
The following paper was originally published in the
Proceedings of the 7th USENIX Security Symposium

San Antonio, Texas, January 26-29, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Certificate Revocation and Certificate Update

Moni Naor and Kobbi Nissim
Weizmann Institute of Science



Certi�cate Revocation and Certi�cate Update

Moni Naor� Kobbi Nissim

Dept. of Applied Mathematics and Computer Science

Weizmann Institute of Science

Rehovot 76100, Israel

fnaor, kobbig@wisdom.weizmann.ac.il

Abstract

A new solution is suggested for the problem of cer-

ti�cate revocation. This solution represents Cer-

ti�cate Revocation Lists by an authenticated search
data structure. The process of verifying whether a

certi�cate is in the list or not, as well as updat-

ing the list, is made very e�cient. The suggested

solution gains in scalability, communication costs,

robustness to parameter changes and update rate.

Comparisons to the following solutions are included:

`traditional' CRLs (Certi�cate Revocation Lists),

Micali's Certi�cate Revocation System (CRS) and

Kocher's Certi�cate Revocation Trees (CRT).

Finally, a scenario in which certi�cates are not re-

voked, but frequently issued for short-term periods is

considered. Based on the authenticated search data

structure scheme, a certi�cate update scheme is pre-

sented in which all certi�cates are updated by a com-

mon message.

The suggested solutions for certi�cate revocation

and certi�cate update problems is better than cur-

rent solutions with respect to communication costs,

update rate, and robustness to changes in parame-

ters and is compatible e.g. with X.500 certi�cates.

1 Introduction

The wide use of public key cryptography requires
the ability to verify the authenticity of public keys.
This is achieved through the use of certi�cates (that
serve as a mean for transferring trust) in a Public

Key Infrastructure (PKI). A certi�cate is a message
signed by a publicly trusted authority (the certi�-

cation authority, whose public key authenticity may
be provided by other means) which includes a public
key and additional data, such as expiration date, se-
rial number and information regarding the key and
the subject entity.

�Research supported by BSF grant no. 94-00032.

When a certi�cate is issued, its validity is limited
by an expiration date. However, there are circum-
stances (such as when a private key is revealed, or
when a key holder changes a�liation or position)
where a certi�cate must be revoked prior to its ex-
piration date. Thus, the existence of a certi�cate
is a necessary but not su�cient evidence for its va-
lidity, and a mechanism for determining whether a
certi�cate was revoked is needed.
A typical application is a credit card system where
the credit company may revoke a credit card, tem-
porarily or permanently, prior to its expiration, e.g.
when a card is reported stolen or according to its
user's bank account balance.
This work focuses on the problem of creating and
maintaining e�cient authenticated data structures
holding information about the validity of certi�-
cates. I.e. how to store, update and retrieve au-
thenticated information concerning certi�cates.
There are three main types of parties involved with
certi�cates:

1. Certi�cation authority (CA): A trusted
party, already having a certi�ed public key, re-
sponsible for establishing and vouching for the
authenticity of public keys, including the bind-
ing of public keys to users through certi�cates
and certi�cate revocation.

A CA does not provide on-line certi�cate infor-
mation services to users. Instead, It updates a
directory on a periodic basis.

A CA issues certi�cates for users by signing a
message containing the certi�cate serial num-
ber, relevant data and an expiration date. The
certi�cate is sent to a directory and/or given to
the user himself. The CA may revoke a certi�-
cate prior to its expiration date.

2. Directory: One or more non-trusted parties
that get updated certi�cate revocation infor-
mation from the CA and serve as a certi�cate
database accessible by the users.



3. User: A non-trusted party that receives its cer-
ti�cate from the CA, and issues queries for cer-
ti�cate information. A user may either query
the validity of other users' certi�cates (we de-
note users that query other users' certi�cates as
merchants) or, get a proof of the validity of his
certi�cate in order to present it with his certi�-
cate (for the latter, the proof must be transfer-
able).

The rest of this paper is organized as follows: In Sec-
tion 2 we briey review the solutions we are aware
of (CRL, CRS and CRT), memory checkers and in-
cremental cryptographic schemes. In Section 3 we
give some basic de�nitions and the theoretical back-
ground and restate the problem in terms of �nding
e�cient authenticated directories and, in particular,
authenticated search data structures. The proposed
scheme is described in detail in Section 4 and com-
pared with the other schemes in Section 5. Finally,
in Section 6, we consider a model in which a direc-
tory is not used for extracting certi�cates, and cer-
ti�cates are updated periodically. We show how a
simple modi�cation of our revocation scheme works
in this model.

2 Related work and back-

ground

In this section we review the solutions we are aware
of, namely Certi�cate Revocation List (CRL [20]),
Certi�cate Revocation System (CRS [18]) and Cer-

ti�cate Revocation Trees (CRT [16]). We con-
tinue by reviewing memory checkers, and incremen-
tal cryptographic schemes, relating these problems
to certi�cate revocation, these two sections are in-
cluded as theoretical background, and are not nec-
essary for understanding the rest of the paper.

2.1 Certi�cate Revocation List

(CRL)

A CRL is a signed list issued by the CA identifying
all revoked certi�cates by their serial numbers. The
list is concatenated with a time stamp (as an indi-
cation of its freshness) and signed by the CA that
originally issued the certi�cates. The CRLs are sent
to the directory on a periodic basis, even if there are
no changes, to prevent the malicious replay of old
CRLs instead of new CRLs.

