
The following paper was originally published in the
Proceedings of the 7th USENIX Security Symposium

San Antonio, Texas, January 26-29, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

A Java Beans Component Architecture for Cryptographic Protocols

Pekka Nikander and Arto Karila
Helsinki University of Technology

A Java Beans Component Architecture for Cryptographic Protocols

Pekka Nikander

pekka.nikander@hut.fi
Helsinki University of Technology

Arto Karila

arto.karila@hut.fi
Helsinki University of Technology

Abstract

Global networking has brought with it both new oppor-
tunities and new security threats on a worldwide scale.
Since the Internet is inherently insecure, secure crypto-
graphic protocols and a public key infrastructure are
needed. In this paper we introduce a protocol compo-
nent architecture that is well suited for the implementa-
tion of telecommunications protocols in general and
cryptographic protocols in particular. Our implementa-
tion framework is based on the Java programming lan-
guage and the Conduits+ protocol framework. It
complies with the Beans architecture and security API
of JDK 1.1, allowing its users to implement application
specific secure protocols with relative ease. Further-
more, these protocols can be safely downloaded through
the Internet and run on virtually any workstation
equipped with a Java capable browser

*

. The framework
has been implemented and tested in practice with a vari-
ety of cryptographic protocols. The framework is rela-
tively independent of the actual cryptosystems used and
relies on the Java 1.1 public key security API. Future
work will include Java 1.2 support, and utilization of a
graphical Beans editor to further ease the work of the
protocol composer.

1 Introduction

Designing and implementing telecommunications pro-
tocols has proven to be a very demanding task. Building
secure cryptographic protocols is even harder, because
in this case we have to be prepared for not just random
errors in the network and end-systems but also premedi-
tated attackers trying to take advantage of any weak-
nesses in the design or implementation [3] [29]. During
the last ten years or so, much attention has been focused
on the formal modelling and verification of crypto-
graphic protocols [21] [27]. However, the question how

to apply these results to real design and implementation
has received considerably less attention [17]. Recent re-
sults in the area of formalizing architecture level soft-
ware composition and integrating it with object oriented
modelling and design seem to bridge one section of the
gap between the formal theory and everyday practice [2]
[16] [31].

In this paper we present a practical architecture and
an implementation framework for building secure com-
munications protocols that have the following proper-
ties:
• The architecture is made to the needs of today’s appli-

cations based on the global infrastructure that is al-
ready forming (Internet, WWW, Java).

• The implementation framework allows us to construct
systems out of our own trusted protocol components
and others taken from the network. These systems can
be securely executed in a “protocol sand box”, where
they, for example, cannot leak encryption keys or
other secret information.

• Together they allow us to relatively easily implement
application specific secure protocols, securely down-
load the protocol software over the Internet and use it
without any prior arrangements or software installa-
tion.

We have implemented the main parts of the architecture
as an object oriented protocol component framework
called Java Conduits. It was built using JDK 1.1 and is
currently being tested on the Solaris operating system.
The framework itself is pure Java and runs on any Java
1.1 compatible virtual machine.

Our goal is to provide a sound practical basis for pro-
tocol development, with the desire to create higher level
design patterns and architectural styles that could be for-
mally combined with protocol modelling and analysis.
The current focus lies in utilizing the “gang of four” ob-
ject level design patterns [10] to create a highly stylistic
way of building both cryptographic and non-crypto-
graphic communications protocols. Our implementation
experience has shown that this approach leads to a
number of higher level design patterns, i.e., protocol

*

In order to achieve real sandbox security, either JDK 1.2 or
a specially tailored SecurityManager is needed [12].

patterns, that describe how protocols should be com-
posed from lower level components in general.

The rest of this paper is organized as follows. In
Section 2 we introduce our architecture and its relation-
ship to existing work. In Section 3 we present the com-
ponent framework developed. Section 4 dwells into
implementational details and experience gained while
building prototypes of real protocols. At the end we
present a summary (Section 5) and outline some future
work (Section 6).

2 The architecture

In our view, the world to which we are building applica-
tions consists of the following main components: the

In-
ternet

, the

World Wide Web

 (WWW), the

Java
programming language and execution environment

and
an

initial security context

 (based on predefined trusted
keys). Our architecture is based on these four corner
stones. In addition, there are three more components
that are not indispensable but “nice-to-have”: a

Public
Key Infrastructure

 (PKI), the

Internet Security Associa-
tion and Key Management Protocol

 (ISAKMP) and the

Internet Protocol Security Architecture

 (IPSEC).

2.1 The essential components

The world-wide Internet has established itself as the
dominating network architecture that even the public
switched telephone network has to adapt to. The new In-
ternet Protocol IPv6 will solve the main problem of ad-
dress space, and together with new techniques, such as
resource reservation and IP switching, provide support
for new types of applications, such as multimedia on a
global scale. As we see it, the only significant threats to
the Internet are political, not technical or economic. We
regard the Internet, as well as the less open extranet and
intranet, as an inherently untrusted network.

The World Wide Web (WWW) has been the fastest
growing and most widely used application of the Inter-
net. In fact, the WWW is an application platform which
is increasingly being used as an user interface to a multi-
tude of applications. Hyper Text Markup Language
(HTML) forms and the Common Gateway Interface
(CGI) make it possible to create simple applications
with the WWW as the user interface. More recently, we
have seen the proliferation of executable content.

The Java programming language extends the capabili-
ties of the WWW by allowing us to download executa-
ble programs, Java applets, with WWW pages. A Java
virtual machine has already become an essential part of
a modern web browser and we see the proliferation of

Java as being inevitable. We are basing our work on Java
and the signed applets security feature of Java 1.1.

In order to communicate securely, we always need to
start with an initial security context. In our architecture,
the minimal initial security context contains the trusted
keys of our web browser, which we can use to check the
signatures of the downloaded applets and other Java
Beans.

2.2 The optional components

While our architecture does not depend on the existence
of the following three components, they are “nice to
have”, as they will make the architecture more efficient
and scalable.

