The following paper was originally published in the

Proceedings of the"8JSENIX Security Symposium

Washington, D.C., USA, August 23-26, 1999

ENFORCING WELL-FORMED AND PARTIALLY
FORMED TRANSACTIONS FOR UNIX

Dean Povey

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved
For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org WWWhttp://www.usenix.org
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Enforcing Well-formed and Partially-formed Transactions for
Unix

Dean Povey
Security Unit
Cooperative Research Centre for Enterprise Distributed Systems
Queensland University of Technology, Brisbane, 4001
povey@dstc.edu.au

Abstract

While security is a critical component of informa-
tion systems, at times it can be frustrating for end
users. Security systems exist to minimise the risks of
allowing users to access and modify data, but rarely
do they consider the risks of not granting access.

This paper describes an access control system which
is optimistic, i.e. it assumes accesses are legiti-
mate, and allows audit and recovery of the system
when they are not. The concepts of well-formed
and partially-formed transactions as mechanisms for
constraining pessimistic and optimistic accesses is
briefly described, and the paper details a proto-
type implementation for the Solaris operating sys-
tem which provides a reference monitor for enforce-
ment of both these transactions.

1 Introduction

One of the main objectives of security systems is
the management of risks by controlling access to re-
sources. These systems implement security policies
which seek to enforce the principles of least privi-
lege and separation of duties to ensure that users
are given the minimum amount of privilege neces-
sary to perform tasks.

However, what most systems often do not consider
is the risk of not granting privileges. Either due to
unforeseen circumstances, or because the access con-
trol system is not flexible enough to support com-
plex policies, enforcing restrictive access control can
impede a user’s legitimate activities.

This paper considers security from the perspective
of reducing risks in an environment where access
control is performed optimistically. In such a sys-
tem, access is assumed to be legitimate, and granted
automatically. Integrity is ensured by verifying the
validity of actions after the fact, and providing a way
of rolling back user actions when they are deemed
inappropriate. The paper categorises user actions
as being one of three types: legitimate, questionable
and dangerous, and shows how both pessimistic and
optimistic access control mechanisms are useful for
constraining different classes of action.

The notion of partially-formed transactions (an ex-
tension of Clark and Wilson’s well-formed trans-
action[5]) is described as a mechanism for ensuring
integrity in an optimistic access control system and
this concept is presented within a formal context.

The paper also describes the design and imple-
mentation of tudo, a prototype for the Unix op-
erating system that enforces both well-formed and
partially-formed transactions. tudo provides a ref-
erence monitor which controls access to system calls
using the system call tracing features of the Solaris
/proc filesystem, and provides detailed logging of
actions and recovery from filesystem modifications.
The security and limitations of the prototype are
evaluated and some future directions for the re-
search are discussed.

2 Motivation

In designing access control policies for an organi-
sation, security administrators need to balance the
needs of users with the need to maintain system in-
tegrity. However, these two requirements are often

conflicting. In general, it is most efficient for users
to have minimal barriers to completing tasks, partic-
ularly in environments which are collaborative and
time-critical. Maintaining system integrity however,
requires that a user’s access privileges be restricted
to a minimal set, to ensure that the amount of dam-
age that can be caused (accidental or otherwise) is
minimised.

The situation is further exacerbated in environ-
ments such as Unix, where the simple access control
scheme supported by the system is often not flexi-
ble enough to support complex security policies. For
example, in Unix, it is not possible to authorise the
following actions without giving the user additional
privileges:

allow append-only access to a file;

bind a network socket to a port < 1024;

allow read/write access to a raw disk device; or

allow mounting or unmounting of a filesystem.

Furthermore, security systems usually enforce a pol-
icy appropriate for the normal operation of a sys-
tem, but do not allow flexibility in dealing with
disaster scenarios or dynamically changing environ-
ments.

For example, suppose a user with a critical deadline
turns up early to work to find that the line printer
daemon configuration has been changed, and they
are unable to print their project proposal. As the
system administrator is nowhere to be found, their
only option is to attempt to fix the problem them-
selves. In normal circumstances, allowing the user
to alter the line printer configuration file would be
unacceptable, however in this situation, not allow-
ing them to alter it will mean that they cannot meet
their deadline.

2.1 Categories of user actions

When considering how a given access control mech-
anism implements its security policy, we can think
of the set of possible actions a user might wish to
perform as being divided into three separate cate-
gories:

Legitimate Actions that are explicitly allowed
by a system’s access control mechanism.

Questionable Actions which may represent le-
gitimate user behaviour, but require access
privileges not normally given to the user.

Dangerous Actions that are explicitly disallowed
by the security mechanism, and which repre-
sent, accidental damage or malicious intent by
users.

Security systems only allow legitimate actions.
However, either due to unforeseen circumstances, or
because the access control system is not sufficient to
support the complexity of authorisations necessary
for a particular task, a user will occasionally need to
perform actions which will be deemed questionable.
A user who needs to perform such actions has two
options:

1. convince a benevolent system administrator to
perform the action for them; or

2. perform the action through a trusted entry
point provided by the administrator.

2.1.1 Questionable actions through a sys-
tem administrator

Most operating systems (including Unix) have the
concept of a privileged user or superuser who can
override the security mechanisms of the system to
perform a questionable action. However, there are
often occasions (such as the example above) when
the system administrator cannot be found (or a
benevolent system administrator cannot be found),
or where they are too busy to complete the request
in a timely fashion. In addition, requiring all ques-
tionable actions to be approved by the system ad-
ministrator is inefficient, particularly when the ac-
tion is commonly performed.

2.1.2 Questionable actions through trusted
entry points

Unix supports the notion of trusted entry points, by
allowing a program to be executed with setuid or
setgid permissions. When executed, the program is
run with the privileges of either the owner or group

of the executable file (depending on which permis-
sion is set). The main benefit of this approach is it
allows the administrator to authorise questionable
actions which are regularly executed, and known
to be trusted. However, in many cases, the privi-
leges required to perform the operation will demand
that the program be executed as the superuser. Be-
cause executing with the superuser privilege pro-
vides full access to the system, these programs then
often become a target for misuse by exploitation of
weaknesses in their design and implementation (for
examples of these exploits see [12] and [15]). The
existence of such widespread exploits make admin-
istrators reticent to provide too many entry points
for users to execute questionable actions, as they do
not always have the time or expertise to determine
if the setuid/setgid program has been implemented
securely.