As an answer to a query, the directory supplies the
most updated CRL (the complete CRL is sent to
the merchant).

� The main advantage of the scheme is its sim-
plicity.

� The main disadvantage of the scheme is its high
directory-to-user communication costs (since
CRLs may get very long). Another disadvan-
tage is that a user may not hold a succinct proof
for the validity of his certi�cate.

A reasonable validity expiration period should be
chosen for certi�cates. If the expiration period is
short, resources are wasted reissuing certi�cates. If
the expiration period is long, the CRL may get long,
causing high communication costs and di�culties
in CRL management. Kaufman et al. [15, Section
7.7.3] suggested reissuing all certi�cates whenever
the CRL grows beyond some limit. In their pro-
posal, certi�cates are marked by a serial number
instead of an expiration date. (Serial numbers are
incremented for each issued certi�cate. Serial num-
bers are not reused even when all certi�cates are
reissued.) The CRL contains a �eld indicating the
�rst valid certi�cate. When all certi�cates are reis-
sued, the CRL �rst valid certi�cate �eld is updated
to contain the serial number of the �rst reissued cer-
ti�cate.

2.2 Certi�cate Revocation System

Micali [18] suggested the Certi�cate Revocation sys-
tem (CRS) in order to improve the CRL communi-
cation costs. The underlying idea is to sign a mes-
sage for every certi�cate stating whether it was re-
voked or not, and to use an o�-line/on-line signa-
ture scheme [11] to reduce the cost of periodically
updating these signatures.
To create a certi�cate, the CA associates with each
certi�cate two numbers (Y365 and N ) that are signed
along with the `traditional' certi�cate data. For
each certi�cate, the CA chooses (pseudo)randomly
two numbers N0; Y0 and computes (using a one-way
function f) Y365 = f365(Y0) and N = f(N0). (Actu-
ally, a stronger assumption on f is required, e.g. that
f is one-way on its iterates, i.e. that given y = f i(x)
it is infeasible to �nd x0 such that y = f(x0). This
is automatically guaranteed if f is a one-way per-
mutation.)
The directory is updated daily by the CA sending
it a number C for each certi�cate as follows:

1. For a non-revoked certi�cate the CA reveals one
application of f , i.e. C = Y365�i = f365�i(Y0),
where i is a daily incremented counter, i = 0
on the date of issue.

2. For a revoked certi�cate, C = N0.



Thus the most updated value for C serves as a short
proof (that certi�cate x was or was not revoked)
that the directory may present in reply to a user
query x.

� The advantage of CRS over CRL is in its query
communication costs. Based on Federal PKI
(Public Key Infrastructure) estimates, Micali
[18] showed that although the daily update of
the CRS is more expensive than a CRL update,
the cost of CRS querying is much lower. He
estimated the resulting in 900 fold improvement
in total communication costs over CRLs. The
exact parameters appear in Section 5.

Another advantage of CRS is that each user
may hold a succinct transferable proof of the
validity of his certi�cate. Directory accesses are
saved when users hold such proofs and presents
them along with their certi�cates.

� The main disadvantage of this system is the
increase in the CA-to-directory communication
(it is of the same magnitude as directory-to-
users communication, where the existence of a
directory is supposed to decrease the CA's com-
munication). Moreover, since the CA's com-
munication costs are proportional to the direc-
tory update rate, CA-to-directory communica-
tion costs limit the directory update rate.

The complexity of verifying that a certi�cate
was not revoked is also proportional to the up-
date rate. For example, for an update once an
hour, a user may have to apply the function, f ,
365� 24 = 8760 times in order to verify that a
certi�cate was not revoked, making it the dom-
inant factor in veri�cation.

The complexity of the Micali's method of verify-
ing a certi�cate may be improved as follows. Let h
be a collision intractable hash function. To issue a
certi�cate, the CA creates a binary hash tree as fol-
lows: The tree leaves are assigned (pseudo)random
values. Each internal node v is assigned the value
h(x1; x2) where x1; x2 are the values assigned to v's
children. The CA signs the root value and gives it as
a part of the certi�cate, the other tree values (and
speci�cally the (pseudo)random values assigned to
its leaves are not revealed). To refresh a certi�cate
the ith time, the CA reveals values of the nodes on
the path from the root to leaf 2i and their children
(Thus, the veri�er can check that the nodes are as-
signed a correct. Note that it is not necessary to
explicitly give the values of the nodes on the path
since these values may be easily computed given the

other values). The path serves as a proof for the
certi�cate validity. Amortizing the number of tree
nodes the CA has to send the directory, we get that
four nodes are sent to update a user's certi�cate.
We make further use of the hash tree scheme in the
following sections.

2.3 Certi�cate Revocation Trees

Kocher [16] suggested the use of Certi�cate Revo-
cation Trees (CRT) in order to enable the veri�er
of a certi�cate to get a short proof that the certi�-
cate was not revoked. A CRT is a hash tree with
leaves corresponding to a set of statements about
certi�cate serial number X issued by a CA, CAx.
The set of statements is produced from the set of re-
voked certi�cates of every CA. It provides the infor-
mation whether a certi�cate X is revoked or not (or
whether its status is unknown to the CRT issuer).
There are two types of statements: specifying ranges
of unknown CAs, and, specifying certi�cates range
of which only the lower certi�cate is revoked. For
instance, if CA1 revoked two certi�cates, X1 < X2,
than one of the statements is:

if CAx = CA1 and X1 � X < X2 then X is

revoked i� X = v

To produce the CRT, the CRT issuer builds a binary
hash tree [17] with leaves corresponding to the above
statements.