A public key infrastructure (PKI) allows us to associ-
ate a public key with a person, company, service, author-
ization, or such with a reasonable assurance level. It also
allows us to prove the authenticity of a digital signature
in a court of law. A global PKI is a prerequisite for many
new application areas for the Internet. Until recently,
most of the work in this area has focused on X.509 type
certificates and a hierarchical tree of certification au-
thorities (CAs). While this approach works for some ap-
plication areas, e.g., in relations between governments,
it is not suitable for others, since trust is inherently in-
transitive. The Simple Public Key Infrastructure (SPKI)
[9] appears to us as a more widely applicable PKI.

The Internet Security Association and Key Manage-
ment Protocol (ISAKMP) [19] provides us with a stand-
ard way of securely generating keys and setting up
security contexts. We expect a number of application-
specific security protocols to be built on top of
ISAKMP. The authentication information needed for se-
curing a connection can easily be augmented with capa-
bilities such as authorization information. This allows
future access control policies to be based on signed au-
thority in addition to explicit identity.

The Internet Protocol Security Architecture (IPSEC)
[6] [30] is an extension to IPv4 and an essential part of
IPv6. It provides us with authenticated, integral and con-
fidential channels for transparent exchange of informa-
tion between any two hosts, users or programs on the
Internet. Designed to be used everywhere, it will be im-
plemented on most host and workstation operating sys-
tems in the near future. The flexible authentication
schemes provided by ISAKMP make it possible to indi-
vidually secure single TCP connections and UDP packet
streams.

IPSEC is not yet ubiquitously available, so, for now,
its functionality can be substituted with an transport
layer protocol such as SSL. The current JDK architec-
ture does not allow IPSEC to be implemented in Java

without resorting to native interfaces that allow access to
the underlying protocol stack or media.

2.3 Implementational requirements

Future protocols will be drastically different from what
most of us believed only a few years ago. The role of se-
curity cannot be over-emphasized. Unfortunately, most
of the tools and frameworks developed so far either tend
to ignore security or do not facilitate integrating proto-
col security with that of the underlying operating system
or the supported applications. This is unacceptable,
since security should be designed and built in to the pro-
tocols and the system as a whole from the very begin-
ning.

The earlier protocol frameworks were typically based
on a virtual operating environment that was clearly sep-
arated from the underlying operating system. From the
modularization point of view this was good. However,
this made it hard to build application level programs that
were able to use the protocols running within the frame-
work. Java Conduits is clearly different in this respect.
For example, under the JavaOS, the protocols and the
applications all run within a single virtual environment,
making seamless integration straightforward.

The use of an object oriented implementation lan-
guage allows us to extensively use object-level design
patterns. This makes the framework itself more generic
and extensible, and creates a highly stylistic way for
writing actual protocol implementations. With a suitable
object oriented design tool, the outline for the classes
needed to implement a new protocol can be created in
minutes. The actual implementation code for the proto-
col actions typically takes a little longer, depending on
the complexity of the protocol.

Performance will always be an issue with communi-
cations protocols. Even though processing power is con-
stantly increasing, the new applications need ever-
increasing bandwidth and reasonable transfer delay. The
new protocols require large transfer capacity, short and
fixed delay, and lots of cryptography, among other
things.

There are two facets to performance. First, the
processing power available should be used as efficiently
as possible. The importance of this will gradually de-
crease as processing power increases. Second, and more
important, there should not be any design limitations
which set a theoretical limit to the performance of the
protocols, no matter how much processing power we
have. We want to allow as much parallelism as possible
and build the protocol implementations such that they
can be efficiently divided between a number of proces-
sors. Java, with its built-in threads and synchronization,
allows parallelism to be utilized with relative ease.

2.4 Related work

Our implementation framework is heavily based on the
ideas first presented with the x–Kernel [15] [18] [22]
and the Conduits [32] and Conduits+ [14] frameworks.
Some of the ideas, especially the microprotocol ap-
proach, have also been used in other frameworks, in-
cluding Isis [8], Horus/Ensemble [24], and Bast [11].
However, Isis and Horus concentrate more on building
efficient and reliable multiparty protocols, while Bast
objects are larger than ours, yielding a white box ori-
ented framework instead of a black box one.

Compared to x–Kernel, Isis and Horus, our main nov-
elty is in the use and recognition of design patterns at
various levels. Furthermore, our object model is more
fine-grained. These properties come hand-in-hand —
using design patterns tends to lead to collections of
smaller, highly regular objects.

The Horus/Ensemble security architecture is based on
Kerberos and Fortezza. Instead, we base our architecture
on the Internet IPSEC architecture. Kerberos does not
scale well and requires a lot of trusted functionality.
Fortezza is developed mainly for U.S. Government use,
and not expected to be generally available. On the other
hand, we expect the IPSEC architecture to be ubiqui-
tously available in the same way as the Domain Name
System (DNS) is today.

Most important, our framework is seamlessly inte-
grated into the Java security model. It utilizes both the
language level security features (packages, visibility)
and the new Java 1.1 security functionality. A further
difference is facilitated by the Java run time model. Java
supports code and object mobility. This allows applica-
tion specific protocols to be loaded or used on demand.

Another novelty lies in the way we use the Java Beans
architecture. This allows modern component based soft-
ware tools to be used to compose protocols. The intro-
duction of the Protocol class, or the metaconduit (see
Section 3.2), which allows composed subgraphs to be
used as components within larger protocols, is espe-
cially important. The approach also allows the resulting
protocol stacks to be combined with applications.

3 The implementation framework

Java Conduits provides a fine grained object oriented
protocol component framework. The supported way of
building protocols is very patterned, on several levels.
The framework itself utilizes heavily the “gang of four”
object design patterns [10]. A number of higher level
patterns for constructing individual protocols are emerg-
ing. At the highest level, we envision a number of archi-
tectural patterns to surface as users will be able to

construct protocol stacks that are matched to application
needs.

Our goal is to allow application-specific secure proto-
cols to be built from components. The protocols them-
selves can be constructed from lower level components,
called conduits. The protocol components, in turn, can
be combined into complete protocol stacks. To achieve
this, we have to solve a number of generic problems
faced by component based software.

3.1 Component based software
engineering

Recently, attention has shifted from basic object ori-
ented (OO) paradigms and object oriented frameworks
towards combining the benefits of OO design and pro-
gramming with the broad scale architectural viewpoints
[2] [20]. Component based software architectures and
programming environments play a crucial role in this
trend.

