rte. of the
Second Symp. on Operating Systems Design and Implementation
pages 213-227, Seattle, WA, Oct. 1996. USENIX Assoc.

J. S. Shapiro. EROS: A capability system. Technical Report
Technical Report MS-CIS-97-04, University of Pennsylvania,
Department of Computer and Information Science, 1997.

D. F. Sterne, M. Branstad, B. Hubbard, and B. M. D. Wolcott. An
analysis of application specific security policies.Proceedings

of the 14th National Computer Security Conferenpgages 25—
36, Oct. 1991.

SunsSoft, Inc.Spring Programmer’s Guidel995. On-line docu-
mentation included in the Spring Research Distribution 1.0.

D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible
security architectures for Java. Rroc. of the 16th ACM Symp.
on Operating Systems Principlgzages 116-128, Oct. 1997.

R. M. Wong. A comparison of secure unix operating systems. In
Proceedings of the Sixth Annual Computer Security Applications
Conferencepages 322-333, Dec. 1990.

W. Wulf, R. Levin, and P. HarbisonHydra/C.mmp: An Experi-
mental Computer SysterivicGraw-Hill, 1981.

M. E. Zurko and R. Simon. User-centered securityPceed-
ings of the New Security Paradigms WorkshBppt. 1996.