A proof for a certi�cate status is a path in the hash
tree, from the root to the appropriate leaf (state-
ment) specifying for each node on the path the val-
ues of its children.

� The main advantages of CRT over CRL are
that the entire CRL is not needed for verifying
a speci�c certi�cate and that a user may hold a
succinct proof of the validity of his certi�cate.

� The main disadvantage of CRT is in the compu-
tational work needed to update the CRT. Any
change in the set of revoked certi�cates may
result in re-computation of the entire CRT.

2.4 Checking the correctness of

memories

Blum et al. [3] extended the notion of program
checking to programs which store and retrieve data
from unreliable memory. In their model, a data
structure resides in a large memory controlled by
an adversary. A program interacts with the data
structure via a checker. The checker may use only



a small reliable memory and is responsible for de-
tecting errors in the data structure behavior while
performing the requested operations. An error oc-
curs when a value returned by the data structure
does not agree with the corresponding value entered
into the data structure. Blum et al. showed how to
construct an online checker for RAMs using a vari-
ant of Merkle's hash-tree authentication scheme for
digital signatures [17]. They used universal one way
hash functions [19]. 1

Certi�cate revocation may be regarded as a variant
of memory checking. As in memory checking, an
unreliable memory is used for storing and retriev-
ing data. The di�erence is that in memory check-
ing the same program writes into and reads from
memory via the checker, whereas in certi�cate revo-
cation there exist two distinct non-communicating
programs. One program (the CA) writes into an un-
reliable memory (the directory), the other (a user)
reads from the unreliable memory. The fact that the
two programs are disconnected raises the need for a
mechanism to prevent an adversary from replaying

old data.

Returning to memory checking, our solution may be
regarded as a checker for dictionaries.

2.5 Incremental cryptographic

schemes

The high CA-to-directory communication in CRS is
due to the fact that the CA has to update values not
only for certi�cates whose status was changed since
the last update, but for all certi�cates. Since the
fraction of certi�cates that change status in every
update is expected to be small, it would be prefer-
able to use a scheme with communication (and com-
putational work) depending mostly on the number
of certi�cates that change status. Such issues are
addressed by incremental cryptography.

Incremental cryptography was introduced by Bel-
lare, Goldreich and Goldwasser [4, 5]. The goal of
incremental schemes is to quickly update the value
of a cryptographic primitive (e.g. hash function,
MAC etc.) when the underlying data is modi�ed.
Informally, for a given set of modi�cation operators
(e.g. insert, delete, replace), in an ideal incremental
scheme, the computational work needed for updat-
ing a value depends only on the number of data
modi�cations.

An ideal incremental authentication scheme based
on a 2-3 search tree was suggested in [5]. The

1Informally, U is a family of universal one way hash func-

tions if 8x, for f chosen at random from U , it is infeasible to
�nd y such that f(x) = f(y).

scheme is a modi�cation of a standard tree au-
thentication scheme [17] in order to allow e�cient
insert/delete block operations along with replace
block operations. This scheme cannot be used di-
rectly for our problem, we modify it for our purposes
in Section 4.

3 Authenticated dictionaries

In this section we consider a more abstract version
of the problem and translate it to the problem of
�nding e�cient authenticated data structures. The
less theoretically inclined readers may skip directly
to Section 4 that presents a self-contained descrip-
tion of such a data structure.

Put in an abstract framework, the problem we
deal with is the following: �nd a protocol be-
tween a non-trusted prover, P , and a veri�er, V
for (non)membership in a set S, where S is some �-
nite set de�ned by a trusted party (the CA) but not
known to V . Given an input x, P should prove ei-
ther x 2 S or x 62 S, The trusted party may change
S dynamically, but it is assumed to be �xed while
P and V interact.

The prover has access to a data structure represent-
ing S along with some approved public information
about S, created by the trusted party prior to set-
ting x. The non-trusted prover should have an e�-
cient procedure for providing on-line a short proof
(e.g. of low order polynomial in jxj; log jSj) for the
appropriate claim for x.

3.1 De�nitions

Let U be a universe and S be a set such that S � U .
Let DS be a data structure representing S.

� A membership query is of the form hei. The
response to the query is a string hai where a 2
fYES,NOg, corresponding to e 2 S, e 62 S.

� An authenticated membership query is of the
form hei. The response to the query is a string
ha; pi where a 2 fYES,NOg and p is a proof for
a authenticated by a CA.

� Update operations are of the form

1. hInsert; ei where e is an element in U nS.
The resulting data structure DS0 repre-
sents the set S0 = S [ feg.

2. hRemove; ei where e is an element in S.
The resulting data structure DS0 repre-
sents the set S0 = S n feg.



De�nition 3.1 A dictionary is a data structure

DS representing S supporting membership queries

and update operations.

De�nition 3.2 An authenticated dictionary is a

data structure Dau
S representing S supporting au-

thenticated membership queries and update opera-

tions.