Another approach is the use of utilities such as
sudo[19] and super[20], that allow the execution
of specified programs with superuser privileges.
The advantages of such utilities over normal se-
tuid/setgid programs are that they provide richer
access control semantics using a high level pol-
icy language, and they sanitise the environment in
which the specified programs run to avoid known
attacks. This simplifies the process of certifying a
particular program as being secure, as many vulner-
abilities are averted by the sudo and super utilities
themselves.

However, such approaches are still susceptible if the
programs they execute behave in unexpected ways
or are vulnerable to data dependent attacks. The
sudo and super utilities provide a safer way to ac-
cess trusted entry points, but once the entry point
has been authorised, the program being run has
carte blanche access to the system.

Lastly, mechanisms which support trusted entry
points are only useful for cases where the need for
a questionable action is known in advance. In the
example given above, it is unlikely that an adminis-
trator will to provide a entry point to allow users to
modify the printer configuration file, as such access
is probably legitimate only as a one-off occurrence.

2.2 Optimistic access control

Another way of approaching the issue of authoris-
ing questionable access, is to decide whether au-

thorisation should be pessimistic or optimistic. In
the schemes described above, authorisation is pes-
simistic, i.e. it is assumed that all accesses are po-
tentially dangerous, and only those cases explicitly
authorised by the administrator are permitted.

An optimistic approach, is to assume that most ac-
cesses users will request will be legitimate, and any
access that does not fall in the dangerous category
should be granted. The actions are audited so that if
a system administrator later decides that an access
was unreasonable, they can take corrective action
to repair any damage. Because the scheme is opti-
mistic it assumes that such instances will be rare.
For example, in the situation above where a user
needed to edit the printer configuration file to fix
a problem, the system administrator should be able
to determine that under the circumstances, such ac-
tion was legitimate. In the case that a user acted
inappropriately in performing such an action, the
administrator can take steps to make sure that the
user is aware of their mistake, take punitive action,
or specifically disallow them that privilege in future.

In an optimistic system, it is the responsibility of
users to ensure that they are acting in accordance
with the organisations policy, and it is the respon-
sibility of system administrators to enforce the pol-
icy. The purpose of the access control system is
simply to prevent dangerous accesses, and to pro-
vide accountability and auditability of user actions.
This assumes that in general, users can be trusted
to behave appropriately, that the need for users to
execute questionable actions will only arise infre-
quently, and an administrator can recover from ac-
tions which damage the system integrity.

However, clearly such a mechanism is open to abuse
if no additional constraints are placed on the actions
which the user performs. If users are allowed open
slather on the system, then the potential for both
accidental and intentional misuse can cause serious
risks.

One way to ensure that integrity is maintained in
an optimistic system, is to ensure that any action
that the user performs can be rolled back or com-
pensated. This allows the system administrator to
decide after-the-fact that an action was unreason-
able and recover the system to a valid state. While,
the cost of recovery might be high, if the instances
requiring recovery are relatively infrequent, this cost
will be balanced by the increased empowerment of
users.

2.3 Summary

Balancing a security policy between the needs of
users, and a need to secure the system is a diffi-
cult task. Security administrators need to consider
not only the appropriate authorisations for the gen-
eral running of the system, but what is appropriate
in unforeseen circumstances. In addition, adminis-
trators may need to contend with an access control
system that is not sufficient to support complex au-
thorisation semantics, and need to consider how to
give controlled access to certain resources which ex-
ceed a user’s normal privileges.

While the Unix operating system currently provides
some limited support for the later, it provides no
optimistic method by which users can gain privileges
in unforeseen circumstances. Thus, a mechanism is
needed to provide better support for both legitimate
and questionable accesses for Unix users.

3 Formal Model

3.1 Clark-Wilson Integrity Model

In their seminal paper [5], Clark and Wilson argued
that unlike military systems whose main aim is to
prevent disclosure, the goal of commercial security
systems is to ensure that the integrity of data is
preserved. They define the concept of a well-formed
transaction as a transaction where the user is unable
manipulate data arbitrarily, but only in constrained
ways that preserve or ensure the integrity of the
data. A security system in which transactions are
well-formed ensures that only legitimate actions can
be executed.

Clark and Wilson’s paper presents a formal model
for data integrity which consists of a number of com-
ponents:

Constrained Data Items (CDIs) Objects that
the integrity model is applied to.

Unconstrained Data Items (UDIs) Objects
that are not covered by the integrity policy
(eg. information typed by the user on the
keyboard).

Integrity Verification Procedures (IVPs)
Procedures for verifying that CDIs conform to
the integrity policy.

Transformation Procedures (TPs) A proced-
ure which transforms a CDI from one valid
state to the other. This is the Clark-Wilson
concept of a well-formed transaction.

Clark and Wilson’s paper presented nine rules for
the enforcement of system integrity which are listed
in Figure 1.

Rule | Description

C1 IVPs must ensure that CDIs are valid
C2 TPs on CDIs must result in a valid CDI
C3 Separation of Privilege & least privilege
C4 TPs must be logged

C5 TPs on UDIs must result in a valid CDI
El Only certified TPs can operate on CDIs
E2 Users must only access CDIs through TPs
for which they are authorised

E3 Users must be authenticated

E4 Only administrator can specify TP autho-
risations (i.e. MAC)

Figure 1: Clark-Wilson Integrity Rules

The rules are divided into two types: certification
and enforcement. Both involve ensuring compliance
with the integrity policy. But certification involves
the evaluation of transactions by an administrator,
whereas enforcement is performed by the system.

Examination of the Clark-Wilson model, shows that
the nine rules seek to enforce four separate, but re-
lated security properties:

Integrity An assurance that CDIs can only be
modified in constrained ways to produce valid
CDIs. This property is ensured by the rules:
C1, C2, C5, E1 and E4.

Access control The ability to control access to re-
sources. This is supported by the rules: C3, E2
and E3.

