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Abstract

1 Introduction

A Description of the Problem

schneier,kelsey @counterpane.com

Cryptographic Support for Secure Logs on Untrusted Machines

In [Sto89], Cli� Stoll attached a printer to a network com-

puter for just this purpose.

Bruce Schneier John Kelsey

Counterpane Systems, 101 East Minnehaha Parkway, Minneapolis, MN 55419

In many real-world applications, sensitive informa-

tion must be kept in log �les on an untrusted ma-

chine. In the event that an attacker captures this

machine, we would like to guarantee that he will

gain little or no information from the log �les and to

limit his ability to corrupt the log �les. We describe

a computationally cheap method for making all log

entries generated prior to the logging machine's com-

promise impossible for the attacker to read, and also

impossible to undetectably modify or destroy.

We have an un-

trusted machine, , which is not physically secure

or su�ciently tamper-resistant to guarantee that it

cannot be taken over by some attacker. However,

this machine needs to be able to build and maintain

a �le of audit log entries of some processes, measure-

ments, events, or tasks.

With a minimal amount of interaction with a trusted

machine, , we want to make the strongest security

guarantees possible about the authenticity of the log

on . In particular, we do not want an attacker who

gains control of at time to be able to read log

entries made before time , and we do not want him

to be able to alter or delete log entries made before

time in such a way that his manipulation will be

undetected when next interacts with .

It is important to note that , while \untrusted,"

isn't generally expected to be compromised. How-

ever, we must be able to make strong statements

about the security of previously-generated log en-

tries even if is compromised.

In systems where the owner of a device is not the

same person as the owner of the secrets within the

device, it is essential that audit mechanisms be in

place to determine if there has been some attempted

fraud. These audit mechanisms must survive the

attacker's attempts at undetectable manipulation.

This is not a system to prevent all possible manip-

ulations of the audit log; this is a system to detect

such manipulations after the fact.

Applications for this sort of mechanism abound.

Consider to be an electronic wallet|a smart card,

a calculator-like device, a dongle on a PC, etc.|that

contains programs and data protected by some kind

of tamper resistance. The tamper resistance is ex-

pected to keep most attackers out, but it is not 100%

reliable. However, the wallet occasionally interacts

with trusted computers ( ) in banks. We would like

the wallet to keep an audit log of both its actions

and data from various sensors designed to respond

to tampering attempts. Moreover, we would like this

log to survive successful tampering, so that when the

wallet is brought in for inspection it will be obvious

that the wallet has been tampered with.

There are other examples of systems that could ben-

e�t from this protocol. A computer that logs various

kinds of network activity needs to have log entries

of an attack undeleteable and unalterable, even in

the event that an attacker takes over the logging

machine over the network. An intrusion-detection

system that logs the entry and exit of people into

a secured area needs to resist attempts to delete

or alter logs, even after the machine on which the

logging takes place has been taken over by an at-

tacker. A secure digital camera needs to guaran-

tee the authenticity of pictures taken, even if it is

reverse-engineered sometime later [KSH96]. A com-

puter under the control of a marginally-trusted per-

son or entity needs to keep logs that can't be changed

\after the fact," despite the intention of the per-

son in control of the machine to \rewrite history"

in some way. A computer that is keeping logs of

con�dential information needs to keep that informa-

tion con�dential even if it is taken over for a time

by some attacker. Mobile computing agents could
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Limits on Useful Solutions

Organization of This Paperbene�t from the ability to resist alteration of their

logs even when they're running under the control of

a malicious adversary.

A few moments' re-


ection will reveal that no security measure can pro-

tect the audit log entries written an attacker

has gained control of . At that point, will write

to the log whatever the attacker wants it to write.

All that is possible is to refuse the attacker the abil-

ity to read, alter, or delete log entries made

he compromised the logging machine.

If there is a reliable, high-bandwidth channel con-

stantly available between and , then this prob-

lem won't come up. will simply encrypt each log

entry as it is created and send it to over this chan-

nel. Once logs are stored by , we are willing to

trust that no attacker can change them.