In our model, the set S is known both to the CA
and the prover, P , but not to the veri�er, V . The
CA controls S and supplies P with the information
needed to create an authenticated dictionary repre-
senting S.
Since an authenticated dictionary is dynamic, a
mechanism for proving that an authenticated proof
is updated is needed. Otherwise, a dishonest direc-
tory may replay old proofs. In our model we may
assume either that CA updates occur at predeter-
mined times, or, that the user issuing a query knows
when the most recent update occurred. In any case,
the veri�er should be able to check the freshness of
a proof p.
The parameters we are interested in regarding au-
thenticated dictionaries are:

� Computational complexity:

1. The time and space needed to authenti-
cate the dictionary, i.e. creating and up-
dating it.

2. The time needed to perform an authenti-
cated membership query.

3. The time needed to verify the answer to
an authenticated membership query.

� Communication complexity:

1. The amount of communication (CA to
prover) needed to update the dictionary.

2. The length of a proof p for an authenti-
cated membership query.

3.2 Implementing authenticated dic-

tionaries

For a small universe U , one can a�ord computa-
tional work proportional to jU j. There are two triv-
ial extremes with respect to the number of signed
messages, the computation needed in authentication
and veri�cation, and the prover to veri�er commu-
nication complexity:

� For every e 2 U the CA signs the appropriate
message e 2 U or e 62 U . To update Ds, jU j

signatures are supplied, regardless the number
of changed elements in DS . An example of this
solution is the certi�cate revocation system re-
viewed in Section 2.2.

� The CA signs a message M = �1; �2; : : : ; �jUj

where for every ui 2 U , �i indicates whether
ui 2 S.

If S is expected to be small, two simple solutions
are:

� The CA signs intervals of elements not in S.
Such an interval is a pair (s1; s2) satisfying s 62
S for all s1 � s � s2.

� The CA signs a message M containing a list
of every s 2 S. An example is the certi�cate
revocation lists reviewed in Section 2.1.

In all the solutions above, the messages are signed
by the CA and include the time of update.
In the following we describe a generic method
for creating an authenticated dictionary Dau

S from
a dictionary DS . The overhead in membership
queries and update operations is roughly a factor
of log jDS j. In this construction we use a collision

intractable hash function.

De�nition 3.3 A collision intractable hash func-

tion is a function h() such that it is computationally

infeasible to �nd y 6= x satisfying h(x) = h(y).

Let DS be a dictionary of size jDS j representing a
set S. Let Tq ; Tu be the worst case time needed to a
compute membership query or an update operation
respectively.
Let h be a collision intractable hash function, and
Th be the time needed to compute h on instances of
U . Consider the representation DS = (�1; �2; : : :) of
S. This may be e.g. a list of all the variables' values
composingDS , or, the wayDS is represented in ran-
dom access memory. The authenticated dictionary
Dau
S contains DS plus a hash tree [17] whose nodes

correspond to �1; �2; : : :, and a message signed by
the CA containing the tree root value and the time
of update.
The hash tree is constructed as follows: A balanced
binary tree is created whose leaves are assigned the
values �1; �2; : : :. Each internal node v is then as-
signed a value h(x1; x2) where x1; x2 are the values
assigned to v's children.

� A membership query is translated to an au-
thenticated membership query by supplying a
proof for every item �i of DS accessed in the
computation. The proof consists of the values



of all the nodes on the path from the root to
position i and their children. The complexity
of an authenticated membership query is thus
O(Tq � Th � log jDS j).

� After an update, the portion of the hash tree
corresponding to elements �i that were changed
is re-computed (i.e. all paths from a changed
element �i to the root). The complexity of an
update operation is thus O(Tu � Th � log jDS j).

3.3 Authenticated search data struc-

tures

The general method of Section 3.2 for creating dic-
tionaries has a logarithmic (in jDsj) multiplicative
factor overhead. The reason is that the internal
structure of DS was not exploited in the authen-
tication/veri�cation processes.
Our goal is to create authenticated dictionaries
based on e�cient search data structures that save
the logarithmic factor overhead. We denote these
as authenticated search data structures.
CRTs reviewed in Section 2.3 save this logarithmic
factor in membership query complexity (but not in
update where the amount of computational work is
not a function of the number of changes but of the
size of the revocation list). In Section 4.1 we show
how to create authenticated search data structures
based on search trees. An interesting open ques-
tion is how to construct more e�cient authenticated
search data structures, e.g. based on hash tables,
where membership query is processed in roughly
O(1).

4 The proposed scheme

The proposed scheme is closer in spirit to CRL and
CRT than to CRS, since it maintains a list of only
the revoked certi�cates. It reduces the CA's com-
munication and actually makes it feasible to update
the directory periodically many times a day, achiev-
ing a very �ne update granularity. The revoked cer-
ti�cates list is maintained in an authenticated search
data structure. The bene�ts of this construction
are:

1. It is easy to check and prove whether a certain
certi�cate serial number is in the list or not,
without sending the complete list.

2. List update communication costs are low.

The underlying idea is to imitate a search in a data
structure constructing a proof for the result during

the search. For that, we combine a hash tree scheme
(as in [17]) with a sort tree, such that tree leaves cor-
respond to revoked certi�cates, sorted according to
their serial numbers. Both proving that a certi�-
cate is revoked and that a certi�cate is not revoked
reduce to proving the existence of certain leaves in
the tree:

� Proving that a certi�cate was revoked is equiv-
alent to proving the existence of a leaf corre-
sponding to it.