Auditability The ability to ascertain the changes
made to CDIs and ensure that the system is in
a valid state. This is ensured by the rules C1
and C4. However, in the Clark-Wilson model,
log data is modelled as a CDI, which means the
rules for integrity also apply.

Accountability The ability to uniquely associate
users with their actions. This requires authen-
tication of such users which is enforced by rule
E3.

3.2 Partially-Formed Transactions

While well-formed transactions provide integrity as-
surances for legitimate actions, they do not allow for
the possibility of questionable actions. As indicated
in section 2.2, such actions require a relaxation of
some constraints, and a mechanism which allows re-
covery of the system, in the event of failure.

The concept of a partially-formed transaction[16]
can be used to describe transactions where the in-
tegrity of the data is not guaranteed, but where a
compensating transaction exists to return data to a
valid state. The transaction is said to be partially-
formed, as the integrity of the system is only guar-
anteed by the compensating transaction, and not by
constraining the actual action itself.

To support partially-formed transactions, a set of
rules is needed to describe how such transactions can
be constrained. Like those for well-formed transac-
tions, these rules must ensure the integrity, access
control, auditability and accountability of the trans-
action is maintained. These rules are summarised
below.

C1 IVPs must ensure that all CDIs are in a valid
state at the time the IVP is run.

C2 All TPs must be certified to provide a compen-
sating TP which will return any modified CDI
to a valid state.

E1 The system must ensure that only TPs which
have been certified against requirement C2 are
allowed to run.

E2 The system must ensure that users can only use
those TPs for which they have been authorised.

E3 The system must authenticate the identity of
each user.

E4 Each TP must write to an append-only log all
the information required to reconstruct the op-
eration, along with the corresponding compen-
sating TP to reverse it.

E5 Only an administrator is permitted to authorise
users to access TPs (Mandatory Access Con-
trol).

Rule C1 is needed (as in the Clark-Wilson model) to
determine whether or not a CDI is in a valid state in
order to satisfy the auditability requirement. Rule
C2 certifies that the TP corresponds to notion of a
partially-formed transaction. Rule E1 exists so that
only TPs which can be recovered from are allowed
to be executed, and rules E2 and E3 provide the ac-
countability and access control requirements. Rule
E4, which provides the accountability requirement,
is specified as an enforcement rule rather than a cer-
tification rule (contrary to the Clark-Wilson model).
This is needed, as it is not possible to model the log
as a CDI in the partially-formed transaction model
because recoverability relies on this logging infor-
mation to be kept secured.

3.3 Compensating actions

One issue is whether compensating actions them-
selves should be well-formed or partially-formed. If
they are well-formed, then they will consider the
data item being recovered to be a UDI which must
be converted to a CDI. Having compensating ac-
tions which are well-formed mean that the system
may always be rolled back to a valid state.

However, if compensating actions are only partially-
formed, this provides the ability to support undo-
redo semantics. It may be that the compensating
actions themselves are questionable, and a system
administrator may wish to undo the recovery. There
are benefits to both ideas, and as such the question
should be left open for the individual system de-
signer to decide.

3.4 Fit-for-purpose

Whether partially or well-formed transactions
should be used depends on the particular environ-
ment we are trying to secure. In the case of the
accounting or financial systems on which Clark and
Wilson’s model was based, the strong integrity as-
surance obtained by using well-formed transactions
are needed, as the benefits of providing an optimistic
access control system are outweighed by the risks of
fraud. However, in the case of highly collaborative

and time-critical environments (e.g. health care), it
may be more important to support the optimistic
system, and use the compensating transactions to
clean up the mess later.

In practice, it is likely that both types of transaction
will co-exist. Security administrators may wish to
enforce a general integrity policy using well-formed
transactions, but provide entry points for a subset
of partially-formed transactions to allow for unfore-
seen circumstances. Execution of partially-formed
transactions can then be carefully monitored to en-
sure that they are only used in appropriate circum-
stances.

Partially-formed transactions may also be useful in
the case where the integrity of a TP cannot be easily
certified, but the ability to reverse its effects on the
system can be. For example, an untrusted applica-
tion which is allowed write access to the filesystem
can be allowed to run as a partially-formed trans-
action providing the system is able to detect the
changes made to files and provide a way to reverse
them.

3.5 Summary

The Clark-Wilson integrity model provides a means
by which a system can be constrained to ensure that
only legitimate accesses can be executed. However,
for the reasons given in section 2, it appears that
there is a need to provide a controlled way for re-
laxing these restrictions to support user’s abilities
to perform their work. The notion of a partially-
formed transaction provides a mechanism by which
a system can seek to be optimistic about authorising
questionable user actions.

4 Design

It appears on even the most cursory examination
of the Unix operating system that it is incapable
of enforcing partially-formed transactions, and that
many standard Unix applications have not been cer-
tified to provide the logging requirement necessary
for well-formed transactions. In the following sec-
tions, the design and implementation of a prototype
is described which enforces these rules for the Unix
operating system.

In designing a secure mechanism for enforcing well-
formed and partially formed transactions, a number
of issues had to be considered:

Security This is the first and foremost requirement
for the system. The design must ensure that
the rules for well-formed and partially-formed
transactions are adhered to enforced, and that
the mechanism does not create any other vul-
nerabilities for the system. Standard good pro-
gramming practices, such as those described in
[9] and [4] need to be adhered to, and the pro-
totype should reflect basic, secure design prin-
ciples such as those described in [18].

Flexibility The system must provide an expressive
policy mechanism which enables administrators
to configure the mechanism for a range of ap-
plications.

Simplicity The design and implementation should
be as simple as possible to ensure that it can be
easily understood and evaluated. In addition,
any policy mechanism must be easy to use and
understand.

Extensibility The design should be modular and
easy to extend.

4.1 Reference Monitor

The design of the secure mechanism is based on the
reference monitor concept described in [21]. A refer-
ence monitor is “an abstract machine that mediates
all accesses to objects by subjects” [14]. Figure 2
shows how this reference monitor was implemented.