Finally, no cryptographic method can be used to ac-

tually prevent the deletion of log entries: solving

that problem requires write-only hardware such as

a writable CD-ROM disk, a WORM disk,or a pa-

per printout. The only thing these cryptographichic

protocols can do is to guarantee detection of such

deletion, and that is assuming eventually manages

to communicate with .

These three statements de�ne the limits of useful so-

lutions to this problem. We are able to make strong

statements only about log entries made before

compromise, and a solution to do so is interesting

only when there is no communications channel of

su�cient reliability, bandwidth, and security to sim-

ply continuously store the logs on .

In essense, this technique is an implementation of

an engineering tradeo� between how \online" is

and how often we expect to be compromised. If

we expect to be compromised very often|once a

minute, for example|then we should send log en-

tries to at least once or twice every minute; hence

will need to be online nearly all the time. In many

systems, is not expected to be compromised nearly

as often, and is also not online nearly as continu-

ously. Therefore, we only need to communicate

log entries to infrequently, at some period related

to the frequency with which you expect that T may

be compromised. The audit log technique in our pa-

per enables this tradeo�. It provides a \knob" that

the system architect can adjust based on his judge-

ment of this tradeo�; furthermore, the knob can be

adjusted during the operation of the system as ex-

pectations of the rate of compromise change.

The remainder of

this paper is divided into sections as follows: In Sec-

tion 2 we discuss notation and tools. In Section 3

we present our general scheme. Then, in Section 4

we discuss some extensions and variations on the

scheme. Finally, in Section 5 we provide a summary

of what we've done and interesting directions for fur-

ther research in this area.

In the remainder of this paper, we will use the fol-

lowing notation:

1. represents a unique identi�er string for an

entity, , within this application.

2. ( ) is the public-key encryption, un-

der 's public key, of , using an algorithm such

as RSA [RSA78] or ElGamal [ElG85].

3. ( ) is the digital signature, under 's

private key, of , using an algorithm such as

RSA or DSA [NIST94].

4. ( ) is the symmetric encryption of un-

der key , using an algorithm such as DES

[NBS77], IDEA [LMM91], or Blow�sh [Sch94].

5. ( ) is the symmetric message authenti-

cation code (HMAC or NMAC [BCK96]), under

key , of .

6. ( ) is the one-way hash, using an algo-

rithm such as SHA-1 [NIST93] or RIPE-MD

[DBP96], of .

7. represents the concatenation of with .

Descriptions of most of these algorithms are in

[Sti95, Sch96, MOV97].

Note that all authenticated protocol steps in this pa-

per should include some nonce identifying the spe-

ci�c application, version, protocol, and step. This

nonce serves to limit damaging protocol interactions,

either accidental or intentional [And95, KSW97]. In

our protocols, we will use to represent this unique

step identi�er.

Additionally, many of the protocols require the two

parties to establish a secure connection, using an

authentication and key-agreement protocol that has

perfect forward secrecy, such as authenticated Di�e-

Hellman. The purpose of this is for the two parties to
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3 A Description of Our

Method

3.1 Log Entry De�nitions and Con-

struction Rules

prove their identity to each other, and to generate

a shared secret with which to encrypt subsequent

messages in the protocol.

In the remainder of this paper, we will use the fol-

lowing players:

1. is the trusted machine. It may typically

be thought of as a server in a secure location,

though it may wind up being implemented in

various ways: a tamper-resistant token, a bank

ATM machine, etc.

2. is the untrusted machine, on which the log is

to be kept.

3. is a moderately-trusted veri�er, who will be

trusted to review certain kinds of records, but

not trusted with the ability to change records.

Note that not all of our implementations will be

able to support .

In this paper, we assume that has both short-

term and long-term storage available. The long-

term storage will store the audit log, and we as-

sume that it is su�ciently large that �lling it up is

not a problem. We assume that can irretrievably

delete information held in short-term memory, and

that this is done each time a new key is derived.