� Proving that a certi�cate was not revoked
is equivalent to proving the existence of two
certi�cates corresponding to two neighboring
leaves in the tree. One of these certi�cates has
a lower serial number than the queried certi�-
cate, and the other has a higher serial number.
(We modify this to a proof of the existence of
a single leaf at the end of this section.)

4.1 An authenticated search data

structure

We maintain a 2-3 tree with leaves corresponding to
the revoked certi�cates' serial numbers in increasing
order. (In a 2-3 tree every interior node has two or
three children and the paths from root to leaves have
the same length. Testing membership, inserting and
deleting a single element are done in logarithmic
time, where the inserting and deleting of an element
a�ect only the nodes on the insertion/deletion path.
For a detailed presentation of 2-3 trees see [1, pp.
169-180].) The property of 2-3 trees that we use is
that membership queries, insertions and deletions
involve only changes to nodes on a search path. I.e.
every change is local and the number of a�ected
paths is small.
The tree may be created either by inserting the se-
rial numbers of the revoked certi�cates one by one
into an initially empty 2-3 tree, or, by sorting the list
of serial numbers and building a degree 2 tree with
leaves corresponding to the serial numbers in the
sorted list (because the communication complexity
is minimal when the tree is of degree 2).
Every tree node is assigned a value according to the
following procedure:

� Each leaf stores a revoked certi�cate serial num-
ber as its value.

� The value of an internal node is computed by
applying a collision intractable hash function
h() to the values of its children.

The tree update procedure is as follows:



1. Delete each expired certi�cate serial number
from the 2-3 tree, updating the values of the
nodes on the deletion path.

2. Insert each newly revoked certi�cate serial
number into the tree, updating the values of
the nodes on the insertion path.

During tree update some new nodes may be created
or some nodes may be deleted due to the balancing
of the 2-3 tree. These nodes occur only on the search
path for an inserted/deleted node.
The certi�cation authority vouches for the authen-
ticity of the data structure by signing a message
containing the tree root value and the tree height.
A proof that there exists a leaf in the tree with a
certain value consists of all node values on a path
(of length equal to the tree height) from the root to
a leaf, plus the values of these nodes children. The
proof is veri�ed by checking the values of the tree
nodes values on the given path and its length. Find-
ing a fallacious proof for the existence of a leaf in the
tree amounts to breaking the collision intractability
of h.

Remark 4.1 Possible choices for h include the

more e�cient MD4 [22], MD5 [23] or SHA [21]

(collisions for MD4 and for the compress function

of MD5 were found by Dobbertin [9, 10]) and func-

tions based on a computational hardness assumption

such as the hardness of discrete log [8, 7, 4] 2 and

subset-sum [14, 12] (these are much less e�cient).

Remark 4.2 Note that an explicit serial number is

not needed. Instead, any string that is easily com-

puted from the certi�cate (e.g. hash of the certi�-

cate) may be used.

Remark 4.3 It is possible to use a family of uni-

versal one-way hash functions, U , instead of colli-

sion intractable hash functions by letting every in-

ternal node, v, hold also an index of a function

h 2 U . The function h is randomly chosen when-

ever v lies in a deletion or insertion path. The value

of a node is computed by applying h to the values of

its children concatenated with their hash function

indices. A motivation for using universal one-way

hash functions instead of collision intractable hash

functions is the successful attacks on MD4 and MD5

[9, 10]. Since universal one-way hash functions are

not susceptible to birthday attacks, their application

2The function is h(x1; x2; x3) = g
x1

1
g
x2

2
g
x3

3
(mod p). Let

g be a generator in ZZp, the CA may generate gi = gai

and compute h using a single exponentiation by h =

g

P
a
i
x
i
(mod p�1)

(mod p).

may result in a smaller increase in communication

and storage costs with respect to collision intractable

functions. Bellare and Rogaway [6] discuss methods

for creating practical universal one-way hash func-

tions.

Remark 4.4 The scheme may be used also for on-

line revocation checking of certi�cates (where the la-

tency between certi�cate revocation and CRL update

is reduced). As the result of a query, the on-line

service is supposed to return the current certi�cate

status.

In general, on-line revocation checking requires the

certi�cate validator to be trusted (where in o�-line

checking, the directory could be a non-trusted party).

In practice, it is enough that the certi�cate valida-

tor honestly informs a user about the last time it

was updated by the CA (and may be dishonest with

respect to other information). then it is not needed

for the CA to update it only on predetermined times,

and the CA may update the directory whenever the

status of a certi�cate is changed. Even if such an

assumption is not plausible, the CA may use the au-

thenticated search data structure to reduce the num-

ber of signatures it has to compute, since a signature

has to be computed only when a certi�cate status is

changed and not for every query.

4.1.1 Other data structures

For a simpler implementation of the authenticated
data structure, random treaps [2] may be used in-
stead of 2-3 trees. Treaps are binary trees whose
nodes are associated with (key, priority) pairs. The
tree is a binary search tree with respect to node keys
(i.e. for every node the keys in its left (resp. right)
subtrees are small (resp. greater) than its key), and

a heap with respect to node priorities (i.e. for ev-
ery node its priority is higher than its descendents'
priorities). Every �nite set of (key, priority) pairs
has a unique representation as a treap. In random

treaps, priorities are drawn at random from a large
enough ordered set (thus, they are assumed to be
distinct).
Seidel and Aragon [2] present simple algorithms for
membership queries, insert and delete operations
with expected time complexity logarithmic in the
size of the set S stored in the treap. Random treaps
may be easily converted into authenticated search
data structures similarly to 2-3 trees. The commu-
nication costs of these schemes is similar since the
expected depth of a random treap is similar to its
2-3 tree counterpart.