For a long time, it was assumed that object oriented
programming alone would lead to software reusability.
However, experience has shown this assumption
false [20]. On the other hand, non object oriented soft-
ware architectures, such as Microsoft OLE/COM and
IBM/Apple OpenDoc, have shown modest success in
creating real markets for reusable software components.
Early industry response seems to indicate that the Java
Beans architecture may prove more successful.

The Java Beans component model we are using de-
fines the basic facets of component based software to be

components

,

containers

 and

scripting

. That is, compo-
nent based software consists of component objects that
can be combined into larger components using contain-
ers. The interaction between the components can be
controlled by scripts that should be easy to produce, al-
lowing less sophisticated programmers and users to cre-
ate them. This is achieved through

runtime interface
discovery

,

event handling

,

object persistence

, and

appli-
cation builder support

. [33]
Java as a language provides natural support for run–

time interface discovery. A binary Java class file con-
tains explicit information about the names, visibility and
signatures of the class and its fields and methods. Origi-
nally provided to enable late loading and to ease the
fragile superclass problem, the runtime environment
also offers this information for other purposes, e.g., to
application builders. Java 1.1 provides a reflection API
as a standard facility, allowing any authorized class to
dynamically find out and access the class information.

The Java Beans architecture introduced a new event
model for Java 1.1. The model consists of

event listen-
ers

,

event objects

 and

event sources

. The mechanism is

very lean, allowing basically any object to act as a event
source, event listener, or even the event itself. Most of
this is achieved through class and method naming con-
ventions, with some extra support through manifesta-
tional interfaces.

Compared to other established component software
architectures, i.e., OLE/COM, CORBA and OpenDoc,
the Java Beans architecture is relatively light-weight.
Under Java 1.1, nearly any object can be turned into a
Java Bean. If an object’s class supports serialization

*

and the object does not contain any references to its en-
vironment, the object can be considered to be a Bean
without any changes at all. When Bean properties are
provided by naming access functions appropriately,
event support added with a few lines of code, and any
references to the enclosing environment marked tran-
sient, almost any class can be easily turned into a Bean.

On the other hand, the Java Beans architecture, as it is
currently defined, does not address some of the biggest
problems of component based software architectures
any better than its competitors. These include the mix-
ing and matching problem that faces anyone trying to
build larger units from the components. Basically, each
component supports a number of interfaces. However,
the semantics of these interfaces are often not immedi-
ately apparent, nor can they be formally specified within
the component framework. When the components are
specifically designed to co-operate, this is not a prob-
lem. However, if the user tries to combine components
from different sources, the interfaces must be adapted.
This may, in turn, yield constructs that cannot stand but
collapse due to semantic mismatches.

In the protocol world, the mixing and matching prob-
lem is reflected in two distinct ways. First, the data
transfer semantics differ. Second, and more importantly,
the information content needed to address the intended
recipient(s) of a message greatly differ. In our frame-
work, the recipient information is always implicitly
available in the topology of the conduit graph. Thus, the
protocols have no need to explicitly address peers once
an appropriate conduit stream has been created.

It has been shown that secure cryptographic proto-
cols, when combined, may result in insecure protocols
[13]. This problem cannot be easily addressed within the
current Java Beans architecture. We hope that future re-
search, paying more attention to the formal semantics,
will alleviate this problem.

*

A Java class supports serialization by manifesting
implementation of the

java.lang.Serializable

interface. Most Java classes can do this. However, there are
classes that are inherently impossible to be serialized as
such, e.g.,

java.lang.Thread

.

3.2 Basic Conduits architecture

The basic architecture of Java Conduits is based on that
of Conduits+ by Hueni, Johnson and Engel [14]. The
basic kinds of objects used are

conduits

 and

messages

.
Messages represent information that flows through a
protocol stack. A conduit, on the other hand, is a soft-
ware component representing some aspect of protocol
functionality. To build an actual protocol, a number of
conduits are connected into a graph. Protocols, moreo-
ver, are conduits themselves, and may be combined with
other protocols and basic conduits into larger protocol
graphs, representing protocol stacks.

There are five kinds of conduits:

Session, Mux, Con-
duitFactory, Adaptor

 and

Protocol

. Each conduit has
two sides: side A and side B. A given conduit can con-
nect to either side A or side B of another conduit.

Sessions are the basic functional units of the frame-
work. A session implements the finite state machine of a
protocol, or some aspects of it. The session remembers
the state of the communication and obtains timers and
storage for partial messages from the framework. The
session itself does not implement the behaviour of the
protocol but delegates this to a number of State objects,
using the State design pattern.

The Mux conduits are used to multiplex and demulti-
plex protocol messages. In practical terms, a Mux con-
duit has one side A that may be connected to any other
conduit. The side B[0] of the Mux is typically connected
to a ConduitFactory. In addition, the Mux has a number
of additional side B[i] conduits. Protocol messages ar-

riving from these conduits are multiplexed to the side A
conduit, and vice versa.

If the Mux determines, during demultiplexing, that
there is no suitable side B[i] conduit to which a message
may be routed, the Mux routes the message to the Con-
duitFactory attached to side B[0]. The ConduitFactory
creates a new Session (or Protocol) that will be able to
handle the message, installs the newly created Session
to the graph, and routes the message back to the Mux.

Adaptors are used to connect the conduit graph to the
outside world. In conduit terms, adapters have only side
A. The other side, side B, or the communication with the
outside world, is beyond the scope of the framework,
and can be implemented in whatever means feasible. For
example, a conduit providing the TCP service may im-
plement the Java socket abstraction.

A protocol is a kind of metaconduit that encapsulates
several other conduits. A protocol has sides A and B.
However, typically these are conduit connections that
are mainly used for the delivery of various kinds of in-
terprotocol control messages. Typically the actual data
connections directly stretch between the conduits that
are located inside some protocols. In practice, a protocol
is little more than a conduit that happens to delegate its
sides, i.e., side A and side B independently, to other con-
duits. The only complexity lies in the building of the ini-
tial conduit graph for the protocol. Once the graph is
built, it is easy to frame it within a protocol object. The
protocol object can then be used as a component in
building other, more complex protocols or protocol
stacks.

