
The following paper was originally published in the

Proceedings of the 8th USENIX Security Symposium
Washington, D.C., USA, August 23–26, 1999

T H E D E S I G N O F A C R Y P T O G R A P H I C
S E C U R I T Y A R C H I T E C T U R E

Peter Gutmann

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

The Design of a Cryptographic Security Architecture

Peter Gutmann
University of Auckland, Auckland, New Zealand

pgut001@cs.auckland.ac.nz

Abstract
Traditional security toolkits have concentrated mostly
on defining a programming interface (API) and left the
internals up to individual implementors. This paper
presents a design for a portable, flexible security
architecture based on traditional computer security
models involving a security kernel which controls
access to security-relevant objects and attributes based
on a configurable security policy. Layered on top of the
kernel are various objects which abstract core
functionality such as encryption and digital signature
capabilities, certificate management, and secure
sessions and data enveloping (email encryption) in a
manner which allows them to be easily moved into
cryptographic devices such as smart cards and crypto
accelerators for extra performance or security. The
versatility of the design has been proven through its use
in implementations ranging from from 16-bit
microcontrollers through to supercomputers, as well as
a number of unusual areas such as security modules in
ATM’s.

1. Introduction
Traditionally, security toolkits have been implemented
using a “collection of functions” design in which each
encryption capability is wrapped up in its own set of
functions. For example there might be a “load a DES
key” function, an “encrypt with DES in CBC mode”
function, a “decrypt with DES in CFB mode” function,
and so on [1][2]. More sophisticated toolkits hide the
plethora of algorithm-specific functions under a single
set of umbrella interface functions with often complex
algorithm-selection criteria, in some cases requiring the
setting of up to a dozen parameters to select the mode
of operation [3][4][5][6]. Either approach requires that
developers tightly couple the application to the
underlying encryption implementation, requiring a high
degree of cryptographic awareness from developers and
forcing each new algorithm and application to be
treated as a distinct development.

Alternative approaches concentrate on providing
functionality for a particular type of service such as
authentication, integrity, or confidentiality. An example
of this type of design is the GSS-API [7], which is
session-oriented and is used to control session-style
communications with other entities (an example

implementation consists of a set of GSS-API wrapper
functions for Kerberos), the OSF DCE security API [8],
which is based around ACL’s and secure RPC, and the
SESAME API [9] which is based around a Kerberos
derivative with various enhancements such as X.509
certificate support. This type of design typically
includes features specific to the required functionality,
in the case of the session-oriented interfaces mentioned
above this is the security context which contains details
of a relationship between peers based on credentials
established between the peers. A non-session-based
variant is the IDUP-GSS-API [10], which attempts to
stretch the GSS-API to cover store-and-forward use
(this would typically be used for a service such as email
protection).

Both of these approaches represent an outside-in
approach which begins with a particular programming
interface and then bolts on whatever is required to
implement the functionality in the interface. This paper
presents an alternative inside-out design which takes a
general crypto/security architecture and then wraps a
language-independent interface around it to make
particular portions of the architecture available to the
user. In this case it is important to distinguish between
the architecture and the API used to interface to it —
with most approaches the API is the architecture,
whereas the approach presented in this paper
concentrates on the internal architecture only. Apart
from the very generic APKI requirements [11], only
CDSA [12] appears to provide a general architecture
design, and even this is presented at a rather abstract
level and defined mostly in terms of the API used to
access it.

In contrast to these approaches, the design presented in
this paper begins by defining the general requirements
for an object model upon which to build the
architecture, which is used to encapsulate various types
of functionality such as encryption and certificate
management. The first portion of the paper presents the
overall design goals for the architecture, as well as the
details of each object class. Since the entire
architecture has very stringent security requirements,
the object model requires an underlying security kernel
capable of supporting it, one which includes a means of
mediating access to objects, controlling the way this
access is performed (for example the manner in which

object attributes may be manipulated), and ensuring
strict isolation of objects (that is, ensuring that one
object can’t influence the operation of another object in
an uncontrolled manner). The security aspects of the
architecture are covered in the second part of the paper.

2. Architecture Design Goals
An earlier work [13] gives the design requirements for a
general-purpose API, including algorithm, application,
and cryptomodule independence, safe programming
(protection against programmer mistakes), a security
perimeter to prevent sensitive data from leaking out into
untrusted applications, and legacy support. Most of
these requirements are pure API issues and won’t be
covered in any more detail here. The architecture
presented here is built on the following design
principles:

• Independent objects. Each object is responsible for
managing its own resource requirements such as
memory allocation and use of other required
objects, and the interface to other objects is
handled in an object-independent manner. For
example a signature object would know that it is
associated with a hash object, but wouldn’t need to
know any details of it’s implementation such as
function names or parameters in order to
communicate with it. In addition each object has
associated with it various security properties such
as mandatory and discretionary ACL’s, some of
which are controlled for the object by the
architectures security kernel and some object-
specific properties which are controlled by the
object itself.

• Intelligent objects. The architecture should know
what to do with data and control information
passed to objects, including the ability to hand it
off to other objects where required. For example if
a certificate object (which contains only certificate-
related attributes but has no inherent encryption or
signature capabilities) is asked to verify a signature
using the key contained in the certificate, the
architecture will hand the task off to the
appropriate signature checking object without the
user having to be aware that this is occurring. This
leads to a very natural interface in which the user
knows an object will Do The Right Thing with any
data or control information sent to it, without
requiring it to be accessed or used in a particular
manner.

• Platform-independent design. The entire
architecture should be easily portable to a wide
variety of hardware types and operating systems

without any significant loss of functionality. A
counterexample to this design requirement is
CryptoAPI 2.x [14], which is so heavily tied into
features of the very newest versions of Win32 that
it would be almost impossible to move to other
platforms. In contrast the architecture described
here was designed from the outset to be extremely
portable and has been implemented on everything
from 16-bit microcontrollers with no filesystem or
I/O capabilities through to supercomputers, as well
as unconventional designs like multiprocessor
Tandem machines and IBM VM/ESA mainframes.