We also assume that has some way of generating

random or cryptographically strong pseudorandom

values. Finally, we assume the existence of several

cryptographic primitives, and a well-understood way

to establish a secure connection across an insecure

medium. Methodologies for all of these are described

in great detail elsewhere: see [Sti95, Sch96, MOV97].

Our system leverages the fact that the untrusted ma-

chine creating the log�le initially shares a secret key

with a trusted veri�cation machine. With this key,

we create the log�le.

The security of our log�le comes from four basic

facts:

1. The log's authentication key is hashed, using a

one-way hash function, immediately after a log

entry is written. The new value of the authenti-

cation key overwrites and irretrieveably deletes

the previous value.

2. Each log entry's encryption key is derived, using

a one-way process, from that entry's authentica-

tion key. This makes it possible to give encryp-

tion keys for individual logs out to partially-

trusted users or entities (so that they can de-

crypt and read entries), without allowing those

users or entities to make undetectable changes.

3. Each log entry contains an element in a hash

chain that serves to authenticate the values of

all previous log entries [HS91, SK97]. It is

this value that is actually authenticated, which

makes it possible to remotely verify all previ-

ous log entries by authenticating a single hash

value.

4. Each log entry contains its own permission

mask. This permission mask de�nes roles in

a role-based security scheme; partially-trusted

users can be given access to only some kinds of

entries. Because the encryption keys for each

log entry are derived partly from the log entry

type, lying about what permissions a given log

entry has ensures that the partially-trusted user

simply never gets the right key.

All entries in the log �le use the same format, and are

constructed according to the following procedure:

1. is the data to be entered in the th log en-

try of . The speci�c data format of

is not speci�ed in our scheme: it must merely

be something that the reader of the log entries

will unambiguously understand, and that can

be distinguished in virtually all cases from ran-

dom gibberish. (If we are dealing with raw bi-

nary data here, we may add some structure to

the data to make detection of garbled informa-

tion likely, though this is seldom going to be

important.)

2. is the log entry type of the th log entry.

This type serves as a permissions mask for ;

will be allowed to control which log entry types

any particular will be allowed to access.

3. is the authentication key for the th entry

in the log. This is the core secret that provides

all of this scheme's security. Note that must

generate a new before starting the log�le;

can be given to by at startup, or can
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There is no security reason for this; it has to be initialized

as something.

If the attacker gains control of before Step (8), he can

learn . In this case the th log entry is not secured from

deletion or manipulation.

Figure 1: Adding an entry to the log.

randomly generate it and then securely transmit

it to .

4. = (\Encryption Key" ). This is

the key used to encrypt the th entry in the

log. Note that is used in the key derivation

to prevent the Veri�er getting decryption keys

for log entry types to which he is not permitted

access.

5. = ( ( ) ). This is

the hash chain which we maintain, to allow

partially-trusted users, s, to verify parts of the

log over a low-bandwidth connection with the

trusted machine, . is based on ( )

instead of so that the chain can be veri-

�ed without knowing the log entry. At startup,

is de�ned as a twenty-byte block of binary

zeros.

6. = ( ).

7. = ( ) , where is the th

log entry.

8. = (\Increment Hash" ).

Note that when and are computed, the

previous and values are irretrieveably de-

stroyed; under normal operation there are no copies

of these values kept on . Additionally, is de-

stroyed immediately after use in Step (4). (Natu-

rally, an attacker will probably store values after

he takes control of .)

The above procedure de�nes how to write the th

entry into the log, given , , and . See

Figure 1 for an illustration of this process.

If an attacker gains control of at time , he will

have a list of valid log entries, , and

the value . He cannot compute for any

, so he cannot read or falsify any previous

entry. He can delete a block of entries (or the entire

log �le), but he cannot create new entries, either

past entries to replace them or future entries. The

next time interacts with , will realize that

entries have been deleted from the log and that 1)

may have committed some invalid actions that

have not been properly audited, and 2) may have

committed some valid actions whose audit record

has been deleted.