� The main advantage of random treaps is that



their implementation is much more simple than
the implementation of 2-3 trees.

� A drawback of using random treaps is that their
performance is not guaranteed in worst case.
E.g. some users may (with low probability) get
long authentication paths.

� Another drawback is that a stronger assump-
tion is needed with respect to the directory.
The analysis of random treaps is based on the
fact that the adversary does not know the exact
representation of a treap. A dishonest directory
with ability to change the status of certi�cates
may increase the computational work and com-
munication costs of the system.

4.2 The scheme

We now give details for the operations of the three
parties in the system.

CA operations:

� Creating certi�cates: The CA produces a
certi�cate by signing a message containing cer-
ti�cate data (e.g. user name and public key),
certi�cate serial number and expiration date.

� Initialization: The CA creates the 2-3 tree,
as above, for the set of initially revoked certi�-
cates. It computes and stores the values of all
the tree nodes and sends to the directory the
(sorted) list of revoked certi�cates serial num-
bers along with a signed message containing
the tree root value, the tree height and a time

stamp.

� Updating: The CA updates the tree by in-
serting/deleting certi�cates from it. After each
insertion/deletion, all a�ected tree node values
are re-computed. To update the directory, the
CA sends a di�erence list (stating which cer-
ti�cates are to be added/deleted from the pre-
vious list) to the directory plus a signature on
the new root value, tree height and time stamp.

Directory operations:

� Initialization: Upon receiving the initial re-
voked certi�cates list, the directory computes
by itself the whole 2-3 tree, checks the root
value, tree height and time stamp, and veri�es
the CA's signature on these values.

� Response to CA's update: The directory
updates the tree according to the di�erence list
received from the CA. It re-computes the values
for all the a�ected nodes and checks the root
value, tree height and time stamp.

� Response to users' queries: To answer a
user query the directory supplies the user with
the signed root value, tree height and time
stamp.

1. If the queried certi�cate is revoked, for
each node in the path from the root to
the leaf corresponding to the queried cer-
ti�cate, the directory supplies the user its
value and its children values.

2. If the queried certi�cate is not revoked
(not in the list), the directory supplies the
user the paths to two neighboring leaves
`1; `2 such that the value of `1 (resp. `2)
is smaller (resp. larger) than the queried
serial number.

Note that to reduce the communication costs,
the directory need not send the node values on
the path from root, but only the values of the
siblings of these nodes, since the user may com-
pute them by itself.

User operations:

The user �rst veri�es the CA's signature on the cer-
ti�cate and checks the certi�cate expiration date.
Then, the user issues a query by sending the direc-
tory the certi�cate serial number s. Upon receiving
the directory's answer to a query, the user veri�es
the CA's signature on the root value, tree height

and time stamp.

1. If the directory claims the queried certi�cate is
revoked, the user checks the leaf to root path
supplied by the directory by applying the hash
function h.

2. If the directory claims the queried certi�cate
is not revoked, the user checks the two paths
supplied by the directory and checks that they
lead to two adjacent leaves in the 2-3 tree, with
values `1; `2 The user checks that `1 < s < `2.

In the above scheme, the communication costs of
verifying that a certi�cate was not revoked may be
twice the communication costs of verifying that a
certi�cate is in the list. To overcome this, the tree
may be built such that every node corresponds to
two consecutive serial numbers { thus having to send



only one path in either case. Since the number of
bits needed for holding the value of a tree node, i.e.
the hash function security parameter (`hash in the
notation below) is more than twice the bits needed
for holding a certi�cate serial number, this does not
inuence the tree size.

5 Evaluation

The CA-to-directory communication costs of our
scheme are optimal (proportional to the number of
changes in the revocation list), enabling high up-
date rates. The proof supplied by the directory is
of length logarithmic in the number of revoked cer-
ti�cates. This allows the user to hold a short trans-
ferable proof of the validity of his certi�cate and
present it with his certi�cate (This proof may be
e�ciently updated, we will make use of this feature
in the certi�cate update scheme of Section 6).
In the following, we compare the communication
costs of CRL, CRS and our system (the commu-
nication costs of CRT are similar to ours). Basing
on this analysis, we show that the proposed system
is more robust to changes in parameters, and allows
higher update rates than the other.
Other advantages of the proposed scheme are:

� The CA has to keep a smaller secret than in
CRS.

� Since CA-to-directory communication is low,
the CA may communicate with the direc-
tory using a slow communication line secured
against breaking into the CA's computer (the
system security is based on the ability to pro-
tect the CA's secrets).

� Since we base our scheme on a 2-3 tree, there
is never a need to re-compute the entire tree to
update it. This allows higher update rates than
CRT.

� Another consequence of the low CA-to-
directory communication is that a CA may up-
date many directories, avoiding bottlenecks in
the communication network.

5.1 Communication costs

The parameters we consider are:

� n - Estimated total number of certi�cates (n =
3; 000; 000).