• Full isolation of architecture internals from external
code. The architecture internals are fully
decoupled from access by external code, so that the
implementation may reside in its own address space
(or even physically separate hardware) without the
user being aware of this. The reason for this
requirement is that it very clearly defines the
boundaries of the architecture’s trusted computing
base (TCB), allowing the architecture to be defined
and analysed in terms of traditional computer
security models.

• Layered design. The architecture represents a true
object-based multilayer design, with each layer of
functionality built on its predecessor. The purpose
of each layer is to provide certain services to the
layer above it, shielding that layer from the details
of how the service is actually implemented.
Between each layer is an interface which allows
data and control information to pass across in a
controlled manner. In this way each layer provides
a set of well-defined and understood functions
which both minimise the amount of information
which flows from one layer to another, and makes
it easy to replace the implementation of one layer
with a completely different implementation (for
example migrating a software implementation into
secure hardware), because all that a new layer
implementation requires is that it offer the same
service interface as the one it replaces.

In addition to the layer-based separation, the
architecture separates individual objects within the layer
into discrete, self-contained objects which are
independent of other objects both within their layer and
in other layers. For example in the lowest layer the
basic objects typically represent an instantiation of a
single encryption, digital signature, key exchange, hash,
or MAC algorithm. Each object can represent a
software implementation, a hardware implementation, a
hybrid of the two, or some other implementation.

3. The Object Model
The architecture implements two types of objects,
container objects and action objects. A container object
is an object which contains one or more items such as
data, keys, certificates, security state information, and
security attributes. The container types can be broken
down roughly into three types, data containers (referred
to as envelope or session objects), key and certificate
containers (keyset objects), and security attribute
containers (certificate objects). An action object is an
object which is used to perform an action such as
encrypting, hashing, or signing data (referred to as an
encryption context). Action objects are fairly simple
and encapsulate the functionality of a security algorithm
such as DES or RSA, these function mainly as building
blocks used by the more complex object types. In
addition to these standard object types, there is also a
device object type which constitutes a meta-object used
to work with external encryption devices such as smart
cards or Fortezza cards which may require extra
functions such as activation with a user PIN before they
can be used. Once they’re initialised as required, they
can be used like any of the other object types whose
functionality they provide, for example an RSA action
object could be created through the device object for a
smart card with RSA capabilities, or a certificate object
could be stored in a device object for a Fortezza card as
if it were a keyset.

The implementation of each object is completely hidden
from the user, so that the only way they can access the
object is by sending information to it across a carefully-
controlled channel. Figure 1 illustrates how three low-
level action objects (implementing DES, SHA-1, and
RSA) would be handled. The object handles are small
integer values, unrelated to the object itself, which are
used to pass control information and data to and from
the object. Since each object is referred to through an
abstract handle, the interface to the object is a message-
based one in which messages are sent to and received
from the object. Although the external programming
interface can be implemented to look like the traditional
“collection of functions” one, this is simply the
message-passing interface wrapped up to look like a
more traditional functional interface.

Figure 1. Typical low-level objects

Container objects generally contain other objects (as
well as data and attributes) within them. For example
each certificate object has an (internal) public or private
key context attached to it as shown in Figure 2.

Figure 2. Object with dependent object

This encryption context can’t be directly accessed by
the user, but can be used in the carefully controlled
manner provided by the certificate object. For example
if the certificate object contains an attribute specifying
that the attached public-key context may only be used
for digital signature (but not encryption) purposes then
any attempt to use the object for encryption purposes
would be flagged as an error.

The three types of container object differ mainly in the
view they present to the user, and are explained below.

3.1. Data Containers
Data containers (envelope and session objects) are
objects whose behaviour is modified by the data and
attributes which are pushed into them. To use an
envelope, the user pushes in control information in the
form of container or action objects or general attributes
which control the behaviour of the container. Any data
which is pushed into the container is then modified
according to the behaviour established by the control
information. For example if a digital signature action
object was added to the data container as control
information then data pushed into the container would
be digitally signed; if a password attribute was pushed

into the container then data pushed in would be
encrypted.

Session objects function in a similar manner, but the
security context for the session is usually established by
exchanging information with a peer, and the session
objects can process multiple data objects (for example
network packets) rather than the single data object
processed by envelopes — session objects are envelope
objects with state. In real-world terms, envelope
objects would be used for functions like S/MIME and
PGP while session objects would be used for functions
like SSL and ssh.

This type of object can be regarded as an intelligent
container which knows how to handle data provided to
it based on control information it receives. For example
if the user pushes in a password attribute followed by
data, the object knows that the presence of this attribute
implies a requirement to encrypt data and will therefore
create an encryption action object, turn the password
into the appropriate key type for the object (typically
through the use of a hash action object), generate an
initalisation vector, pad the data out to the cipher block
size if necessary, encrypt the data, and return the
encrypted result to the user. Data containers, although
appearing relatively simple, are by far the most complex
objects present in the architecture.

3.2. Key and Certificate Containers
Key and certificate containers (keyset objects) are
simple objects which contain one or more public or
private keys or certificates, and may contain additional
information such as key revocation data (CRL’s). To
the user, they appear as an (often large) collection of
encryption contexts or certificate objects. Two typical
container objects of this type are shown in Figure 3.
Although the diagram implies the presence of huge
numbers of objects, these are only instantiated when
required by the user. Keyset objects are tied to
whatever underlying storage mechanism is used to hold
keys, typically flat files, PGP keyrings, relational
databases containing certificates and CRL’s, LDAP
directories, or HTTP links to certificates published on
web pages.

Figure 3. Container objects

3.3. Security Attribute Containers
Security attribute containers (certificate objects) contain
a collection of attributes attached to a public/private
key, or attributes which are attached to other
information (for example signed data often comes with
accompanying attributes such as the signing time and
details on the signer of the data and the conditions
under which the signature was generated). The most
common type of security attribute container is the key
certificate, which contains attribute information for a
public or private key.