Figure 1: The five types of conduits

Protocol

Session

Mux

Factory

Adaptor

Figure 2: Aa example of a simple partial protocol graph

Session

Mux

Factory

Adaptor

Session Session

Protocol

3.3 Using Java to build protocol
components

Java 1.1 provides a number of features that facilitate
component based software development. These include

inner classes

, Bean

properties

,

serialization

 and Bean

events

. These all play an important role in making devel-
opment of protocols easier.

A basic protocol component, i.e., a conduit, has (at
least) two sides. Whenever a message arrives at the pro-
tocol component, it is important to know where the mes-
sage came from, in order to be able to act on the
message. On the other hand, it is desirable to view each
conduit as a separate unit, having its own identity. Java
inner classes and the way the Java Beans architecture
uses them, provides a neat solution for this problem.

Each conduit is considered a single Java Bean. Inter-
nally the component is constructed from a number of
objects: the conduit itself, sides A and B, and typically
also some other objects depending on the exact sort of
the conduit. The Conduit class itself is a normal Java
class, specialized as a Session, Mux, ConduitFactory or
such. On the other hand, the side objects, A and B, are
implemented as inner classes of the Conduit class. In
most respects, these objects are invisible to the rest of
the object world. They implement the Conduit interface,
delegating most of the methods back to the conduit it-
self. However, their being separate objects makes the
source of a message arriving at a conduit immediately
apparent.

Since the conduits are attached to each other, when
constructing the conduit graph, the internal side objects
are actually passed to the neighbour conduits. Now,
when the neighbouring conduit passes a message, it will
arrive at the receiving conduit through some side object.
This side object uniquely identifies the source of the
message, thereby allowing the receiving conduit to act
appropriately.

The Java Bean properties play a different role. Using
the properties, the individual conduits may publish run
time attributes that a protocol designer may use through
a visual design tool. For example, the Session conduits
allow the designer to set the initial state as well as the set
of allowed states using the properties. Similarly, the Ac-
cessor object connected to a Mux may be set up using
the Beans property mechanism.

Java 1.1 provides a generic event facility that allows
Beans and other objects to broadcast and receive event
notifications. In addition to the few predefined notifica-
tion types, the Beans are assumed to define new ones.
Given this, it is natural to map conduit messages onto
Java events.

In Java Conduits, a protocol message is composed of
three objects: a

message carrier

, a

message body

 and a

message interpreter

. The message carrier extends the

java.util.EventObject

 class, thereby declaring
itself as a Bean event. The carrier includes references to
the message body that holds the actual message data,
and a message interpreter that provides protocol specific
interpretation of the message data. The message
interpreters are called Messengers, and they act in the
role of a command according to the Command pattern
[10].

Messages are passed from one conduit to the next one
using the Java event delivery mechanism. The next con-
duit registers its internal side object as an event listener
that will receive events generated by the previous con-
duit.

The actual message delivery is synchronous. In prac-
tice, the sending conduit indirectly invokes the receiving
conduit’s accept method, passing the message carrier as
a parameter. The receiving conduit, depending on its
type and purpose, may apply the Messenger to the cur-
rent protocol state, yielding an action in the protocol
state machine, replace the Messenger with another one,
giving new interpretation to the message, or act on the
message independent on the Messenger. Typically, the
same event object is used to pass the message from con-
duit to conduit until the message is delayed or con-
sumed.

Java Conduits use the provider / engine mechanism
offered by the JDK 1.1 security API. Since neither the
encryption / decryption functionality nor its interface
specification was not available outside the United States,

Figure 3: Structure of conduits messages

Class

Legend:

extends
refers to

java.util.EventObject

Message
message
carrier

Messenger
message
interpreterBuffer

message
data

we created a new engine class

java.security.Ci-
pher

 along the model of

java.security.Signa-
ture

 and

java.security.MessageDigest

classes.
The protocols use the cryptographic algorithms di-

rectly through the security API. The data carried in the
message body is typically encrypted or decrypted in
situ. When the data is encrypted or decrypted, the asso-
ciated Messenger is typically replaced to yield new in-
terpretation for the data.

3.4 Usage of language level security
features

Java offers a number of language level security features
that allow a class library or a framework to be secure
and open at the same time. The basic facility behind
these features is the ability to control access to fields and
methods. In Java, classes are organized in packages. A
well designed package has a carefully crafted external
interface that controls access to both black box and
white box classes. Certain behaviour may be enforced
by making classes or methods final and by restricting
access to the internal features used to implement the be-
haviour. Furthermore, modern virtual machines divide
classes into security domains based on their classloader.
There are numerous examples of these approaches in the
JDK itself. For example, the

java.net.Socket

class uses a separate implementation object, belonging
to a subclass of the

java.net.SocketImpl

 class,
to provide network services. The internal SocketImpl
object is not available to the users or subclasses

*

 of the
socket class. The

java.net.SocketImpl

 class, on
the other hand, implements all functionality as protected
methods, thereby allowing it to be used as a white box.

The Java Conduits framework adheres to these con-
ventions. The framework itself is constructed as a single
package. The classes that are meant to be used as black
boxes are made

final

. White box classes are usually

abstract

. Their behaviour is carefully divided into
user extensible features and fixed functionality.

The combination of black box classes, fixed behav-
iour, and internal, invisible classes allows us to give the
protocol implementor just the right amount of freedom.
New protocols can be created, but the framework con-
ventions cannot be broken. Nonetheless, liberal usage of
explicit interfaces makes it possible to

extend

 the frame-
work, but again without the possibility of breaking the
conventions used by the classes provided by the frame-
work itself.

All this makes it possible to create

trusted protocols

,
and to combine them with untrusted, application specific
ones. This is especially important with cryptographic
protocols. The cryptographic protocols need access to
the user’s cryptographic keys. Even though the actual
encryption and other cryptographic functions are per-
formed by a separate cryptoengine, the current Java 1.1
security API does not enforce key privacy. However, it is
easy to create, e.g., an encryption / decryption micropro-
tocol that encrypts or decrypts a buffer, but does not al-
low access to the keys themselves.