In order to start the log�le, must irrevocably com-

mit to . Once has been committed to, there

must be a valid log on , properly formed in all
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3.4 Validating the Log
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ways, or will suspect that someone is tampering

with .

In the simplest case, is able to reliably receive

a message (but perhaps not in realtime) from .

knows 's public key, and has a certi�cate of her own

public key from . The protocol works as follows:

1. forms:

, a random session key.

, a current timestamp.

, timestamp at which will time out.

, a unique identi�er for this log�le.

, 's certi�cate from .

, a random starting point.

= .

She then forms and sends to :

= , , ( ),

( ( )),

where is the protocol step identi�er.

2. forms the �rst log entry, , with

= and =

. Note that does not store

in the clear, as this could lead to replay at-

tacks: an attacker gets control of and forces

a new audit log with the same . also stores

( ) locally while waiting for the response

message.

3. receives and veri�es the initialization mes-

sage. If it is correct (i.e., it decrypts correctly,

's signature is valid, has a valid certi�cate),

then forms:

= ( )

then generates a random session key, , and

forms and sends:

= , , ( ),

( ( )).

4. receives and veri�es . If all is

well, then forms a new log entry,

, with = and

= . also calculates =

(\Increment Hash" ).

If doesn't receive by the timeout time

, or if is invalid, then forms a new log

entry with = and

= the current timestamp and the reason for

closure. The log �le is then closed.

Depending on the application, we may or may not

allow to log anything between the time it sends

and the time it receives . In high-security

applications, we might not want to take the chance

that there are any problems with or the communi-

cations. In other applications, it might be allowable

for to perform some actions while waiting for

to respond.

The purpose of writing the abort-startup message

is simply to prevent there ever being a case where,

due to a communications failure, thinks there is a

log�le being used even though none exists. Without

this protection, an attacker could delete 's whole

log�le after compromise, and claim to simply have

failed to receive during the startup. In imple-

mentations where waits for the response message

before writing any log entries, will be the second

message written in the log as well as the last. Other-

wise, when sees this message, he will believe either

that didn't receive the response message, or that

was compromised before the response message.

Closing the log�le involves three operations: Writ-

ing the �nal-record message, , (the entry code

is and the data is a times-

tamp), irretrieveably deleting and , and

(in some implementations) actually closing the �le.

Note that after the �le has been properly closed, an

attacker who has taken control of cannot make

any alteration to the log�le without detection. Nor

can an attacker delete some entries (and possibly

add others) and then create a valid close-�le entry

earlier in the log. Finally, the attacker cannot delete

the whole log �le, because of the earlier interaction

between and . Any of these changes will be de-

tected when sees the �nal log�le.

When receives the complete and closed log, he

can validate it using the hash chain and (since

it already knows ). He can also derive all the

encryption keys used, and thus read the whole audit

log.
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We get moderate resistance to targeted collision attacks,

but not to free collision atacks, with messages of 20 decimal

digits.

At times, a moderately-trusted person or machine,

called , may need to verify or read some of the

log�le's records while they are still on . This is

made possible if has sent to (see Section

3.3), and if has a high-bandwidth channel available

to and from . Note that this can occur before

has received a copy of the log from , and before

has closed the log�le.

1. receives a copy of the audit log,

, where is the index value

of the last record, from . Note that does

not have to send a complete copy of the au-

dit log, but it must send all entries from

through some , including the entry with .

2. goes through the hash chain in the log entries

(the values), verifying that each entry in the

hash chain is correct.

3. establishes a secure connection with .

4. generates a list of all the log entries she wishes

to read, from 0 to . This list contains a rep-

resentation of the log entry type and index of

each entry to which the veri�er is requesting

access. (Typically, only some log entry types

will be allowed, in accordance with 's permis-

sion mask.) This list is called [0 ], where

= .

5. forms and sends to :

= [0 ]

6. veri�es that the log has been properly created

on , and that is authorized to work with log.

knows so he can calculate ; this allows

him to veri�es that = ( )). If there

is a problem, sends the proper error code to

and records that there is a problem with

on or a problem with .