4. Security Features of the Architecture
Because of the lack of inter- and intra-process security
present in a number of widely-deployed systems, it
becomes necessary for the architecture to provide its
own object security mechanisms. Security-related
functions which handle sensitive data pervade the
architecture, which implies that security needs to be
considered in every aspect of the design, and must be
designed in from the start (it’s very difficult to bolt on
security afterwards). Although full coverage of the
various security models and requirements is beyond the
scope of this paper, one typical source [15] provides a
set of requirements for a security architecture which are
implemented in the cryptlib security toolkit [16] in the
following manner:

• Permission-based access: The default access/use
permissions should be deny-all, with access or usage
rights being made selectively available as required.
Objects are only visible to the process which created
them, although the default object access setting
makes it available to every thread in the process.
The reason for this is because of the requirement for

ease of use — having to explicitly hand an object
off to another thread within the process would
significantly reduce the ease of use of the
architecture. For this reason the deny-all access is
made configurable by the user, with the option of
making an object available throughout the process
or only to one thread when it is created. If the user
specifies this behaviour when the object is created
then only the creating thread can see the object
unless it explicitly hands off control to another
thread.

• Least privilege and isolation: Each object should
operate with the least privileges possible to
minimise damage due to inadvertent behaviour or
malicious attack, and objects should be kept
logically separate in order to reduce inadvertent or
deliberate compromise of the information or
capabilities they contain. These two requirements
go hand in hand, since each object only has access
to the minimum set of resources required to perform
its task, and can only use those in a carefully
controlled manner. For example if a certificate
object has an encryption object attached to it, the
encryption object can only be used in a manner
consistent with the attributes set in the certificate
object (it might be usable only for signature
verification, but not for encryption or key exchange,
or for the generation of a new key for the object).

• Complete mediation: Each object access is checked
each time the object is used — it’s not possible to
access an object without this checking, since the act
of mapping an object handle to the object itself is
synonymous with performing the access check.

• Economy of mechanism and open design: The
protection system design should be as simple as
possible in order to allow it to be easily checked,
tested, and trusted, and should not rely on security
through obscurity. To meet this requirement, the
security kernel is contained in a single module,
which is divided into single-purpose functions of a
dozen or so lines of code which were designed and
implemented using “Design by Contract” principles
[17], making the kernel very amenable to testing
using mechanical verifiers such as ADL [18].

• Easy to use: In order to promote its use, the
protection system should be as easy to use and
transparent as possible to the user. In almost all
cases the user isn’t even aware of the presence of the

security functionality, since the programming
interface can be set up to function in a manner
which is almost indistinguishable from the
conventional collection-of-functions interface.

A final requirement which is given is the separation of
privilege, in which access to an object depends on more
than one item such as a token and a password or
encryption key. This is somewhat specific to user
access to a computer system or objects on a computer
system, and doesn’t really apply to an encryption
architecture.

The architecture employs a security kernel to implement
its security mechanisms. This kernel provides the
interface between the outside world and the
architecture’s objects (intra-object security) and
between the objects themselves (interobject security).
The security-related functions are contained in the
security kernel for the following reasons [19]:

• Separation: By isolating the security mechanism
from the rest of the implementation, it is easier to
protect them from manipulation or penetration.

• Unity: All security functions are performed by a
single code module.

• Modifiability: Changes to the security mechanism
are easier to make and test.

• Compactness: Because it performs only security-
related functions, the security kernel is likely to be
small.

• Coverage: Every access to a protected object is
checked by the kernel.

The security kernel which performs these functions is
the basis of the entire architecture — all objects are
accessed and controlled through it, and all object
attributes are manipulated through it. The security
kernel is implemented as an interface layer which sits
on top of the objects, monitoring all accesses and
handling all protection functions. An example of the
final architectural model is shown in Figure 4, which
illustrates the connection between the user application
and architecture objects, with the light grey lines
representing items with implicit connections (the kernel
to the ACL’s and one object to another, typically a
certificate object to an associated encryption context.

Figure 4. Architecture security model

5. Object Security and Access Control
The most important security feature of the architecture
is that each object is contained entirely within its
security perimeter, so that data and control information
can only flow in and out in a very tightly-controlled
manner, and that objects are isolated from each other
within the perimeter by the security kernel. For
example once keying information has been sent to an
object, it can’t be retrieved by the user except under
tightly-controlled conditions (the only real case where
this can occur is when an object’s ACL permits a short-
term session key to be exported in encrypted form, or a
private key to be stored in encrypted form to a
permanent storage medium such as a smart card or
disk). In general keying information isn’t even visible
to the user, since it is generated inside the object itself
and never leaves the security perimeter. This design is
ideally matched to hardware implementations which
perform strict red/black separation, since sensitive
information can never leave the hardware.

Associated with each object is a mandatory access
control list (ACL) which determines who can access a
particular object and under which conditions the access
is allowed. At a very coarse level, each object has a
mandatory access control setting which determines
whether it is externally visible or not (that is, whether it
has a handle which is valid outside the security
perimeter). Only externally visible objects can be
(directly) manipulated by the user, with ACL
enforcement being handled by the architectures security
kernel.

Another ACL entry is used to determine which
processes or threads can access an object. This entry is
set by the object’s owner either when it is created or at a
later point when the security properties of the object are
changed, and provides a much finer level of control
than the internal/external access ACL. Since an object

can be bound to a process or a thread within a process
by an ACL, it may be invisible to other processes or
threads, resulting in an access error if an attempt is
made to access it from another process or thread.

A typical example of this ACL’s use is shown in Figure
5, which illustrates the case of an object created by a
central server thread setting up a key in the object and
then handing it off to a worker thread which uses it to
encrypt or decrypt data. This model is typical of
multithreaded server processes which use a core server
thread to manage initial connections and then hand
further communications functions off to a collection of
active threads.

Figure 5. Object ownership transfer

Operating at a much finer level of control than the
object ACL is the discretionary access control (DACL)
mechanism through which only certain capabilities in an
object may be enabled. For example once an
encryption context is established, it can be restricted to
only allow basic data encryption and decryption, but not
encrypted session key export. In this way a trusted
server thread can hand the context off to a worker
thread without having to worry about the worker thread
exporting the session key contained within it1.
Similarly, a signature object can have a DACL set
which allows it to perform only a single signature
operation before it is automatically disabled by the
security kernel, closing a rather troublesome security
hole in which a crypto device such as a smart card can
be used to authenticate arbitrary numbers of
transactions by a rogue application. The usual way of
implementing this fine level of control is to use a
security attribute object containing the control
information attached to an encryption context.
Enforcement of finer-grained attribute-based DACL
settings is handled by the object itself, since these
settings are specific to each object type.