Security Policy

Access Request
e

Reference | Access Allowed
—»

Monitor

=
i<l
"
£
S
E
g
a

Access Denied

uoirewLIou| AeA0day

Figure 2: Reference Monitor

The reference monitor takes as input a security pol-
icy expressed in a high level language, and a particu-
lar action which is being performed. It first ensures
that the user is authenticated, then evaluates the
security policy to see whether the action complies.
If the action is accepted, then recovery information
may be stored to roll back the action at a later date.
If it is rejected, the access is aborted and an error
returned In either case, information about the ac-
cess may be appended to a log file. The security of
the reference monitor is critical as it will be solely
responsible for ensuring that the rules specified in
section 3 are enforced.

4.2 Logging and Recovery

Well-formed and partially-formed transactions re-
quire the accumulation of log information for audit
and recovery purposes. This log information must
be kept secured, and the implementation should
provide a mechanism by which the level of logging
and recovery can be specified. The implementation
should also provide a mechanism for sending alerts
for dangerous accesses, either by email or logging to
the system console.

4.3 Policy Language

Designing a system for enforcing both well-formed
and partially-formed transactions requires building
a mechanism which not only enforces the necessary
rules, but provides a rich way of expressing the pol-
icy mechanisms. As discussed in section 2, one of
the problems with the Unix operating system is that
its access control mechanism is too simplistic to cope
with complex access control policies, and therefore
some user actions may be classified as questionable
by the system, which would be declared legitimate
in a more flexible system.

The aim of the policy language is to be simple
yet flexible enough to support rich access control
paradigms such as Role-Based Access Control and
Domain and Type Enforcement (see sections 5.5.2
and 5.5.3).The policy language should also support
the grouping of related actions into tasks to pro-
vide a simple mechanism for specifying authorisa-
tions based on a number of finer grained actions.

In addition the policy language should be flexible
enough to support the addition of future actions or

constructs.

4.4 Types of actions supported

In the initial prototype, only control of filesystem
actions will be supported. While this is appropriate
for an initial proof-of-concept, in a robust system
other actions such as networking and interprocess
communication should be controlled. Actions on
which authorisations can be based should include
standard read, write and execute privileges, along
with append-only, delete, truncate, and changing of
file status information.

5 Implementation

5.1 Overview

tudo (Trusted User Do) is an application designed
to enforce both well-formed and partially-formed
transactions in a Unix operating system. It is based
on sudo[19], originally developed at SUNY-Buffalo
and since enhanced by numerous contributors. sudo
provides a way to give users restricted root access
by allowing them to execute certain programs with
superuser privileges. tudo builds on this idea to
support fine-grained access control of files and di-
rectories, and to provide the logging and recov-
ery features necessary to support well-formed and
partially-formed transactions. Despite being based
on sudo, tudo has been written completely from
scratch to provide these features.

tudo has been implemented on the Solaris operating
system, although it has been designed to be portable
to other Unix variants. The approach used to pro-
vide a reference monitor is similar to that taken in
Janus (an environment for untrusted applications)
[11]. tudo uses the system call tracing facilities pro-
vided by the /proc filesystem in the Solaris oper-
ating system to trap access to certain system calls
and ensure that this access complies with the spec-
ified security policy. tudo forks a child to perform
the requested action, and traces this process and its
descendants to ensure they comply with the policy.
Unlike Janus however, tudo allows recovery from
certain actions by logging information to enable re-
covery in the case of failures.

tudo runs as a setuid root application. Actions are
invoked, either by specifying command line argu-
ments to execute, or giving a task or role the user
wishes to perform (see below for a more detailed
explanation of these constructs). When tudo is
started, it first prompts the user for their password
and then checks to see if the requested action is au-
thorised. For example, a user wishing to edit the
line printer configuration file might invoke:

$ tudo vi /etc/lpd.conf
Password:

"/etc/lpd.conf" 99 lines, 2946 characters

Then restart the printer daemon using the lpc
restart command (a normal setuid application).

tudo also provides the ability to group a number
of related actions together in a task. Tasks pro-
vide controlled entry points to privileges, as the task
can specify that a specific command and arguments
must be run. Tasks can also include other tasks to
enable new authorisations to be constructed from
smaller building blocks. For example, an adminis-
trator might construct a reboot task to allow users
to reboot the system. Authorised users could then
invoke the shutdown by referring to the task rather
than the command line arguments: e.g

$ tudo -t reboot
Password:

Shutdown started. Thursday March 4 19:30...

Tasks can also be dynamically invoked, when tudo
executes a command for which a particular task is
defined. When a task is dynamically invoked, it is
run with the privileges specified for the task, rather
than those specified for the user.

Lastly, tudo provides the ability to specify roles to
associate principals and authorisations. A role in-
cludes alist of the tasks and authorisation rules spe-
cific to that role, along with a list of users, groups,
and other rules which may assume it. A user may
invoke a shell as a given role using the -r flag to
tudo. For example, a role might be created to al-
low its members to remove temporary files if the
filesystem is filling up.

$ tudo -r SpaceCleaner
Password:

find . -name core -print | xargs rm
find /home -name ’*~’ -print | xargs rm
rm -rf /home/*/.netscape/cache/

5.2 Access Control

When a system call trap occurs, tudo consults its
list of access rules to determine if the access is al-
lowed. If it is, tudo does any necessary log and re-
covery processing and tells the process to continue
executing. If the action is not allowed, the process
is directed to abort which causes the system call to
be interrupted with an EINTR errno. Because some
applications attempt to retry system calls which fail
with this error, tudo supports a feature from the
Janus system which detects a number of failed sys-
tem calls with the same parameters and then kills
the process.

Because a possible race condition may exist, tudo
also checks the result of the system call in some
circumstances (e.g. opening a file), to ensure that
the state of the object being accessed hasn’t changed
between the access control decision and execution
of the system call. If tudo finds that the object has
changed, it immediately kills the process by sending
it a SIGKILL signal and sends a message to the
log. tudo also checks the result of system calls when
recovery and logging is turned on to determine if the
action was successful or not.

5.3 Secure Logical Partition

Because the integrity of the configuration, log and
recovery information is crucial to the security of
the system, tudo maintains a secure logical parti-
tion where these files are kept. This is a logically
separate portion of the filespace which has been set
aside specifically for that purpose. Access to the
secure partition is automatically denied by implicit
rules unless the user has specific authorisation as a
tudo administrator.