3.5 Object level design patterns used in
the resulting architecture

The Conduits architecture is centred around the idea of a
conduit graph that is traversed by protocol messages.
The graph is the local representation of a protocol stack.
The messages represent the protocol messages ex-
changed by the peer protocol implementations. This as-
pect of a graph and graph traversal is abstracted into a
Visitor pattern [10]. The pattern is generalized in order
to allow also other kinds of visitors to be introduced on
demand. These may be needed, e.g., to pass interproto-
col control messages or to visualize protocol behaviour.

In this pattern, a protocol message or other visitor ar-
rives as a Java event at an internal side object of a con-
duit. The side object passes the message to the conduit
itself. The conduit invokes the appropriate overloaded
at(ConduitType) method of the message carrier, allow-
ing the message decide how to act, according to the Vis-
itor pattern.

As a more complex example of the usage of the gang
of four patterns, let us consider the situation when a pro-
tocol message arrives at a Session that performs crypto-
graphic functions (see Figure 5). The execution
proceeds in steps, utilizing a number of design patterns.

*

Actually, other classes within the same package can access
the SocketImpl object. Classes outside the package can’t.

Figure 4: A visitor arrives at a Conduit

aConduitSide aConduit aVisitor

accept(aVisitor)

acceptFrom(
aVisitor,
aConduitSide)

at(aSpecificConduit)

Figure 5: A Message arrives at a cryptographic Session

aSessionSide aSession aMessage

accept(aVisitor)

acceptFrom(
aVisitor,
aConduitSide)

at(aSession)

apply(aMessage, aMessenger)

aMessenger

apply(aState, aSession, aMessage)

aState

encrypt(aSession, aMessage)

getByteArrayReference()

aCipher

getKeyReference()

encrypt(...)

Step 1.

Step 2.

Step 3.

Step 4.

1. The message arrives at the Session according to the
Visitor pattern.

The message is passed to the Session’s internal side
as a Java Beans visitor event. The event is passed to
the session, which invokes the message’s at(Session)
method. Since the visitor in hand is a message, it calls
back the Session’s apply(Message) method.

2. The Session gets the message, and applies it accord-
ing to the command pattern.

The Session uses the Messenger command object,
and asks it to be applied on itself, using the current
state and message.

3. The Messenger command object acts on the session,
state and message (second half of the Command pat-
tern).

This behaviour is internal to the protocol. Typically
all states of the protocol implement an interface that
contains a number of command methods. The Mes-
senger calls one of these, depending on the message’s
type. In the example situation where a message ar-
rives and should be sent encrypted, the Messenger in-
vokes the protocol state’s encrypt(Session, Message)
method.

4. The current State object acts on the Session and Mes-
sage.

This, again, depends on the protocol. The State may
replace the current state at the Session with another
State (according to the State pattern), modify the ac-

tual data carried by the message, or replace its inter-
pretation by changing the Messenger associated with
the Message. In our example, the State encrypts the
message data. A reference to a Cipher has been ob-
tained during the State initialization through the Java
1.1 security API. The key objects are stored at the
Session conduit.

As examples of other kinds of usage of patterns, the fol-
lowing are worth mentioning:
• The actual encoding/decoding aspect of the Muxes is

delegated to separate Accessor objects using the Strat-
egy pattern.

• The State objects are designed to be shared between
the Sessions of the same protocol. In order to encour-
age this behaviour, the base State class implements
the basic details needed for the Singleton pattern.

• The ConduitFactories are used as black boxes in the
framework. Each ConduitFactory has a reference to a
Conduit that acts as its prototype, following the Pro-
totype pattern.

• Obviously, the Adaptor conduits act according to the
Adapter pattern with respect to the world outside the
conduits framework.

• With respect to the Visitor pattern, the Protocol con-
duits act according to the Proxy pattern, delegating
actual processing to the conduits encapsulated into
the protocol.

3.6 Protocol design patterns

Our experience with the framework has shown that pro-
tocol independent implementation patterns do arise.
That is, there seems to be certain common ways how the
different conduits are connected to each other when
building protocols. Here we show how the use of en-
cryption tends to be reflected as a conduit topology pat-
tern.

A cryptographic protocol handles pieces of informa-
tion that are binary encoded and cryptographically pro-
tected. Usually the whole message is signed

*

, encrypted,
or both. This yields a highly regular conduits structure
where three sessions are stacked on top of each other
(see Figure 6). The uppermost session (FSM) receives
messages from upper protocols or applications, and
maintains the protocol state machine, if any. Directly be-
low lies a session that takes care of the binary encoding
and decoding of the message data (Coder). The lower-
most session within the protocol takes care of the actual
cryptographic functions (Cipher).

According to the conduits architecture, the actual
cryptographic keys are stored into the cryptosession.
Thus, the information about what key to use is implicitly
available from the conduit graph topology. However,
this is not always feasible.

In the case of IPSEC AH protocol we resorted to stor-
ing the keying information as additional, out of band in-
formation within the outgoing protocol message.
Similarly, the incoming messages are decorated with in-
formation about the security associations that actually
were used to decrypt or the check the message integrity.
These are then checked further up in the protocol stack
to ensure security policy.

4 Implementation experiences

Our current prototype is the third one in a series. The
first working prototype was successfully implemented in
December 1996. The second one was a complete re-
write, based on the experiences with the first one. The
main difference between the second and third prototypes
is Java Beans support. The only major change needed
was to the message delivery mechanism, due to the
added Java event support. Other than that, compliance
with the Beans architecture required method naming
changes and other minor changes needed to properly
support serialization. The protocols themselves were
transferred from the second framework prototype to the
third with almost no changes. Our next step is to further
enhance Java Beans support to facilitate visual protocol
composition.

4.1 The framework

The elements used to build protocols are relatively
small. This leads to a very piecemeal protocol develop-
ment. According to our experience, once one is familiar
with the model, the actual implementation of protocols
is usually very straightforward and fast.

The small component approach seems to be very well
suited for building microprotocols. For example, it is
easy to represent the individual IPv6 header handlers as
separate protocols, and create runtime structures to mix
and match them appropriately.

Event delivery and scheduling.