ACL’s are inherited across objects, so that retrieving a
private key encryption object from a keyset container

1 Obviously chosen-plaintext and similar attacks are still
possible, but this is something which can never be fully
prevented, and which provides an attacker far less opportunity
than the presence of a straight key export facility.

object will copy the container object’s ACL across to
the private key encryption object.

5.1. Object Security Implementation
When an object is created, it is identified to the entity
which requested its creation through an arbitrary
handle, an integer value which has no connection to the
objects data or associated code. The handle represents
an entry in an internal object table which contains
information such as a pointer to the objects data and
ACL information for the object. Both the object table
and the object data are protected through locking and
ACL mechanisms. Creating a new object works as
follows:

caller requests object creation by kernel

lock object table;
create new object with requested type and

attributes;
if(object was created successfully)

add object to object table;
set object state = under construction

unlock object table;

caller completes object-specific
initialisation

caller sends initialisation complete
message to kernel

lock object table
set object state = normal;
unlock object table

This simply creates an object of the given type with the
given attributes, adds an entry for it to the object table,
marks it as under construction so it can’t be accessed in
the incomplete state, and returns a pointer to the object
data to the caller (the caller being code within the
architecture itself, the user never has access to this level
of functionality). At this point the caller can complete
any object-specific initialisation, after which it sends an
“init complete” message to the kernel which sets the
objects state to normal, unlocks the object and returns
its handle to the user.

The object table is maintained by the security kernel.
When a new object is created, it tries to allocate a
handle into the object table, with the handles being
allocated in a pseudorandom manner, not so much for
security purposes but to avoid the problem of the user
freeing a handle by destroying an object and then
immediately having the handle reused for the next
object allocated, leading to problems if some of the
users code still expects to find the previous object
accessible through the handle. If the object table is full,
it is expanded to make room for more entries. When an
object is created, the kernel sets an ACL entry which
marks it as being visible only within the architecture, so
that the calling routine has to explicitly make it

accessible outside the architecture by changing the ACL
(that is, it defaults to deny-all rather than permit-all).
The object can also have a variety of attributes specified
for its creation such as the type of memory used (some
systems can allocate limited amounts of protected,
nonpageable memory which is preferred for sensitive
data such as encryption contexts).

When the user passes an objects handle to cryptlib, it
performs the following actions:

lock object table;
verify that the handle is valid;
verify that the object allows this type of

operation;
verify that the ACL allows external access;
verify that the ACL allows access by the

calling thread;
if(access allowed)

set object state = processing message;
further messages will be enqueued for

later processing
unlock object table
forward message to object
lock object table
set object state = normal

unlock object table

This performs the necessary ACL checking for the
object in an object-independent manner. The link from
external handles through the cryptlib-wide object table
and ACL check to the object itself is shown in Figure 6.

Figure 6. Object ACL checking

DACL checking is object-specific and is performed by
the object itself once the basic ACL check is passed as
shown in Figure 7. Architecture-internal objects are
checked in a similar manner, except that the check of
the external access ACL is omitted.

Figure 7. Object DACL checking

The ACL check is performed each time an object is
used, and the ACL is attached to the object itself rather
than to the handle. This means that if an ACL is
changed, the change immediately affects all users of the
object rather than just the owner of the handle which
changed the ACL. This is in contrast to the Unix
security model in which an access check is performed
once when an object is instantiated (for example when a
file is created or opened) and the access rights which
were present at that time remain valid for the lifetime of
the handle to the object. For example if a file is
temporarily made world-readable and a user opens it,
the handle remains valid for read access even if read
permission to the file is subsequently removed — the
security setting applies to the handle rather than to the
object and can’t be changed after the handle is created.
In contrast cryptlib applies its security to the object
itself, so that a change in an objects ACL is
immediately reflected to all users of the object.
Consider the example in Figure 8, in which an envelope
contains an encryption context accessed either through
the internal handle from the envelope or the external
handle from the user. If the user changes the ACL for
the encryption context the change is immediately
reflected on all users of the context, so that any future
use of the context by the envelope will result in access
restrictions being enforced using the new ACL.

Figure 8. Objects with multiple references

Each object can be accessible to multiple threads or to a
single thread. The thread access ACL is handled as part
of the thread locking mechanism used to make the
architecture thread-safe, and tracks the identity of the
thread which owns the resource. By setting the thread
access ACL, a thread can claim an unowned object,
relinquish a claim to an owned object, and transfer
ownership of an object to another thread. In general
critical objects such as encryption contexts will be
claimed by the thread which created them and will
never be relinquished until the object is destroyed — to
all other threads in the process the object doesn’t appear
to exist.

Making each object thread-safe and providing an ACL
capability across multiple operating systems is
somewhat tricky. The locking and ACL capabilities in
cryptlib are implemented as a collection of preprocessor
macros which are designed to allow them to be mapped
to appropriate OS-specific user- and system-level thread
synchronisation and locking functions. Great care has
been taken to ensure that this locking mechanism is as
fine-grained as possible, with locks typically covering
no more than a dozen or so lines of code before they are
relinquished, and the code executed while the lock is
active being carefully scrutinised to ensure it can never
become the cause of a bottleneck, for example by
executing a long-running loop while the lock is active.

5.2. Object attribute security
The discussion of security features has so far
concentrated on object security features, however the
same security mechanisms are also applied to object
attributes. An object attribute is a property belonging to
an object or a class of objects, for example encryption,
signature, and MAC contexts have a key attribute
associated with them, certificate objects have various
validity period attributes associated with them, and
device objects typically have some form of PIN
attribute associated with them.

Just like objects, each attribute has an ACL which
specifies how it can be used and applied, with ACL
enforcement being handled by the security kernel. For
example the ACL for a key attribute for a triple DES
encryption context would have the following entries:

attribute label = CRYPT_CTXINFO_KEY
type = octet string
permissions = write-once
size = 192 bits minimum, 192 bits maximum

In this case the ACL requires that the attribute value be
exactly 192 bits long (the size of a three-key triple DES
key), and it will only allow it to be written once (in
other words once a key is loaded it can’t be overwritten,
and it can never be read). The kernel checks all data

flowing in and out against the appropriate ACL, so that
not only data flowing from the user into the architecture
(for example identification and authentication
information) but also the limited amount of data which
is allowed to flow from the architecture to the user (for
example status information) is carefully monitored by
the kernel.