5.4 Recovery

tudo provides a very simple recovery feature which
allows certain modifications to the file system to be
rolled back. tudo allows the administrator to spec-
ify whether or not certain actions can be rolled back,
and can specify what the default policy is for par-
ticular tasks, roles or for all users. tudo only allows
recovery from an entire session (i.e. the effect on the
system from when tudo is invoked to when the last
child it is tracing exits). This simplifies the process
of recovery, as tudo does not need to worry about
serialising the order of events which occur within the
session!. tudo compares the states of accessed files
and directories at the start and end of a unit of work
and logs enough information to reverse any changes
made. tudo provides utilities to examine the event
log, and roll back individual actions. Rollback in
tudo is implemented in the following manner:

e When an open() system call is invoked, tudo
first checks to see if the access is allowed (de-
pending on the flags). If the argument to
open() is a regular file or a directory, and is be-
ing modified, tudo then makes a backup copy
of the file on the secure partition. When the
session completes, tudo creates a context diff
of the modified file using the diff command.
This context diff can then later be used as input
to the patch command to restore the file. In
the case that the modified file is a binary file,
the original backup is kept. In either case, if
tudo detects that the file has not changed then
it logs this fact and removes the backup copy.

o A creat() system call, or an open() with
0_CREAT which creates a new file is rolled back
by deleting the created file.

e A rename() call is rolled back by changing the
old filename back to the new filename.

e When a chmod (), chgrp() or chown() is per-
formed on a file or directory, tudo first calls
stat () on the file and saves the old file permis-
sion/ownership information. Rollback is per-
formed by restoring the permissions to their
original state.

e When a file is deleted using the unlink () call,
tudo makes a copy of the file on the secure par-

I However the issue of serialising the order of multiple tudo
sessions is not considered (see section 6.4.1

tition. However, often administrative task in-
volve removal of large amounts of unnecessary
files (e.g. rm /tmp/*), so setting a recovery op-
tion for removals can result in a large amount
of diskspace being consumed. For this reason,
recovery of unlinked files should be avoided.
Where possible, administrators should rely on
backups to provide recovery for removed files.
It should be noted that tudo will not backup
the file if there is a hard link to the file some-
where else on the filesystem, but instead logs
the inode of the link.

If a tudo session exits unexpectedly without clean-
ing up the recovery information this will be detected
the next time tudo is invoked, and steps will be
taken to clean up the session.

A recovery action runs as a normal tudo action,
so this also provides redo semantics. However, it
should be noted that users will not always have the
necessary privileges to rollback an action, so this
may have to be performed by an administrator.

5.5 TUPL

5.5.1 Overview

tudo uses a simple language called TUPL (Trusted
User Policy Language) to express access control
policies. TUPL supports several constructs which
allow the easy expression of policies to support well-
formed and partially-formed transactions. TUPL
allows the administrator to define access rules which
associate a collection of users, groups or roles with
an action. These rules take the form:

allow <action> <args> [by <principal>]
[|l[|| options ||] n]

deny <action> <args> [by <principal>]
[|l[|| options Il] "]

The principal may specify a user, a group or a
role, or a list of these. An <action> may be a list
of tasks, predefined actions or the special action any,
which means that the access applies to any action.
Figure 5.5.1 lists the predefined actions which are
valid. The design of the policy module is such that
more actions can be easily added.

Target | Actions

files read, write, modify, append,
create, trunc, rm, exec,
rename, link, chmod, chown,
chgrp

dirs 1ls, chdir, rmdir, chgrp,
chown, chmod

In addition, TUPL allows a number of constructs to
be specified which can be combined with the access
rules to implement more complex policies. TUPL
supports the following constructs:

type Specifies a class of objects for which particu-
lar rules can be enforced. Currently only the
file and dir classes are supported, although
the policy module is designed so that new class
types can be added. e.g. all files in the CVS
directory owned by the engineering or research
group can be specified using;:

type project_code {
class: file;
path: "/usr/local/cvs/x";
owner: (engineering, research);

task Identifies a particular task type which might
be allowed, and the actions which should be
allowed to be performed when executing that
task. The task has an optional field command.
When tudo is executed with the -t option, and
a task is specified, the command and arguments
in this field will be executed, or in the case that
none is present, tudo will fork a shell. If a
task is not specified in this way, then it may
be dynamically invoked when tudo encounters
a request to execute a program which matches
the command field. e.g. a task which allows
users to edit the line printer configuration files
can be specified using the following construct:

task edit_lpd_conf {
command: "vi /etc/lpd.conf";
description: "Edit 1lpd.conf";
rules: {
//Allow user to run vi
allow exec "/bin/vi";

//Allow vi to open shared libs
//Assumes 1ib_path_type already

//defined
allow read lib_path_type [log=0];

//Allow read/write on tmp files
allow all "/var/tmp/*" [log=0,
recover=no] ;

//Allow read/write on lpd.conf
allow (read, write)
"/etc/lpd.conf"
[log=3, recover=yes];

//Deny everything else
deny all;
s
}

Authorisations specified in subtasks override
authorisations in the parent task for the period
of time which that sub-task is executing.

tudo tasks are similar to the process-specific file
protection provided in the TRON system[3]. In
TRON, system call wrappers are used to pro-
vide a protection domain in which normal pro-
cesses can run with restricted privileges. Like
TRON, tudo allows rights to be specified on a
per process basis (as identified by the program
and arguments used to create that process), but
also provides the capability to roll back actions.

role A list of users and groups along with their ac-

cess privileges. e.g. The role “SpaceClearer”
which comprises the engineering and admin
group and are allowed to delete “junk” files to
clean up space can be specified as:

type junk_files {
class: file;
path: ("/home/*/core",
"/home/*/*"",
"/home/*/ .netscape/cache",
"/home/*/.netscape/cache/*") ;

};

role SpaceClearer {
members: (engineering, admin);
rules: {
allow search "/home/x*";
allow rm junk_files;
allow exec ("/bin/find",
"/bin/xargs",
"/bin/rm") ;

//Everything else is disallowed

deny all;
}
I

5.5.2 Role-Based Access control

RBAC is an access control paradigm in which ac-
cess decisions are based on the functions a user is
allowed to perform within an organisation, rather
than “data ownership” [7]. RBAC is supported in
TUPL by allowing the administrator to define roles
using the role construct. A role can include users,
groups or other roles as members. Each role spec-
ifies the access control rules associated with it. In
addition, other access control rules can be defined
to apply to roles. TUPL does not however, support
conditional membership rules, and roles are not dy-
namically invoked. A user must specify which role
they are adopting when invoking a tudo session.