The basic Java event
delivery mechanism is synchronous. The event source
invokes, directly or indirectly, an appropriate method at
every registered listener. However, nothing in the archi-
tecture mandates this approach. Since events are repre-
sented as objects, their delivery may well be queued and
delayed. In fact, the listeners themselves may easily cre-
ate an event queue if desired.

Our current goal is to achieve better performance on a
uniprocessor implementation. Earlier experience with a
U

NIX

 STREAMS based IPSEC prototype [1] has shown
that scheduling should be avoided on a uniprocessor en-
vironment. Therefore we have tried to minimize the
number of threads and synchronized methods in the cur-
rent prototype. This may change later when multiproc-
essing is taken care of.

The framework has one main thread that takes care of
carrying a message through the conduit graph. It handles
one message a time, passing it from conduit to conduit.
If a conduit cannot pass the message, e.g., because it is a
partial message and the other fragments are needed, the
message stops at the conduit. The carrier thread then

*

Signed or otherwise integrity protected

Figure 6: Cryptographic protocol pattern

Cipher

Crypto
Protocol

Coder

FSM

handles the next message in queue, or waits if there are
no messages currently waiting in a message/event
queue.

A separate thread takes care of timers. Timer events
are delivered to the conduits by the same thread as the
message and other visitor events. A conduit may register
a timer event to be scheduled at a particular time, after
some delay, or periodically. Whenever the timer expires,
a timer event is added to the message/event queue. After
the carrier thread has handled a message, it takes the
next message or timer event from the queue, and deliv-
ers it.

The adapters protect the conduits framework from
other threads. The adapter methods are fully synchro-
nized, and may be called by whatever threads. When a
message arrives at an adapter from outside, the adapter
wraps the message data into a conduit message carrier,
attaches some interpretation to it, and places the mes-
sage into the message/event queue. The carrier thread
will select it at first appropriate opportunity.

Since Java I/O is inherently synchronous, the adapters
communicating with the world external to the virtual
machine typically contain their own internal threads.
This allows the conduit processing to continue inde-
pendent on delays on external I/O.

Memory management.

The framework discourages ex-
plicit object creation and garbage collection. Typically,
the constructors are either private (for black box classes)
or protected (for white box classes). Most classes pro-
vide a public static instantiation method. This allows ob-
jects to be recycled by the class rather than being
created and garbage collected for every occasion.

Footprint.

The current framework prototype consists of
43 public classes, or about 3800 lines of Java source
code (including comments). Only about 760 lines were
written by hand; the rest were generated using an UML
based case tool.

Of the 43 public classes, 23 are actual user visible
classes. The rest are various exceptions (5), housekeep-
ing classes (10) or other classes (5). The relationships of
the user visible classes are displayed as an UML class
diagram in Appendix A.

4.2 IPSEC

Our IPSEC prototype is designed to work with both
IPv4 and IPv6. So far, it has been tested only with IPv6.
It is designed to be policy neutral, allowing different
kinds of security policies to be enforced.

A basic IP protocol stack, including IPSEC, is shown
in Figure 7. In this configuration, the IPSEC is located
as a separate protocol above IP. IP functions as usual,
forwarding packets and fragments and passing upwards

only the packets that are addressed to the current host.
IPSEC receives complete packets from IP. The example
configuration initially accepts packets that have either
no protection, or are protected with AH, or with AH

and

ESP. It does not accept packets that are protected with
ESP only or with e.g. double AH. This is one expression
of policy. Furthermore, the conduit graph effectively
prevents denial of service attacks with multiply en-
crypted packets.

Figure 7: Host IPSEC conduit graph (simplified)

IP

Chksum

Fragment

MediaMux

Ethernet

Options

Forward

PPP

Chksum

PolicyMux

ProtoMux

AH

ESP

IPSEC

R
ou

tin
g

ProtoMux

Policy

During input processing, the AH and ESP protocols
decorate the packet with information about performed
decryptions and checks. Later, at the policy session, this
information is checked to ensure that the packet was
protected according to the desired policy. We have also
experimented with an alternative configuration, where
the policy is checked immediately after every successful
decryption or AH check. This seems to be more effi-
cient, since faulty packets are typically dropped earlier.
However, the resulting conduits graph is considerably
more complex.

During output processing, the policy session and the
policy mux together select the right level of protection
for the outgoing packet. This information may be de-
rived from the TCP/UDP port information or from tags
attached to the message earlier in the protocol stack.

A different IPSEC configuration, suitable for a secu-
rity gateway, is shown in Figure 8. In this case, instead
of being on top of IP, IPSEC is integrated as a module
within the IP protocol. Since the desired functionality is
that of a security gateway, we want to run all packets
through IPSEC and filter them appropriately. Since
IPSEC is always applied to complete packets, all incom-
ing packets must be reassembled. This is performed by

the Fragment session, which takes care of fragmentation
and reassembly.

Once a packet has travelled through IPSEC, passing
the policy decisions is applies, it is routed normally.
Packets destined to the local host are passed to the upper
layers. Forwarded packets are run again through IPSEC,
and a separate outgoing policy is applied to them. In this
case, it is easier to base the outgoing policy on packet
inspection rather than on separate tagging.

Our current IPSEC prototype runs on top of our IPv6
implementation, also built with Java Conduits, on Sola-
ris. We use a separate Ethernet adapter, which is imple-
mented as a native class on top of the Solaris DLPI
interface. We have not yet applied JIT compiler technol-
ogy, and therefore the current performance results are
modest.

4.3 ISAKMP

The structure of our ISAKMP implementation is shown
in Figure 9. The implementation is attached to the Java
UDP implementation through a UDP adapter. Alterna-
tively, it could be attached directly on top of our own
UDP implementation. On top of the ISAKMP imple-
mentation lies a security policy manager, which forms
the “political layer” of our protocol stack.

ISAKMP packets received through the UDP adaptor
are directed either to an ISAKMP factory or to some es-
tablished ISAKMP session, depending on the ISAKMP
cookies. If the packet initiates a new ISAKMP associa-
tion (i.e., is the first main mode packet), the ISAKMP
factory consults the upper layer to determine whether
the association should be established. The same applies
for proposals for new AH or ESP associations. If a new
AH or ESP association is accepted by the policy, the
AH/ESP factory creates a new AH or ESP protocol in-
stance. The protocol instance takes care of running the
ISAKMP quick mode to create the new association.