Ensuring that external software can’t bypass the
kernel’s ACL checking requires very careful design of
the I/O mechanisms to ensure that no access to
architecture-internal data is ever possible. Consider the
fairly typical situation in which an encrypted private
key is read from disk by an application, decrypted using
a user-supplied password, and used to sign or decrypt
data. Using techniques such as patching the systemwide
vectors for file I/O routines (which are world-writeable
under Windows NT) or debugging facilities like truss
and ptrace under Unix, hostile code can determine
the location of the buffer into which the encrypted key
is copied and monitor the buffer contents until they
change due to the key being decrypted, at which point it
has the raw private key available to it. An even more
serious situation occurs when a function interacts with
untrusted external code by supplying a pointer to
information located in an internal data structure, in
which case an attacker can take the returned pointer and
add or subtract whatever offset is necessary to read or
write other information which is stored nearby. With a
number of current security toolkits, something as simple
as flipping a single bit is enough to turn off some of the
encryption (and in at least one case turn on much
stronger encryption than the US-exportable version of
the toolkit is supposed to be capable of), cause keys to
be leaked, and have a number of other interesting
effects.

In order to avoid these problems, the architecture never
provides direct access to any internal information. All
object attribute data is copied in and out of memory
locations supplied by the external software into separate
(and unknown to the external software) internal memory
locations. In cases where supplying pointers to memory
is unavoidable (for example where it’s required for
fread or fwrite), the supplied buffers are scratch
buffers which are decoupled from the architecture-
internal storage space in which the data will eventually
be processed.

This complete decoupling of data passing in or out
means that it is very easy to run an implementation of
the architecture in its own address space or even in
physically separate hardware without the user ever
being aware that this is the case, for example under
Unix the implementation would run as a daemon owned
by a different user and under Windows NT it would run

as a system service. Alternatively, the implementation
can run on dedicated hardware which is physically
isolated from the host system.

5.3. Benefits of the object security model
This particular object security model has several
advantages. By combining the locking which is
required to make the objects thread-safe with part of the
ACL functionality, very little extra overhead is
introduced (of the two most common operating systems
with threading capabilities, both Unix user-level
pthreads implementations and Windows pseudocritical
sections don’t usually require any kernel calls, making
them relatively quick). In addition since each object is
inherently thread-safe and ACL-protected, different
parts of cryptlib can use and communicate with the
objects without having to worry about access checking
and problems with simultaneous access to shared
resources — the kernel and objects take care of this
themselves. Since attribute checking is also performed
using ACL’s rather than the traditional ad hoc
parameter checks hardcoded into miscellaneous
functions in various places, all attributes can have a
coordinated security policy applied to them through a
central, easily-checked set of ACL’s.

6. Object Internals
Creating or instantiating a new object involves
obtaining a new handle, allocating and initialising an
internal data structure which stores information on the
object, setting ACL’s, connecting the object to any
underlying hardware or software if necessary (for
example establishing a session with a smart card reader
or database backend), and finally returning the object’s
handle to the user. Although the user sees a single
object type which is consistent across all computer
systems and implementations, the exact (internal)
representation of the object can vary considerably. In
the simplest case, an object consists of a thin mapping
layer which translates calls from the architectures’s
internal API to the API used by a hardware
implementation. Since encryption contexts, which
represent the lowest level in the architecture, have been
designed to map directly onto the functionality provided
by common hardware crypto accelerators, these can be
used directly when appropriate hardware is present in
the system.

If the encryption hardware consists of a crypto device
with a higher level of functionality or even a general-
purpose secure coprocessor rather than just a simple
crypto accelerator, more of the functionality can be
offloaded onto the device or secure coprocessor. For
example while a straight crypto accelerator may support

functionality equivalent to basic DES and RSA
operations on data blocks, a crypto device such as a
PKCS #11 token would provide extended functionality
including the necessary data formatting and padding
operations required to perform secure and portable key
exchange and signature operations, and more
sophisticated secure coprocessors which are effectively
scaled-down PC’s [20] can take on board architecture
functionality at an even higher level. Figure 9 shows the
levels at which external hardware functionality can be
integrated, with the lowest level corresponding to the
functionality embodied in an encryption context, while
the higher levels correspond to functionality in envelope
and certificate objects.

Figure 9. Mapping of architecture functionality
levels to crypto/security hardware

6.1. Object Internal Details
Although each type of object differs considerably in its
internal design, they all share a number of common
features which will be covered here. Each object
consists of three main parts:

1. State information, stored either in secure or general-
purpose memory depending on its sensitivity.

2. The object’s message handler.

3. A set of function pointers for the methods used by
the object.

The actual functionality of the object is implemented
through the function pointers, which are initialised
when the object is instantiated to refer to the
appropriate methods for the object. Using an
instantiation of a DES encryption context with an
underlying software implementation and an RSA
encryption context with an underlying hardware

implementation, we have the encryption context
structures shown in Figure 10.

When the two objects are created, the DES context is
plugged into the software DES implementation and the
RSA context is plugged into a hardware RSA
accelerator. Although the low-level implementations
are very different, both are accessed through the same
methods, typically context.loadKey(),
context.encrypt(), and
context.decrypt(). Substituting a different
implementation of an encryption algorithm (or adding
an entirely new algorithm) requires little more than
creating the appropriate interface methods to allow a

context to be plugged into the
underlying implementation. As
an example of how simple this
can be, when the Skipjack
algorithm was declassified [21]
it took only a few minutes to
plug in an implementation of
the algorithm, providing full
support for Skipjack
throughout the entire
architecture and to all
applications which employed
the architecture’s standard
capability query mechanism,
which automatically establishes
the available capabilities of the
architecture on startup.

Figure 10. Encryption context internal structure

6.2. Object Reuse
Since object handles are detached from the objects they
are associated with, a single object can (provided its
ACL’s allow this) be used by multiple processes or
threads at once. This flexibility is particularly
important with objects used in connection with
container objects, since replicating every object pushed

into a container creates both unnecessary overhead and
increases the chances of compromise of sensitive
information if keys and other data are copied across to
each newly created object.

