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Abstract

The Secure Sockets Layer (SSL) protocol is an-

alyzed using a �nite-state enumeration tool called

Mur'. The analysis is presented using a sequence

of incremental approximations to the SSL 3.0 hand-

shake protocol. Each simpli�ed protocol is \model-

checked" using Mur', with the next protocol in the

sequence obtained by correcting errors that Mur'

�nds automatically. This process identi�es the main

shortcomings in SSL 2.0 that led to the design of SSL

3.0, as well as a few anomalies in the protocol that is

used to resume a session in SSL 3.0. In addition to

some insight into SSL, this study demonstrates the

feasibility of using formal methods to analyze com-

mercial protocols.

1 Introduction

In previous work [9], a general-purpose �nite-

state analysis tool has been successfully applied to

the veri�cation of small security protocols such as

the Needham-Schroeder public key protocol, Ker-

beros, and the TMN cellular telephone protocol.

The tool, Mur' [3, 10], was designed for hardware

veri�cation and related analysis. In an e�ort to un-

derstand the di�culties involved in analyzing larger

and more complex protocols, we use Mur' to ana-
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lyze the SSL 3.0 handshake protocol. This protocol

is important, since it is the de facto standard for se-

cure Internet communication, and a challenge, since

it has more steps and greater complexity than the

other security protocols analyzed using automated

�nite-state exploration. In addition to demonstrat-

ing that �nite-state analysis is feasible for protocols

of this complexity, our study also points to sev-

eral anomalies in SSL 3.0. However, we have not

demonstrated the possibility of compromising sensi-

tive data in any implementation of the protocol.

In the process of analyzing SSL 3.0, we have de-

veloped a \rational reconstruction" of the protocol.

More speci�cally, after initially attempting to fa-

miliarize ourselves with the handshake protocol, we

found that we could not easily identify the purpose

of each part of certain messages. Therefore, we set

out to use our analysis tool to identify, for each mes-

sage �eld, an attack that could arise if that �eld were

omitted from the protocol. Arranging the simpli�ed

protocols in the order of increasing complexity, we

obtain an incremental presentation of SSL. Begin-

ning with a simple, intuitive, and insecure exchange

of the required data, we progressively introduce sig-

natures, hashed data, and additional messages, cul-

minating in a close approximation of the actual SSL

3.0 handshake protocol.

In addition to allowing us to understand the

protocol more fully in a relatively short period of

time, this incremental reconstruction also provides

some evidence for the \completeness" of our anal-

ysis. Speci�cally, Mur' exhaustively tests all pos-

sible interleavings of protocol and intruder actions,

making sure that a set of correctness conditions is

satis�ed in all cases. It is easy for such analysis to

be \incomplete" by not checking all of the correct-

ness conditions intended by the protocol designers or

users. In developing our incremental reconstruction

of SSL 3.0, we were forced to con�rm the importance
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of each part of each message. In addition, since no

formal or high-level description of SSL 3.0 was avail-

able, we believe that the description of SSL 3.0 that

we extracted from the Internet Draft [6] may be of

interest.

Our analysis covers both the standard handshake

protocol used to initiate a secure session and the

shorter protocol used to resume a session [6, Sec-

tion 5.5]. Mur' analysis uncovered a weak form

of version rollback attack (see Section 4.9.2) that

can cause a version 3.0 client and a version 3.0

server to commit to SSL 2.0 when the protocol is

resumed. Another attack on the resumption proto-

col (described in Sections 4.8 and 4.9.1) is possible

in SSL implementations that strictly follow the In-

ternet draft [6] and allow the participants to send

application data without waiting for an acknowledg-

ment of their Finished messages. Finally, an attack

on cryptographic preferences (see Section 4.6) suc-

ceeds if the participants support weak encryption

algorithms which can be broken in real time. Apart

from these three anomalies, we were not able to un-

cover any errors in our �nal protocol. Since SSL 3.0

was designed to be backward-compatible, we also

implemented and checked a full model for SSL 2.0

as part of the SSL 3.0 project. In the process, Mur'

uncovered the major problems with SSL 2.0 that mo-

tivated the design of SSL 3.0.

Our Mur' analysis of SSL is based on the assump-

tion that cryptographic functions cannot be broken.

For this and other reasons (discussed below), we can-

not claim that we found all attacks on SSL. But our

analysis has been e�cient in helping discover an im-

portant class of attacks.

The two prior analyses of SSL 3.0 that we are

aware of are an informal assessment carried out by

Wagner and Schneier [14] and a formal analysis by

Dietrich using a form of belief logic [2]. (We read

the Wagner and Schneier study before carrying out

our analysis, but did not become aware of the Di-

etrich study until after we had completed the bulk

of our work.) Wagner and Schneier comment on the

possibility of anomalies associated with resumption,

which led us to concentrate our later e�orts on this

area. It is not clear to us at the time of this writing

whether we found any resumption anomalies that

were not known to these investigators. However, in

email comments resulting from circulation of an ear-

lier document [13], we learned that while our second

anomaly was not noticed by Wagner and Schneier, it

was later reported to them by Michael Wiener. Nei-

ther anomaly seems to have turned up in the logic-

based study of [2].