7. If there are no problems, forms a list, [1 ],

of responses to the requests in . Each entry

in gets a responding entry in : either giving

the veri�er the decryption key for that record,

or else giving it an error code describing the rea-

son for the refusal of access. (Typically, this will

be because the log entry type isn't allowed to

be read by this veri�er.) Note that computes

these keys based on the log entry type codes

given. If provides incorrect codes to , the

keys will be incorrect and will be unable to

decrypt the log entries. Additionally, will not

be able to derive the right key from the key he

has been given.

8. forms and sends to :

= [0 ].

9. is now able to decrypt and read, but not to

change, the log entries whose keys were sent in

. is also convinced that the log entries are

authentic, since a correct MAC on any hash-

chain value is essentially a MAC on all previous

entries as well.

10. deletes the key it established with in Step

(3). This guarantees that an attacker cannot

read 's log�le if is compromised later.

Of course, if is compromised at the start of this

protocol with , it will be able to read 's log�le.

Presumably, will have its own authenticated log-

�les and will be regularly audited to reduce the like-

lihood of this problem occuring.

In the protocols and message

formats given in Section 3.3, we left the speci�cs of

the timing of from to open. This allows us

to create a completely o�ine variant using couriers

as the only communications medium. Thus, and

can be sent via courier on diskettes. If a voice

channel is available, someone can also read the hash

of from over the line for additional security.

It is also possible to reduce the

protocol in Section 3.3 to messages that can be sent

over a voice line directly, either by reading them

over the line or by using DTMF tones. In this case,

( ) must be read over the line.

In practice, this can probably be reduced down to

22 digits (with the SHA-1 hash reduced to only 20

digits). This will provide resistance against prac-

tical attacks that do not involve compromise of

before the log�le is created.
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4.1 Cross-Peer Linkages: Building a

Hash Lattice

4.2 Replacing with a Network of

Insecure Peers

\Cross Authentication Send"

\Cross Authentication Re-

ceive"

\Cross Authentication Receive

Error

\Cross Authentication Re-

ply"

\Cross Authentication Reply

Error"

If there are multiple instances of executing this

same protocol, they can cross-link their audit logs

with each other. In applications where there are

many instances of and with di�erent instances

of authenticating their log �les with di�erent

instances of , this cross-linking can make back-

alteration to audit logs impractical, even with one

or more compromised instances of or even (in

some cases) . This will also decrease the freedom

of any compromised machine to alter logs, because

it keeps having to commit to its log's current state

on other uncompromised machines.

This cross-authentication is done in addition to the

rest of the scheme as described above. To cross-

authenticate between two untrusted machines,

and , we execute the following protocol.

1. and exchange identities and establish a

secure connection.

2. forms and enters into its own log an entry,

in position , with:

= ,

= \Cross Authentication Send",

,

where is 's timestamp.

3. forms and sends to :

= .

Recall that is the current value of 's hash

chain.

4. receives this message, and veri�es that the

timestamp is approximately correct. If so,

writes a log entry in position with:

=

,

= \Cross Authentication Receive",

, , .

Then forms and sends to

= .

If doesn't agree with the timestamp, it writes

a log entry in position with:

=

,

= \Cross Authentication Receive Er-

ror", , , , ,

where is 's timestamp. Then forms and

sends to :

= .

The protocol is then terminated.

5. receives and processes it. If there was

no error in receiving , and if was not an

error message, then writes an entry to the

log at position + 1 with:

=

,

= \Cross Authentication Reply",

, .

If it was an error, or if the expected message

doesn't arrive before timeout, then writes

an entry to the log at position + 1 with:

=

,

= \Cross Authentication Reply Er-

ror", , ErrorCode.

If mutual cross-peer linking is required, could

then initiate this same protocol with .

This protocol could be useful in a network of elec-

tronic wallets. The wallets, s, would exchange

money with each other regularly and occasionally

come in contact with a banking terminal . This

hash lattice could help the bank reconstruct fradu-

lant transactions and trace wallets whose tamper-

resistance has been defeated.