Instead of copying each object whenever it is reused,
the architecture maintains a reference count for it and
only copies it when necessary. In general the copying is
only needed for some encryption contexts, which
employ a copy-on-write mechanism which ensure the
object isn’t replicated unnecessarily. Other objects
which can’t (easily) be replicated, or which don’t need
to be replicated, have their reference count incremented
when they are reused, and decremented when they are
freed. The object itself is only destroyed when its
reference count drops to zero.

To see how this works, let’s assume the user creates an
encryption context and pushes it into an envelope
object. This results in a context with a reference count
of 2, with one external reference (by the user) and one
internal reference (by the envelope object) as shown
previously in Figure 8. Typically the user would then
destroy the encryption context while continuing to use
the envelope which it is now associated with. The
reference with the external access ACL would be
destroyed and the reference count decremented by one,
leaving the object as shown in Figure 11 with a
reference count of 1 and an internal access ACL.

Figure 11. Objects with multiple references after
the external reference is destroyed

To the user the object has indeed been destroyed, since
it is now accessible only to the envelope object. When
the envelope object is destroyed the encryption
context’s reference count is again decremented through
a message sent from the envelope, leaving it at zero
whereupon the kernel sends it a “destroy object”
message to notify it to shut itself down, after which it
removes the object from the object table. The only time
objects are explicitly destroyed is through an external
signal such as a smart card withdrawal or when the
kernel broadcasts destroy object messages when it is
closing down. At any other time only their reference
count is decremented.

In some cases an object has to change its behaviour
when it is reused. For example some key databases
don’t handle multiple independent writes at all well
(this can upset their internal buffering and state
management), so the object will change its ACL from
read/write to read-only when its reference count
becomes greater than one. Once it drops back to one,
the ACL is updated to allow read/write access again.

The use of the reference-counting implementation
allows objects to be treated in a far more flexible
manner than would otherwise be the case. For example
the paradigm of pushing attributes and objects into
envelopes (which could otherwise be prohibitively
expensive due to the overhead of making a new copy of
the object for each envelope) is rendered feasible since
in general only a single copy of each object exists.
Similarly, a single (heavyweight) connection to a key
database can be shared across multiple threads or
processes, an important factor in a number of
client/server databases where a single client connection
can consume a megabyte or more of memory.

6.3. Data Formats
Since each object represents an abstract security
concept, none of them are tied to a particular underlying
data format or type. For example an envelope could
output the result of its processing in the data format
used by CMS/S/MIME, PGP, PEM, MSP, or any other
format required. As with the other object types, when
the envelope object is created, its function pointers are
set to encoding or decoding methods which handle the
appropriate data formats. In addition to the variable,
data format-specific processing functions, envelope and
certificate objects employ data recognition routines
which will automatically determine the format of input
data (for example whether data is in CMS/S/MIME or
PGP format, or whether a certificate is a certificate
request, certificate, PKCS #7 certificate chain, CRL, or
other type of data) and set up the correct processing
methods as appropriate.

7. Interobject Communications
Objects communicate internally via a message-passing
mechanism, although this is typically hidden from the
user by a more conventional functional interface. The
message-passing mechanism connects the objects
indirectly, replacing pointers and direct function calls
and is the fundamental mechanism used to implement
the complete isolation of architecture internals from the
outside world. Since the mechanism is anonymous, it
reveals nothing about an objects implementation or its
interface, or even its existence. The message-passing
mechanism has three parts, the source object, the

destination object, and the message dispatcher. In order
to send a message from a source to a destination, the
source object needs to know the target objects handle,
but the target object has no knowledge of where a
message came from unless the source explicitly informs
it of this. All data communicated between the two is
held in the message itself.

To handle interobject messaging, the kernel contains a
message dispatcher which maintains an internal
message queue used to forward messages to the
appropriate object or objects. Some messages are
directed at a particular object (identified by the objects
handle), others to an entire class of object or even to all
objects. For example if an encryption context is
instantiated from a smart card and the card is then
withdrawn from the reader, the event handler for the
keyset object associated with the reader broadcasts a
card withdrawal message identifying the card which was
removed to all active objects as illustrated in Figure 12.
This is necessary to notify the encryption context that it
may need to take action based on the card withdrawal,
and also to notify further objects such as envelope
objects and certificates which have been created or
acted upon by the encryption context — since the
sender is completely disconnected from the receiver, it
needs to broadcast the message to all objects to ensure
that everything which might have an interest is notified.
The message handler has been designed so that
processing a message of this type has almost zero
overhead compared to the complexity of tracking which
message might apply to which objects, so it makes more
sense to handle the notification as a broadcast rather
than maintaining per-object lists of messages the object
is interested in.

Figure 12. Interobject messaging example

As each object receives a message, it can explicitly
choose to act on it or to take the default action of
ignoring it. Each object therefore has the ability to

intelligently handle external events in a controlled
manner, processing them as appropriate. Because an
object controls how it handles these events, there’s no
need for any other object or control routine to know
about the internal details or function of the object — it
simply posts a notification of an event and goes about
its business.

As an example of how intelligent message fowarding
across objects can work, consider an attempt to encrypt
data using a certificate (in fact it’s really encrypted
using the encryption context associated with the
certificate, but this is invisible to the user, all they see is
the certificate object). This fails in some way and
returns a “public-key encryption operation failed” error
to the caller, who tries to get more information about
what went wrong by reading the objects error
information attributes. The kernel sends the certificate
object a query message, but it isn’t involved with the
encryption operation and returns the query to the kernel
with a “not at this address, try attached objects”
comment, to which the kernel forwards the message to
the attached encryption context. The context in turn
doesn’t know the exact details and returns the message
to the kernel, which determines that the context is tied
to some sort of underlying encryption device, so it
forwards the message to the device object. The buck
finally stops at the device object (which happens to be
tied to a smart card which has just failed in some way),
which returns the appropriate error information from the
card. This demonstrates the “intelligent object” design
in which an object can instruct the kernel to hand a task
off to another object if it isn’t capable of fulfilling the
request itself — the caller ends up with telemetry from
the smart card even though the object they’re explicitly

using is a certificate.