5.5.3 Domain and Type Enforcement

Domain and Type Enforcement (DTE) allows ob-
jects and subjects in the system to be typed, and
authorisations to depend on these types [1]. Sub-
jects perform actions in domains, and the DTE sys-
tem provides rules for how transitions to new do-
mains can occur. DTE is supported in TUPL using
the type, and task constructs. In TUPL, the con-
cept of a task roughly equates to a DTE domain,
and the type constructs equate to a DTE type. By
allowing tasks and sub-tasks to be dynamically in-
voked, TUPL supports a limited way of constraining
transitions between domains. However, this is not
as flexible as that supported in other DTE mecha-
nisms (e.g. [1]).

6 Evaluation

In order to determine the usefulness of the tudo
utility, it must be evaluated to determine how well
it meets the design criteria in section 4. In par-
ticular, it must enforce well-formed and partially-
formed transactions in accordance with the models
presented.

6.1 Enforcement of well-formed tran-
sactions

Providing well-formed transactions requires the en-
forcement of the four rules described by Clark and
Wilson.

e E1 — Ouly certified TPs can operate on CDIs

In order to perform an action it must be specifi-
cally authorised in the policy file. Because only
certified actions are assumed to be authorised,
this meets the requirement for rule E1.

e E2 — Users must be authorised

This rule is also enforced by the policy mecha-
nism.

e E3 — Users must be authenticated

This rule is enforced by requiring the user to
enter their password in order to perform an ac-
tion.

e F4 — Only administrator can specify TP autho-
risations (i.e. MAC)

tudo provides a specially administrator privi-
lege which is required to edit the policy file to
ensure this rule is enforced.

6.2 Enforcement of partially-formed
transactions

Enforcement of partially-formed transactions re-
quires that the system observe the five enforcement
rules described in [16].

e E1 — The system must ensure that only TPs
which have been recoverable can be run

This rule is enforced for all actions where the
recover=yes option is set. If recover=yes is set
for an option which is not recoverable, that ac-
tion will fail (this can happen for example when
using the rule allow all [recover=yes].

e E2 — Users must be authorised

This is enforced by the policy mechanism.

e E3 — Users must be authenticated

This is enforced by requiring a user to enter
their password in order to perform an action.

¢ E4 — Transactions must be logged

This is enforced by the logging mechanism in
tudo.

e E4 - Only administrator can specify TP autho-
risations (i.e. MAC)

tudo provides a specially administrator privi-
lege which is required to edit the policy file to
ensure this rule is enforced.

6.3 Security

One of the most important lessons learned in im-
plementing tudo is that the principal of least priv-
ilege is sagely advice. Implementing an optimistic
system which relaxes this requirement raises many
challenges. These issues are discussed below.

6.3.1 Programming practices

tudo has been implemented using good program-
ming practices to ensure that running it as a setuid
application does not open up any security vulnera-
bilities. In particular tudo ensures that all system
call returns are checked, and that only “safe” ver-
sion of library functions for reading and manipulat-
ing user input are used. In addition, tudo sanitises
environment variables by setting them to safe val-
ues.

6.3.2 Self protection measures

It should be noted that the enforcement mechanism
that tudo uses is rather fragile. If a user can find a
way to kill the tracing process without killing the
programs it is tracing, then they will be able to
perform actions without being subject to the access
control mechanism. To help prevent this, tudo sets
the kill-on-last-close flag for each process it traces,
so that if tudo exits for some reason, all traced pro-
cesses will be automatically killed with a SIGKILL
signal. In addition, tudo disassociates itself from its
parent process group to ensure that killing parent
processes does not kill tudo. Finally, tudo contains
an implicit rule which prevents any traced appli-
cation from sending a SIGKILL signal to any tudo
process, or from opening any file in a tudo processes
/proc filespace for write access.

6.3.3 Race conditions

As discussed in section 5.2, a potential race condi-
tion exists between checking the authorisation and
allowing the system call to proceed. tudo protects
against this by checking the status of some objects
after the system call has completed and killing the
process if they do not match expectations.

6.3.4 Handling a full secure logical partition

tudo has a hardcoded high watermark on the ca-
pacity of the logical partition, and will abort a ses-
sion and roll back the intermediate states once this
high watermark is exceeded. This stops a user who
might have write permission to the physical volume
on which the secure logical partition is stored from
filling up the disk in order to prevent tudo from
logging information. Once the high watermark is
exceeded, tudo requires that log state be cleaned
up to below a low watermark before any more ac-
tivity is allowed (with one exception - to allow the
administrator to specify tudo tasks which cycle the
logs etc, tudo will allow those actions/task with the
option cleanup=yes set to operate while the high
watermark has exceeded).

6.3.5 Handling symbolic and hard links

Handling of filesystem links is somewhat complex
in tudo. Because file authorisations are done on the
basis of filename patterns, it could be possible for a
user to create a symbolic link to a restricted file in an
unrestricted filespace. For this reason, tudo always
applies access restrictions on the real filename for
symbolic links.

A more complex situation occurs for hard links
where two different files share the same inode on the
same filesystem. It is difficult for tudo to determine
the names of all files linked to a given inode without
performing a scan of the raw disk device. For this
reason, tudo allows accesses on files with multiple
hard links to occur, but logs a warning message to
indicate that the access is potentially suspicious.

6.3.6 Constraining non-syscall access

The Unix operating system provides other ways
to manipulate the system other than system calls.
Pseudo files such as /dev/kmem, /dev/mem, /proc
and the the raw disk device files can provide ways
for users to bypass the security mechanisms pro-
vided by tudo. Again, because such accesses can be
legitimate, the administrator must explicitly deny
users access to such files through a rule such as:

deny all ("/dev/x", "/proc/*");

6.4 Limitations

There are some limitations with the tudo proto-
type. Using the system tracing facility of the /proc
filesystem means that a file descriptor must be open
for every process being traced. If a large number of
processes are being executed (for example in a shell
script), tudo may be unable to complete the task.