When a new AH or ESP association has been estab-
lished, the negotiated parameters are passed to the pol-
icy layer. The policy manager takes care of creating the
new association to the IP stack, either through PF_KEY
interface (if a non-conduits IPSEC is used), or by modi-
fying the IP/IPSEC conduit graph appropriately.

The main novelty in our approach is the separation of
the ISAKMP daemon and the policy manager. Currently
the policy manager is implemented as a separate con-
duits protocol. However, it would be possible to imple-
ment the policy manager outside the conduits
framework as well, and use Java events to communicate
between the conduit world and the policy manager.

The current implementation is slightly out of date,
due to changes recently made to the ISAKMP and Oak-
ley Internet drafts [19].

Figure 8: Security GW IPSEC conduit graph (simplified)

Chksum

MediaMux

Ethernet

Options

Forward

PPP

Chksum

IPSEC

R
ou

tin
g

Fragment

Options

Fragment

Options

IPSEC

IP

4.4 Non-cryptographic protocols

In addition to the cryptographic protocols, we have im-
plemented partial but functional prototypes of the IPv4,
IPv6, ARP, ICMP (IPv4 version only), UDP and TCP
protocols. Integration of these, along with the IPSEC
implementation, into a complete TCP/IP protocol stack
is under way.

4.5 Availability

The current framework prototype is available at

http://www.tcm.hut.fi/~pnr/jacob/

. The
actual protocol prototypes and the protocol sandbox
prototype are available directly from the authors. An in-
tegrated, JDK 1.2 based release is expected to be pub-
lished in late May or early June.

5 Summary

We define an architecture and an object oriented imple-
mentation framework for cryptographic protocols. The
architecture is based on the Internet, WWW, Java and an
initial security context, and optionally augmented with a
PKI and the ISAKMP and IPSEC protocols. The imple-
mentation framework is based on a fully object oriented
language, so it benefits greatly from design patterns,

making it easy to use and extensible at the same time.
Furthermore, the use of object level design patterns
leads to a highly stylistic way of implementing proto-
cols, thereby allowing creation of new, higher level

pro-
tocol patterns

.
The implementation framework was developed with

JDK 1.1 using the Java Beans and the security API of
Java 1.1. In the framework, protocols are built from
lower level component called conduits. The protocols
are conduits themselves, allowing incremental building
of higher level protocols from lower level ones.

The Java execution environment allows the resulting
protocols to be seamlessly integrated into the operating
system and applications alike. This is especially impor-
tant for security protocols, since this allows the security
systems at various levels to be integrated. We have taken
advantage of the Java language level security features
(packages, visibility, classloaders). The framework is
implemented as a single Java package. Special attention
has been paid to dividing the functionality into fixed and
user customizable feature sets.

So far we have implemented functional prototypes of
IPv4, IPv6, ARP, ICMP, UDP, TCP, IPSEC and
ISAKMP protocols. We expect to implement prototypes
of further protocols in the near future.

6 Future work

There are a number of future projects that we are plan-
ning to start. Due to our limited resources we have not
been able to work on all the fronts simultaneously.

Even though a PKI is not an absolute prerequisite for
using our architecture, it is in practice essential for most
wide-spread real-life applications. We are currently im-
plementing SPKI type certificates that will be integrated
into our framework.

The use of security services and features is usually
mandated by security policies. The management of se-
curity policies in global networks has become a major
challenge. We have recently started a project to design
and implement an Internet Security Policy Management
Architecture (ISPMA) based on trusted Security Policy
Managers (SPM). When a user contacts a service, they
need to be authorized. Authorization may be based on
the identity or credentials of the user. Having obtained
the necessary information from the user, the server asks
the SPM if the user can be granted the kind of access
that they have requested. Naturally all communications
between the parties need to be secured.

A graphical Java Beans editor could make the work of
the implementor much more efficient than it currently is.
This would also make it easier to train new, on the aver-
age only average, programmers to develop secure appli-

Figure 9: ISAKMP conduit graph (simplified)

ISAKMP

UDP

CookieMux

ISAKMP ƒ

SpiMux

AH/ESP ƒ

PolicyMux

AH ESP

cations. In a graphical editor, the building blocks of our
architecture would show as graphical objects that can be
freely combined into a multitude of applications. The
amount of programming work in developing such an ed-
itor is quite large and there certainly are lots of ongoing
projects in the area of graphical Java Beans editors. Our
plan is to take an existing editor and integrate it into our
environment.

So far our work has been focused on the design and
implementation of secure application specific protocols.
Our long term goal is to create an integrated develop-
ment environment for entire secure applications. This
environment would also include tools for creating the
user interface and database parts of the applications.

References

[1] Timo P. Aalto and Pekka Nikander, “A Modular,
STREAMS Based IPSEC for Solaris 2.x Sys-
tems”, In

Proceedings of Nordic Workshop on Se-
cure Computer Systems,

Goethenburg, Sweden,
November 1996.

[2] Robert Allen and David Garlan, “A Formal Basis
for Architectural Connection”,

ACM Transac-
tions on Software Engineering and Methodology

,
6(3), July 1997.

[3] Ross J. Anderson, “Programming Satan's Com-
puter”, In

Computer Science Today — Recent
Trends and Developments

, LNCS 1000, pp. 426–
440, Springer-Verlag, 1995.

[4] Ross J. Anderson and Roger Needham,
“Robustness principles for public key protocols”,

Advances in Cryptology—CRYPTO’95 Proceed-
ings, Springer-Verlag, 1995.

[5] Ken Arnold and James Gosling, The Java Pro-
gramming Language, Addison-Wesley, 1996.

[6] Randal Atkinson, Security Architecture for the
Internet Protocol, RFC1825, Internet Engineer-
ing Task Force, August 1995.

[7] Kent Beck and Ralph Johnson, “Patterns Gener-
ate Architectures”, In Proceedings of European
Conference on Object-Oriented Programming
(ECOOP'94), Bologna, Italy, pp. 139–149,
Springer-Verlag, 1994.