� k - Estimated average number of certi�cates
handled by a CA (k = 30; 000).

� p - Estimated fraction of certi�cates that will
be revoked prior to their expiration (p = 0:1).
(We assume that certi�cates are issued for one
year, thus, the number of certi�cates revoked
daily is n�p

365
.)

� q - Estimated number of certi�cate status
queries issued per day (q = 3; 000; 000).

� T - Number of updates per day (T = 1).

� `sn - Number of bits needed to hold a certi�cate
serial number (`sn = 20).

� `stat - Number of bits needed to hold the cer-
ti�cate revocation status numbers Y365�i and
N0 (`stat = 100).

� `sig - Length of signature (`sig = 1; 000).

� `hash - Security parameter for the hash function
(`hash = 128).

Values for n; k; p; q; T; `sn; `stat are taken from Mi-
cali [18], `sig and `hash are speci�c to our scheme.

CRL costs

� The CRL daily update cost is T �n�p�`sn since
each CA sends the whole CRL to the direc-
tory in each update. An alternative update
procedure where the CA sends to the direc-
tory only a di�erence list (which serial numbers
to add/remove from the previous CRL) costs
n�p�`sn
365

.

� The CRL daily query cost is q�p�k�`sn since for
every query the directory sends the whole CRL
to the querying user.

CRS costs:

� The CRS daily update cost is T �n � (`sn+`stat)
since for every certi�cate the CA sends `stat
bits of certi�cate revocation status.

� The CRS daily query cost is `stat � q.

The proposed scheme:

� To update the directory, the CA sends di�er-
ence lists of total daily length of n�p�`sn

365
+T �`sig.

� To answer a user's query, the directory sends
up to 2 � log

2
(p � k) numbers, each `hash bits

long, totaling 2�q �`hash �log2(p�k) bits.

The following table shows the estimated daily com-
munication costs (in bits) according to the three
schemes.



CRL CRS Proposed
costs costs scheme

Daily update 6 � 106 3:6 � 108 1:7 � 104

(CA-directory)

Daily queries 1:8 � 1011 3 � 108 7 � 109

(Directory-users)

As shown in the table, the proposed scheme costs are
lower than CRL costs both in CA-to-directory and
in directory-to-users communication. The CA-to-
directory costs are much lower than the correspond-
ing CRS costs but, the directory-to-user (and thus
the over all) communication costs are increased.
Note that in practice, due to communication over-
heads, the di�erence between CRS and the proposed
method in Directory-to-users communication may
be insigni�cant.

5.2 Robustness to changes

Our scheme is more robust to changes in parame-
ters than CRL and CRS. Since these are bound to
change in time or due to the speci�c needs of dif-
ferent implementations, it is important to have a
system that is robust to such changes.

Changes will occur mainly in the total number of
certi�cates (n) and the update rate (T ). In the pro-
posed method, changes in n are moderated by a
factor of p. Changes in T are moderated by the fact
that the update communication costs are not pro-
portional to nT but to T . Figure 1 shows how the
CA-to-directory update communication costs of the
three methods depend on the update rate (all other
parameters are held constant). The update commu-
nication costs limit CRS to about one update a day
(Another factor that limits the update rate is the
amount of computation needed by a user in order
to verify that a certi�cate was not revoked). The
proposed method is much more robust, even allow-
ing once per hour updates.

6 A certi�cate update scheme

Some protocols avoid the need for a revocation sys-
tem by using short-term certi�cates. (e.g. micropay-
ments protocols when a certi�cate owner may cause
a limited damage [13]). These certi�cates are issued
daily and expire at the end of the day of issue. Actu-
ally, even shorter periods are desired and the main
limit is due to the increase in the certi�cation au-
thority computation (certi�cates for all users have
to be computed daily) and communication (certi�-

CRL            

CRS            

proposed scheme

0 5 10 15 20 25
10

4

10
5

10
6

10
7

10
8

10
9

10
10

update rate [updates/day]

da
ily

 u
pd

at
e 

co
st

s 
[b

its
]

Figure 1: Daily CA-to-directory update costs vs.
update rate.

cates should be sent to their owners) short-term cer-
ti�cates cause.

An on-line/o�-line digital signature scheme (like
CRS) will reduce the computation the CA has to
perform, but, it will not reduce signi�cantly the
communication costs, since the CA has to send dif-

ferent messages to di�erent users, making the CA a
communication bottleneck. This calls for a solution
where the CA performs a simple computation (say,
concerning only new users and users whose certi�-
cates are not renewed) and sends a common update
message to all users. Using this message, exactly all
users with non-revoked certi�cates should be able to
prove the validity of their certi�cates.

We suggest a simple modi�cation of our certi�cate
revocation scheme that yields an e�cient certi�cate
update scheme in which the CA sends the same up-
date message to all users. In this solution we do
not assume the existence of a directory with infor-
mation about all certi�cates, but of local directories
that may hold the latest messages that were sent by
the directory.

6.1 The scheme

As before, the scheme is based on a tree of revoked
certi�cates created by the certi�cation authority,
presented in Section 4.1. Since there is no way to
extract certi�cates from a directory, every user gets
an initial certi�cate that may be updated using the
CA's messages. Speci�cally, the CA augments every
issued certi�cate with the path proving its validity,
this is the only part of the certi�cate that is updated
periodically.