In addition, determining the privileges necessary to
complete a particular task can be time-consuming
and difficult. An administrator can simplify the pro-
cess by creating a task with a command entry point
and authorising all actions for that command, but
this creates problems if the command is not entirely
trusted. Often an administrator will need to use a
system call tracing facility such as strace or truss
to determine what accesses an application needs.

A further limitation is that tudo does not provide
the ability for administrators to specify how actions
should be rolled back. Currently, recovery is im-
plemented by tracking changes to modified files and
reverse applying the changes. However, there may
be some higher level semantics which require such
actions to be compensated in a different way.

6.4.1 Lack of transactional semantics for
tudo actions

Perhaps the biggest limitation of tudo is that it does
not provide full transactional semantics (i.e. ACID
properties) for actions, and as such it is possible
for programs to either see or modify intermediate
states. This arises for two reasons:

1. tudo itself does not perform any isolation or
concurrency control of tudo sessions, and as
such two tudo sessions running at the same
time may create conflicts.

2. Users may perform other operations without
using tudo, but which either read or write ob-
jects accessed in tudo sessions. As these actions
are neither logged nor recoverable, a user can
use their tudo privileges to engage in seemingly
legitimate behaviour, but can run a simultane-
ous session which exploits insecure intermediate
states.

This problem is indicative of the lack of transac-
tional semantics in Unix in general. Because the
security of both well-formed and partially-formed
transactions are based on the assumption of atomic
and isolated actions, this short-coming is problem-
atic for tudo, and can lead to situations in which
privileged access can bypass the reference monitor.

Of the two reasons given above, the second case is
perhaps the most difficult for an optimistic system.
Recall that for partially-formed transactions, con-
sistency is only guaranteed by the existence of a
compensating mechanism which can be used to re-
cover the system to a valid state. If we compare this
situation to a traditional database system, we see
that the commit phase is analogous to a system ad-
ministrator reading a tudo log, and judging whether
an action should be accepted or rolled back. How-
ever, because tudo exposes the intermediate state,
it may be the case that either rolling back will not
undo all the damage that has been done, or that the
administrator will be unaware that a conflict exists.

A simple example which illustrates this problem is
when a user creates a setuid executable, or down-
grades the file permissions on an important file
(/etc/passwd for example) using tudo. While tudo
can roll back these actions, the system administra-
tor can never be sure what the user did while these
backdoor holes were in place. The user might le-
gitimately argue that the permission change was an
accident and that there was no malicious intent.

The solutions to the first problem are relatively
straight forward applications of traditional concur-
rency control. tudo could implement its own opti-
mistic timestamping mechanism and use its existing
rollback mechanism to cope with conflicts. How-
ever, while the solutions to the second problem are
simple in theory, they are pragmatically less desir-

able. One approach would be to require that all
users run tudo as their default shell so that all ac-
tions are logged and recoverable. This doesn’t close
all the holes (e.g. setuid programs which are able to
leverage root privilege to work around tudo’s con-
trols as described above are still a problem, and a
user might still be able to rewrite their shell in the
password file), nevertheless, it does improve the sit-
uation. However, users may be unwilling to pay the
inevitable performance penalty which comes with
tudo for resource/CPU intensive applications. An-
other approach which is maybe more palatable from
this aspect, but at the cost of reducing the flexibil-
ity of the mechanism, is to write rules into tudo to
ensure that no object can have its privileges down-
graded and no principal can have their privileges
upgraded ezcept during a given tudo session. This
would mean any changes to a file’s permissions for
example, would have to be undone before a tudo
session exited, otherwise the entire session would be
aborted and the actions would be rolled back.

6.5 Other uses

This paper has described the use of tudo to en-
force well-formed and partially-formed transactions.
However, tudo can also be used for other pur-
poses. tudo can also provide a sandbox for un-
trusted applications such as that provided by the
Janus environment[11]. In addition, tudo could
also be used to run setuid shell scripts, similar to
super|[20].

7 Related Work

In [5], Clark and Wilson compare their integrity
model to others based on the Bell and LaPadula se-
crecy model [2]. Because partially-formed transac-
tions are closely related to well-formed transactions,
much of this discussion also applies to them.

Foley[8] examines various integrity models (includ-
ing Clark-Wilson) and argues that these models
are limited in the sense that they only consider in-
tegrity in an operational /implementation sense. Fo-
ley presents a formal model in which integrity is
considered as just one attribute of a dependable sys-
tem. He shows that dependability can be seen as a
form of refinement, in which the system can imple-

ment top-level requirements in the presence of fail-
ures, and demonstrates how this model can be used
to describe concepts such as separation of duties,
and assured pipelines as implementation techniques
for achieving integrity. Because partially-formed
transactions are simply another such implementa-
tion technique, they could be easily modelled using
Foley’s scheme.

As discussed, Goldberg et al [11] describe an envi-
ronment similar to tudo which is used to provide
a sandboz for untrusted helper applications. While
their design approach is similar to that taken by
tudo, Janus differs in the fact that it does not pro-
vide the logging and recovery features which are cen-
tral to tudo’s architecture.

Numerous access control systems have been imple-
mented to augment Unix’s simple system, some of
which are discussed in [11]. Notable works include:
[3, 1, 6]. These systems are primarily aimed at pro-
viding richer access control semantics for Unix, and
do not provide the recovery features necessary to im-
plement partially-formed transactions. These sys-
tems have also been implemented using kernel mod-
ifications, or as system call wrappers which would
seem to be a less flexible (although possibly more
performant) mechanism than is used for tudo.