[8] Kenneth Birman and Robert Cooper, “The ISIS
Project: Real Experience with a Fault Tolerant
Programming System”, Operating Systems Re-
view, pp. 103–107, April 1991.

[9] Carl M. Ellison, Bill Frantz, Butler Lampson,
Ron Rivest, Brian M. Thomas and Tatu Ylönen,
Simple Public Key Certificate, Internet-Draft
draft-ietf-spki-cert-structure-
02.txt , work in progress, Internet Engineering
Task Force, July 1997.

[10] Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, Design Patterns — Elements of
Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[11] Benoit Garbinato, Rachid Guerraoui, “Using the
Strategy Design Pattern to Compose Reliable
Distributed Protocols”, The Third Conference on
Object-Oriented Technologies and Systems
(COOTS) Proceedings, Portland, Oregon, June
16-20, 1997, pp. 221–232.

[12] Li Gong, Java Security Architecture (JDK1.2)
DRAFT DOCUMENT (Version 0.7), Sun Micro-
systems, October 1, 1997,
http://java.sun.com/products/
jdk/1.2/docs/guide/security/
spec/security-spec.doc.htm

[13] Nevin Heintze and J. D. Tygar, “A model for se-
cure protocols and their compositions”, In Pro-
ceedings of the 1994 IEEE Computer Society
Symposium on Research in Security and Privacy,
pp. 2–13, IEEE Computer Society Press, May
1994.

[14] Herman Hueni, Ralph Johnson, R. Angel, “A
framework for network protocol software”, Ob-
ject Oriented Programming Systems, Languages
and Applications Conference Proceedings
(OOPSLA’95), ACM Press 1995.

[15] N. C. Hutchinson and L. L. Peterson, “The x–
Kernel: An architecture for implementing net-
work protocols.” IEEE Transactions on Software
Engineering, 17(1):64–76, January 1991.

[16] Darrell Kindred, Jaennette M. Wing, “Fast, Auto-
matic Checking of Cryptographic Protocols”, In
Proceedings of the Second USENIX Workshop on
Electronic Commerce, November 18-21, 1996,
Oakland, California.

[17] Wenbo Mao and Colin A. Boyd, “Development
of authentication protocols: some misconcep-
tions and a new approach”, Proceedings of IEEE
Computer Security Foundations Workshop VII,
IEEE Computer Society Press, 1994, pp. 178-
186.

[18] S. W. O’Malley, L. L. Peterson, “A Dynamic
Network Architecture”, ACM Transactions on
Computer Systems 10(2):110–143, May 1992.

[19] Douglas Maughan, Mark Schertler, Mark Sch-
neider and Jeff Turner, Internet Security Associa-
tion and Key Management Protocol (ISAKMP),
Internet-Draft draft-ietf-ipsec-
isakmp-08.txt , work in progress, Internet
Engineering Task Force, July 1997.

[20] Bertrand Meyer, “The Next Software Break-
through”, Computer, 30(7): 113–114, IEEE
Computer Society, July 1997.

[21] Pekka Nikander, Modelling of Cryptographic
Protocols, Licenciate’s Thesis, Helsinki Univer-
sity of Technology, December 1997.

[22] H. Orman, S. O'Malley, R. Schroeppel, and D.
Schwartz. “Paving the road to network security,
or the value of small cobblestones”. In Proceed-
ings of the 1994 Internet Society Symposium on
Network and Distributed System Security, Febru-
ary 1994.

[23] Michael K. Reiter, Kenneth P. Birman and Rob-
bert Van Renesse, A Security Architecture for
Fault-Tolerant Systems, Cornell University Tech-
nical Report, TR93-1354, June, 1993.

[24] Robbert van Renesse, Kenneth P. Birman and
Silvano Maffeis, “Horus, a flexible Group Com-
munication System,” Communications of the
ACM, April 1996.

[25] Robbert van Renesse, Kenneth P. Birman, Roy
Friedman, Mark Hayden, and David A. Karr, “A
Framework for Protocol Composition in Horus”,
In Proceedings of Principles of Distributed Com-
puting, August, 1995.

[26] Jorma Rinkinen, Java DES Speed Test,
http://www.tcm.hut.fi/~jrin/des/
July 1997.

[27] Aviel D. Rubin and Peter Honeyman, Formal
methods for the analysis of authentication proto-
cols, Technical Report 93–7, Center for Informa-
tion Technology Integration, Department of

Electrical Engineering and Computer Science,
University of Michigan, 8. November 1993.

[28] Douglas C. Schmidt, “Using Design Patterns to
Develop Reusable Object-Oriented Communica-
tion Software”, Communications of the ACM,
38(10):65–74, October 1995.

[29] Gustavus J. Simmons, “Cryptanalysis and proto-
col failures”, Communications of the ACM,
37(11):56–65, November 1994.

[30] R. Thayer, N. Doraswamy and R. Glenn, IP Se-
curity Document Roadmap, Internet-Draft
draft-ietf-ipsec-doc-roadmap-
01.txt , work in progress, Internet Engineering
Task Force, July 1997.

[31] Amy Moormann Zremski and Jeannette M.
Wing, “Specification Matching of Software
Components”, ACM Transactions on Software
Engineering and Methodology, 6(4), October
1997.

[32] Jonathan M. Zweig and Ralph E. Johnson, “The
Conduit: A Communication Abstraction in C++”,
In Usenix C++ Conference Proceedings, San
Francisco, CA, April 9–11, 1990, pp. 191–204.
The Usenix Association 1990.

[33] Joanne Wu (Editor), Component-Based Software
with Java Beans and ActiveX, White paper, Sun
Microsystems, http://www.sun.com/
javastation/whitepapers/java-
beans/javabean_ch1.html , August 1997.

Appendix A UML class diagram

Accessor

Adaptor

BaseConduitConduit

ConduitFactory

Message

MessageBuffer

MessageTransporter

Messenger

Mux

OutOfBand

Protocol

Session

State

Transporter

Visitor

1..*

1

strategy

0..1

0..1
Sides

0..1

1 Inside A

0..1

1 Inside B

*

1prototype

Attachment

0..1

1
Transports

*

1

Interprets
1..*

1

Contains

1

Oob

*

1

interprets
«friend»

visits

applies