In the case of the card withdrawal
notification illustrated in Figure 12, the
affected objects which don’t choose to
ignore it would typically erase any
security-related information, close active
OS services such as open file handles,
free allocated memory, and place
themselves in a signalled state in which
no further use of the object is possible
apart from destroying it. Message
queueing and dispatching is handled by
the kernel’s message dispatcher and the
message handlers built into each object,

which remove from the user the need to check for
various special-case conditions such as smart card
withdrawals. In practice the only object which would
process the message is the encryption context. Other
objects which might contain the context (for example an
envelope or certificate object) will only notice the card

withdrawal if they try to use the context, at which point
it will inform them that it has been signalled and is no
longer useable.

Since the objects act independently, the fact that one
object has changed state doesn’t affect any of the other
objects. This object independence is an important
feature, since it doesn’t tie the functioning of one object
to every component object it contains or uses — a smart
card-based private key might only be needed to decrypt
a session key at the start of a communications session,
after which its presence is irrelevant. Since each object
manages its own state, the fact that the encryption
context created from the key on the card has become
signalled doesn’t matter to the object using it after it has
recovered the session key.

7.1. Asynchronous vs Synchronous Message
Dispatching

When processing messages, the dispatcher can handle
them in one of two ways:

1. Asynchronously, returning control to the caller
immediately while processing the object in a
separate thread

2. Synchronously, suspending the caller while the
message is processed.

There are two types of messages which can be sent to
an object, simple notifications and data communications
which are processed immediately, and more complex,
generally object-specific messages which can take
awhile to process, an example being “generate a key”
which can take awhile for many public-key algorithms.
This would in theory require both types of message
dispatching, however in the cryptlib architecture each
object is responsible for its own handling of
asynchronous processing. In practice this means that
(on systems which support it) the object has one or
more threads attached to it which perform asynchronous
processing (on non-threaded systems there’s no choice
but to use synchronous messaging). When a source
object sends a message to a destination which may take
some time to generate a result, it includes in the
message its own handle to which the destination sends a
response when it’s ready. When the destination object
has the data required by the source ready, it sends a
message back to the source object containing the data.
Since the objects are inherently thread-safe, the
messaging mechanism is also safe when asynchronous
processing is taking place.

For an example of how the handling of messaging in an
asynchronous manner works, consider a status query
being sent to a keyset object connected to a keyset with

a slow response time (for example a smart card or a
remote LDAP server). First, the source object would
send a status query message, including in the message
its object handle (the return address for the query
result). The dispatcher would forward the message to
the keyset object, which would remember the return
address and return control to the dispatcher, which
would in turn return control to the source object. Some
time later (whenever the keyset object has the requested
information), it would send a message back to the
source object containing the information it had
requested.

7.2. The Message Dispatcher
The message dispatcher maintains a queue of all
pending messages due to be sent to target objects which
are dispatched in order of arrival. If an object isn’t
busy processing an existing message, a new message
intended for it is immediately dispatched to it without
being enqueued, which prevents the single message
queue from becoming a bottleneck. For group
messages (messages sent to all objects of a given type)
or broadcast messages (messages sent to all objects),
the message is sent to every applicable object in turn.

Recursive messages (ones which result in further
messages being sent to the source object) are handled
by having the dispatcher enqueue messages intended for
an object which already has a message present in the
queue and return immediately to the caller. This
ensures that the new message isn’t processed until the
earlier message(s) for the object have been processed.
If the message is for a different object, it is either
processed immediately if the object isn’t already
processing a message or it is prepended to the queue
and processed before other messages, so that messages
sent by objects to subordinate objects are processed
before messages for the objects themselves. An object
won’t have a new message dispatched to it until the
current one has been processed. This processing order
ensures that messages to the same object are processed
in the order sent, and messages to different objects
arising from the message to the original object are
processed before the message for the original object
completes.

Since an earlier message can result in an object being
destroyed, the dispatcher also checks to see whether the
object still exists in an active state. If not, it dequeues
all further messages without calling the objects message
handler.

8. Other Kernel Mechanisms
In order to work with the objects described so far, the
architecture requires a number of other mechanisms to

handle synchronisation, background processing, and the
reporting of events within the architecture to the user.
These mechanisms are described below.

8.1. Semaphores
In the message-passing example given earlier, the
source object may want to wait until the data it
requested becomes available. In general since each
object can potentially operate asynchronously, cryptlib
requires some form of synchronisation mechanism
which allows an object to wait for a certain event before
it continues processing. The synchronisation is
implemented using lightweight internal semaphores,
which are used in most cases (in which no actual
waiting is necessary) before falling back to the often
heavyweight OS semaphores.

cryptlib provides two types of semaphores, system
semaphores (that is, predefined semaphore handles
corresponding to fixed resources or operations such as
binding to various types of drivers which takes place on
startup) and user semaphores, which are allocated by an
object as required. System semaphores have
architecture-wide unique handles akin to the stdio
libraries predefined stdin, stdout, and stderr handles.

8.2. Threads
The independent, asynchronous nature of the objects in
the architecture means that, in the worst case, there can
be dozens of threads all whirring away inside cryptlib,
most of which will be blocked while waiting on external
events. Since this acts as a drain on system resources,
can negatively affect performance (some operating
systems can take some time to instantiate a new thread),
and adds extra implementation detail for handling each
thread, cryptlib provides an internal service thread
which can be used by objects to perform basic
housekeeping tasks. Each object can register service
functions with this thread which are called in a round-
robin fashion, after which the thread goes to sleep for a
preset time interval, behaving much like a fiber or
lightweight, user-scheduled thread. This means that
simple tasks such as basic status checks can be
performed by a single architecture-wide thread instead
of requiring one thread per object. This service thread
also performs general tasks such as touching each
allocated memory page which is marked as containing
sensitive data whenever it runs in order to reduce the
chances of the page being swapped out.

Consider an example of a smart card keyset object
which needs to check the card status every now and
then to determine whether the card has been removed
from the reader. Most serial-port based readers don’t
provide any useful notification mechanism, but only

report a “card removed” status on the next attempt to
access it. This isn’t terribly useful to the architecture,
which expects to be able to destroy objects which
depend on the card as soon as it is removed.