Recovery has been well studied in the area of concur-
rency control and transaction processing. Ramam-
ritham and Panos [17] give an excellent overview of
the state of the art in this area. Partially-formed
transactions are similar to sagas[10], as they are
long running, and consist of a number of indepen-
dent component transactions. Like partially-formed
transactions, compensating actions are used in sagas
to maintain consistency. Partially-formed transac-
tion also have something in common with transac-
tional workflows, where a desire to relax the ACID
properties of a transaction mean that system fail-
ures must be dealt with using compensating trans-
actions [13]. It would be useful to investigate the
techniques used in these more exotic transactional
systems to see how they might improve some of the
limitations with the tudo prototype.

8 Future Work

This paper has focussed on the issues of how to pro-
vide both pessimistic and optimistic access control

using well-formed and partially-formed transactions
in a Unix environment. However it would be useful
to extend this work by looking at how different au-
thorisation models such as n of m threshold schemes
might help to minimise the risks of misuse by requir-
ing more than one person to request a questionable
action before it is authorised.

Implementing rollback for network and interprocess
communications is another interesting problem, as
compensating transactions in this case are not clear
cut. Some investigation of how to recover from
such actions would help to extend the concept of
partially-formed transactions to these domains.

Finally, performance issues in the tudo prototype
should be addressed. These are particularly prob-
lematic in the case of modifying very large binary
files, as tudo currently needs to take a full copy of
these files each time they are opened for write. It
would also be useful to see how tudo could work
with a log-type filesystem where the ability to roll
back changes is supported by the filesystem, rather
than as an add on using tudo.

9 Summary

This paper has motivated the need for a mecha-
nism to allow users to not only perform legitimate
actions, but to allow for cases in which certain ques-
tionable actions should be authorised. It describes
an optimistic access control mechanism which seeks
to maintain the integrity of transactions by provid-
ing a mechanism which allows actions to be rolled
back to a valid state. The concept of partially-
formed transactions has been formally described,
and the paper shows how such transactions can be
used to enforce the security properties of integrity,
access control, audibility and accountability for an
optimistic system.

A proof-of-concept prototype has been designed and
implemented for the Solaris operating systems. It
demonstrates how a reference monitor can be con-
structed using the system call tracing facilities of the
/proc filesystem which enforces both well-formed
and partially-formed transactions. Security features
and limitations of the prototype are discussed, and
future directions are discussed for this research.

10 Acknowledgements

The work reported in this paper has been funded in
part by the Co-operative Research Centre Program
through the Department of the Prime Minister and
Cabinet of Australia.

11 Availability

The tudo prototype is available from

http:/ /security.dstc.edu.au/projects/tudo/

References

[1] Lee Badger, Daniel F. Sterne, David L. Sher-
man, Kenneth M. Walker, and Sheila A. Haghi-
hat. Practical domain and type enforcement for
UNIX. In Proceedings of the 1995 IEEE Sym-
posium on Security and Privacy, pages 6677,
1995.

[2] D. E. Bell and L.J. LaPadula. Secure com-
puter systems. Technical Report ESD-TR-73-
278 (Vol I-III) (also Mitre TR-2547), Mitre
Corporation, Bedford, MA, April 1974.

[3] Andrew Berman, Virgil Bourassa, and Erik Sel-
berg. TRON: Process-specific file protection
for the UNIX operating system. In Proceedings
of the 1995 USENIX Winter Technical Confer-
ence, pages 165-175, 1995.

[4] M. Bishop. Unix security: Security in pro-
gramming. SANS’96. Washington DC, May
1996. URL: http://seclab.cs.ucdavis.edu/-
bishop/secprog.html.

[5] David D. Clark and David R. Wilson. A com-
parison of commercial and military security
policies. In 1987 IEEE Symposium on Secu-
rity and Privacy, pages 184-194, Oakland, CA,
April 1987.

[6] G.Fernandez and L. Allen. Extending the Unix
protection model with access control lists. In
Proceedings of the Summer 1998 USENIX Con-
ference, pages 119-132, 1988.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

David Ferraiolo and Richard Kuhn. Role-based
access control. In Proceedings of the 15th Na-
tional Computer Security Conference, 1992.

Simon N. Foley. Evaluating system integrity.
In New Security Paradigms Workshop. ACM
press, 1998.

Peter Galvin. The

gramming faq -

Unix secure pro-
tips on security design
principles, programming methods and
testing. Sunworld, August 1998. URL:
http://www.sunworld.com /swol-08-1998 /swol-
08-security.html.

H. Garcia-Molina and K. Salem. Sagas. In Pro-
ceedings of the ACM SIGMOD International
Conference on the Management of Data, pages
249-259, New York, NY, 1987. ACM press.

Tan Goldberg, David Wagner, Randi Thomas,
and Eric A. Brewer. A secure environment
for untrusted helper applications — confining
the wily hacker. In Proceedings of the Sixth
USENIX Security Symposium, San Jose, Cali-
fornia, July 1996.

John D. Howard. An Analysis Of Security Inci-
dents On The Internet:1989 - 1995. PhD thesis,
Carnegie Mellon University, April 1997. URL:
http://www.cert.org/research/JHThesis/Start-
html.

Dean Kuo, Michael Lawley, Chengfei Liu, and
Maria Orlowska. A model for transactional
workflows. Australian Computer Science Com-
munications, 18(2):139-146, 1996.

Dennis Longley, Michael Shain, and William
Caelli. Information Security — Dictionary of
concepts, standards and terms. Macmillan,
1992.

Peter G. Neumann. Computer related risks.

Addison-Wesley, 1995.

Dean Povey. Optimistic security: A new access
control paradigm. In Proceedings of the 1999
New Security Paradigms Workshop, September
1999. to appear.

Krithi Ramamritham and Panos K. Chrysan-
this. FEzecutive Briefing: Advances in Con-
currency Control and Transaction Processing.
IEEE Computer Society Press, Los Alamitos,
CA, 1997.

[18]

[19]
[20]

[21]

Jerome H. Saltzer and Michael D. Schroeder.
The protection of information in computer sys-
tems. Proceedings of the IEEE, 63(9):1278-
1308, September 1975.

sudo. URL: ftp://ftp.courtesan.com/pub/sudo.

super. URL:

ftp:/ /ftp.ucolick.org/pub/users/will/.

Department of Defense Trusted Computer Sys-
tem FEwvaluation Criteria. Department of De-
fense Computer Security Center, Fort Meade,
MD, August 1983.