We can run this whole scheme using multiple un-

trusted machines, , to do all the tasks

of . Since is a huge target, this could poten-

tially increase security. Basically, this involves an

extension of the hash lattice ideas from the previous

section.

Let and both be untrusted machines, with

about to start an audit log. will serve as the

trusted server for this audit log.

1. and establish a secure connection.
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2. forms:

, a current timestamp.

, timestamp at which will time out.

, a unique identi�er for this log�le.

, a random starting point.

are unique identi�ers for

and , respectively.

= .

She then forms and sends to

= .

3. forms the �rst log entry with:

= ,

= .

Again, does not store in the clear to pro-

tect against a replay attack. also calculates

and stores ( ) locally while waiting for

the response message from .

4. receives and veri�es that is well formed.

If it is, then forms:

= ( )

then forms and sends to :

= .

5. receives and veri�es . If all is well, then

forms a new log entry with:

= ,

=

If doesn't receive by the timeout time

, or if is invalid, then forms a new log

entry with:

= ,

= the current timestamp and the rea-

son for closure.

The log �le is then closed.

One potential issue here is that an attacker may

compromise , allowing the wholesale alteration of

entries in the log�le. There are two imperfect solu-

tions to this:

should log the same data in several parallel

log�les, with each log�le using a di�erent un-

trusted server as its trusted server.

may commit, in the �rst protocol message,

to a number that will be the index number

of its �nal log entry. then computes and

, stores these values, and deletes . If an

attacker compromises , he will learn what he

needs to read and to close the log�le on , but

not what he needs to alter any other log entries.

It is worth noting that these measures do not protect

the secrecy of a log�le once an attacker has compro-

mised both and . An improved solution is for

to use a secret-sharing scheme to store among

untrusted machines, any of which could then

recover it.

Another solution is for to keep parallel log �les

in the manner described above on machines, but

generating (for each log entry that needed to be kept

secret) 1 random bit strings of length equal to

that of . then stores

in one log�le, and each pad value in another

log�le.

In practice, these kinds of distributed schemes seem

to work better for authenticating the log entries than

for protecting their secrecy.

Many security systems, whether they protect pri-

vacy, secure electronic-commerce transactions, or

use cryptography for something else, do not directly

prevent fraud. Rather, they detect attempts at fraud

after the fact, provide evidence of that fraud in or-

der to convict the guilty in a court of law, and

assume that the legal system will provide a \back

channel" to deter further attempts. We believe that

�elded systems should recognize this fundamental

need for detection mechanisms, and provide audit

capabilities that can survive both successful and un-

successful attacks. Additionally, an unalterable log

should make it di�cult for attackers to cover their

tracks, meaning that the victims of the attack can

quickly learn that their machine has been attacked,

and take measures to contain the damage from that

attack. The victims could then revoke some pub-

lic key certi�cates, inform users that their data may

have been compromised, wipe the machine's storage

devices and restoring it from a clean backup, or im-

prove physical and network security on the machine

to prevent further attacks.

In this paper, we have presented a general scheme

that allows keeping an audit log on an insecure ma-
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chine, so that log entries are protected even if the
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each other but not connected to a central secure net-

work. This scheme, combined with physical tamper-

resistance and periodic inspection of the insecure

machines, could form the basis for highly trusted

auditing capabilities.
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mit selective disclosure of log information, and there

is some protection against dential-of-service attacks

against the communications link between the inse-

cure machine and the trusted server.

The primary limitation of this work is that an at-

tacker can sieze control of an insecure machine and

simply continue creating log entries, without trying

to delete or change any previous log entries. In any

real system, we envision log entries for things like

\Tamper-resistance breach attmpt" that any suc-

cessful attacker will want to remove. Even so, the

possibility of an unlogged successful attack make it

impossible to be certain that a machine was uncom-
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in order to be able to violate the log's security on

the �rst compromised machine.
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