In order to check for card removal, the keyset object
registers a service function with the service thread. The
registration returns a unique service ID which can be
used later to deregister it. Deregistration can also
occur automatically when the object which registered
the service function is destroyed.

Once a service function is registered, it is called
whenever the service thread runs. In the case of the
keyset object it would query the reader to determine
whether the card was still present. If the card is
removed, it sends a message to the keyset object
(running in a different thread), after which it returns,
and the next service function is processed. In the
meantime the keyset object notifies all dependent
objects and destroys itself, in the process deregistering
the service function. As with the message processing,
since the objects involved are all thread-safe, there are
no problems with synchronisation (for example the
service function being called can deregister itself
without any problems).

8.3. Event Notification
A common method for notifying the user of events is to
use one or more callback functions. These functions are
registered with a program and are called when certain
events occur. Typical implementations use either event-
specific callbacks (so the user can register functions
only for events they’re specifically interested in) or
umbrella callbacks which get passed all events, with the
user determining whether they want to act on them or
not.

Callbacks have two main problems. The first of these is
that they are inherently language and often OS-specific,
often occurring across process boundaries and always
requiring special handling to set up the appropriate
stack frames, ensure arguments are passed in a
consistent manner, and so on. Language-specific
alternatives to callbacks such as Visual Basic event
handlers are even more problematic.

The second problem with callbacks is that the called
user code is given the full privileges of the calling code
unless special steps are taken [22]. One possible
workaround is to perform callbacks from a special no-
privileges thread, but this means that the called code is
given too few privileges rather than too many.

A better solution which avoids both the portability and
security problems of callbacks is to avoid them
altogether in favour of an object polling mechanism.

Since all encryption functionality is provided in terms
of objects, object status checking is provided
automatically by the security kernels reference monitor
— if any object has an abnormal status associated with
it (for example it might be busy performing a long-
running operation such as a key generation), any
attempt to use it wil result in the status being returned
without any action being taken.

Because of the object-based approach used for all
security functionality, the object status mechanism
works transparently across arbitrarily linked objects.
For example if the encryption object in which the key is
being generated is pushed into an envelope, any attempt
to use it before the key generation has completed will
result in an “object busy” status being passed back up to
the user. Since it’s the encryption object which is busy
(rather than the envelope), it’s still possible to use the
envelope for non-encryption functions while the key
generation is occurring in the encryption object.

9. Conclusion
This paper has presented a flexible, platform-
independent cryptographic security architecture which
is suited to software, hardware, and hybrid
implementations. By encapsulating the functionality
inside independent intelligent objects protected by a
central security kernel, portions of the architecture can
be replaced or updated with a minimum of effort while
guaranteeing a consistent interface and handling of the
objects within the architecture. As implemented in
cryptlib, this design has been successfully deployed on
systems ranging from 16-bit microcontrollers through to
supercomputers, languages ranging from C/C++
through to Perl and Visual Basic, and interfaced to a
wide variety of cryptographic hardware and other
devices, providing a single consistent interface across
all of these platforms and languages (write once,
encrypt anywhere).

10. Acknowledgements
The author would like to thank Peter Fenwick, Trent
Jaeger, Paul Karger, and the referees for feedback and
comments, and would also like to acknowledge
Microsoft, whose operating system security motivated
many of the design features of the architecture
presented in this paper.

11. References

[1] libdes,
http://www.cryptsoft.com/ssleay/faq.h
tml, 1996.

[2] “Fortezza Cryptologic Programmers Guide”,
Version 1.52, National Security Agency Workstation
Security Products, 30 January 1996.

[3] “BSAFE Library Reference Manual”, Version 4.0,
RSA Data Security, 1998.

[4] “Generic Cryptographic Service API (GCS-API)”,
Open Group Preliminary Specification, June 1996.

[5] “Microsoft CryptoAPI Application Programmers
Guide”, Version 1, Microsoft Corporation, 16 August
1996.

[6] “PKCS #11 Cryptographic Token Interface
Standard”, Version 2.01, RSA Laboratories, 22
December 1997.

[7] “Generic Security Service Application Programming
Interface”, RFC 2078, John Linn, January 1997.

[8] “DCE Security Programming”, Wei Hu, O’Reilly
and Associates, 1995.

[9] “SESAME Technology Version 4”, December 1995
(newer versions exist but are no longer publicly
available).

[10] “Independent Data Unit Protection Generic
Security Service Application Program Interface (IDUP-
GSS-API)”, RFC 2479, Carlisle Adams, December
1998.

[11] “Architecture for Public-key Infrastructure (APKI),
Draft 3”, The Open Group, 27 March 1998.

[12] “Common Data Security Architecture (CDSA)
Version 2.0”, The Open Group, May 1999.

[13] “Security Service API: Cryptographic API
Recommendation, Updated and Abridged Edition”,
NSA Cross Organization CAPI Team, 25 July 1997.

[14] “Microsoft Cryptographic Application
Programming Interface (CryptoAPI)”, Version 2,
Microsoft Corporation, 22 December 1998.

[15] “The Protection of Information in Computer
Systems”, Jerome Saltzer and Michael Schroeder,
Proceedings of the IEEE, Vol.63, No.9 (September
1975), p.1278.

[16] cryptlib version 3,
http://www.cs.auckland.ac.nz/~pgut001
/cryptlib.html, 1999.

[17] “Object-Oriented Software Construction, Second
Edition”, Bertrand Meyer, Prentice Hall, 1997.

[18] “Assertion Definition Language (ADL) 2.0”,
X/Open Group, November 1998.

[19] “Security in Computing”, Charles Pfleeger,
Prentice-Hall, 1989.

[20] “Building a High-Performance Programmable,
Secure Coprocessor”, Sean Smith and Steve Weingart,
Computer Networks and ISDN Systems, Issue 31 (April
1999), p.831.

[21] “SKIPJACK and KEA Algorithm Specification”,
Version 2.0, NSA, 29 May 1998.

[22] “Java Security Architecture”, JDK 1.2, Sun
Microsystems Corp, 1997.