To update all certi�cates simultaneously, the CA



updates its copy of the tree, and publishes the tree
paths that where changed since the previous update.
Every user holding a non-revoked certi�cate locates
the lowest node, v, on a path that coincides with his
path, and updates his path by copying the new node
values from v up to the root. All users holding a
revoked certi�cate can not update their path, unless
a collision is found for the hash function h.

The information sent by the CA is optimal (up to a
factor of `hash). For r insertions/deletions since the
previous update, the CA has to publish a message
of length r`hash logn bits.

Since the CA communication is reduced, one may
use this update scheme for, say, updating certi�-
cates once every hour. This may cause some users
to lag in updating their certi�cates, and the local
directories should save several latest update mes-
sages, and some aggregate updates (combining up-
date messages of a day) enabling uses that lag sev-
eral days to update their certi�cates.

Acknowledgments

We thank Omer Reingold for many helpful discus-
sions and for his diligent reading of the paper. We
thank the anonymous referees for their helpful com-
ments.

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman. \Data
Structures and Algorithms". Addison-Wesley,
1983.

[2] R.G. Seidel., C.R. Aragon \Randomized Search
Trees". Proc. 30th Annual IEEE Symp. on
Foundations of Computer Science, pp. 540-545,
1989.

[3] M. Blum, W. Evans, P. Gemmell, S. Kan-
nan, M. Naor. \Checking the Correctness of
Memories". Algorithmica Vol.12 pp. 225-244,
Springer-Verlag, 1994.

[4] M. Bellare, O. Goldreich, S. Goldwasser. \In-
cremental Cryptography: The Case of Hashing
and Signing". Advances in Cryptology - Crypto
94. Ed. Y. Desmedt. Lecture Notes in Com-
puter Science 839, Springer-Verlag, 1994.

[5] M. Bellare, O. Goldreich, S. Goldwasser. \In-
cremental Cryptography and Application to
Virus Protection". Proc. 27th ACS Symp. on
Theory of Computing, 1995.

[6] M. Bellare, P. Rogaway. \Collision-Resistant
Hashing: Towards Making UOWHFs Practi-
cal". Advances in Cryptology - CRYPTO '97,
Lecture Notes in Computer Science, Springer-
Verlag, 1997.

[7] S. Brands. \An e�cient o�-line electronic cash
system based on the representation problem".
CWI Technical Report, CS-R9323, 1993.

[8] D. Chaum, E. van Heijst and B. P�tzmann.
\Cryptographically strong undeniable signa-
tures, unconditionally secure for the signer".
Advances in Cryptology - CRYPTO '91, Lec-
ture Notes in Computer Science 576, Springer-
Verlag, 1992, pp. 470-484.

[9] H. Dobbertin. \Cryptanalysis of MD4". D.
Gollmannn, Ed. Fast Software Encryption, 3rd
international workshop. Lecture Notes in Com-
puter Science 1039, Springer-Verlag, pp. 53-69,
1996.

[10] H. Dobbertin. \Cryptanalysis of MD5". Rump
session, Eurocrypt 1996.
http://www.iacr.org/conferences/ec96

/rump/index.html

[11] S. Even, O. Goldreich, S. Micali. \On-Line/O�-
Line Digital Signatures". Journal of Cryptol-
ogy, Springer-Verlag, Vol. 9 pp. 35-67, 1996.

[12] O. Goldreich, S. Goldwasser, and S. Halevi.
\Collision-Free Hashing from Lattice Prob-
lems". ECCC, TR96-042, 1996.
http://www.eccc.uni-trier.de/eccc/

[13] A. Herzberg, H. Yochai. \Mini-Pay: Charging
per Click on the Web". Proc. 6th International
World Wide Web Conference, 1997.
http://www6.nttlabs.com/

[14] R. Impagliazzo, M. Naor. \E�cient Crypto-
graphic Schemes Provably as Secure as Subset
Sum". Journal of Cryptology, Springer-Verlag,
Vol. 9 pp. 199-216, 1996.

[15] C. Kaufman, R. Perlman, M. Speciner. \Net-
work Security. Private Communication in a
Public World". Prentice Hall series in network-
ing and distributed systems, 1995.

[16] P. Kocher. \A Quick Introduction to Certi�-
cate Revocation Trees (CRTs)".
http://www.valicert.com/company/crt.html

[17] R. C. Merkle. \A Certi�ed Digital Signa-
ture". Proc. Crypto '89, Lecture Notes in



Computer Science 435, pp. 234-246, Springer-
Verlag, 1989.

[18] S. Micali. \E�cient Certi�cate revocation".
Technical Memo MIT/LCS/TM-542b, 1996.

[19] M. Naor, M. Yung. \Universal one-way hash
functions and their cryptographic applica-
tions". Proc. 21st ACM Symp. on Theory of
Computing, pp. 33-43, 1989.

[20] U.S. National Institute of Standards and Tech-
nology. \A Public Key Infrastructure for U.S.
Government unclassi�ed but Sensitive Applica-
tions". September 1995.

[21] U.S. National Institute of Standards and Tech-
nology. \Secure Hash Standard". Federal Infor-
mation Processing Standards Publication 180,
1993.

[22] R. Rivest. \The MD4 message-digest algo-
rithm". Internet RFC 1320, 1992.

[23] R. Rivest \The MD5 message-digest algo-
rithm". Internet RFC 1321, 1992.