A preliminary report on this study was pre-

sented in a panel at the September 1997 DIMACS

Workshop on Design and Formal Veri�cation of

Security Protocols and appears on the web site

(http://dimacs.rutgers.edu/Workshops/Security/)

and CD ROM associated with this workshop. Our

study of resumption was carried out after our

workshop submission and is not described in the

workshop document.

2 Outline of the methodology

Our general methodology for modeling security

protocols in Mur' is described in our previous pa-

per [9], and will be only outlined in this section. The

basic approach is similar to the CSP approach to

model checking of cryptographic protocols described

in [8, 11].

2.1 The Mur' veri�cation system

Mur' [3] is a protocol or, more generally, �nite-

state machine veri�cation tool. It has been suc-

cessfully applied to several industrial protocols, es-

pecially in the domains of multiprocessor cache co-

herence protocols and multiprocessor memory mod-

els [4, 12, 15]. The purpose of �nite-state analysis,

commonly called \model checking," is to exhaus-

tively search all execution sequences. While this pro-

cess often reveals errors, failure to �nd errors does

not imply that the protocol is completely correct, be-

cause the Mur' model may simplify certain details

and is inherently limited to con�gurations involving

a small number of, say, clients and servers.

To use Mur' for veri�cation, one has to model

the protocol in the Mur' language and augment

this model with a speci�cation of the desired prop-

erties. The Mur' system automatically checks, by

explicit state enumeration, if all reachable states of

the model satisfy the given speci�cation. For the

state enumeration, either breadth-�rst or depth-�rst

search can be selected. Reached states are stored in

a hash table to avoid redundant work when a state is

revisited. The memory available for this hash table

typically determines the largest tractable problem.

The Mur' language is a simple high-level lan-

guage for describing nondeterministic �nite-state

machines. Many features of the language are famil-

iar from conventional programming languages. The

main features not found in a \typical" high-level lan-

guage are described in the following paragraphs.

The state of the model consists of the values of

all global variables. In a startstate statement, initial

values are assigned to global variables. The transi-

tion from one state to another is performed by rules.
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Each rule has a Boolean condition and an action,

which is a program segment that is executed atomi-

cally. The action may be executed if the condition is

true (i.e., the rule is enabled) and typically changes

global variables, yielding a new state. Most Mur'

models are nondeterministic since states typically al-

low execution of more than one rule. For example, in

the model of the SSL protocol, the intruder (which is

part of the model) usually has the nondeterministic

choice of several messages to replay.

Mur' has no explicit notion of processes. Nev-

ertheless a process can be implicitly modeled by a

set of related rules. The parallel composition of two

processes in Mur' is simply done by using the union

of the rules of the two processes. Each process can

take any number of steps (actions) between the steps

of the other. The resulting computational model

is that of asynchronous, interleaving concurrency.

Parallel processes communicate via shared variables;

there are no special language constructs for commu-

nication.

The Mur' language supports scalable models. In

a scalable model, one is able to change the size of

the model by simply changing constant declarations.

When developing protocols, one typically starts with

a small protocol con�guration. Once this con�gura-

tion is correct, one gradually increases the protocol

size to the largest value that still allows veri�cation

to complete. In many cases, an error in the general

(possibly in�nite state) protocol will also show up in

a down-scaled (�nite state) version of the protocol.

Mur' can only guarantee correctness of the down-

scaled version of the protocol, but not correctness of

the general protocol. For example, in the model of

the SSL protocol, the numbers of clients and servers

are scalable and de�ned by constants.

The desired properties of a protocol can be spec-

i�ed in Mur' by invariants, which are Boolean con-

ditions that have to be true in every reachable state.

If a state is reached in which some invariant is vi-

olated, Mur' prints an error trace { a sequence of

states from the start state to the state exhibiting the

problem.

2.2 The methodology

In outline, we have analyzed protocols using the

following sequence of steps:

1. Formulate the protocol. This generally involves

simplifying the protocol by identifying the key

steps and primitives. The Mur' formulation

of a protocol, however, is more detailed than

the high-level descriptions often seen in the lit-

erature, since one has to decide exactly which

messages will be accepted by each participant

in the protocol. Since Mur' communication is

based on shared variables, it is also necessary

to de�ne an explicit message format, as a Mur'

type.

2. Add an adversary to the system. We gener-

ally assume that the adversary (or intruder) can

masquerade as an honest participant in the sys-

tem, capable of initiating communication with

a truly honest participant, for example. We also

assume that the network is under control of the

adversary and allow the adversary the following

actions:

� overhear every message, remember all

parts of each message, and decrypt cipher-

text when it has the key,

� intercept (delete) messages,

� generate messages using any combination

of initial knowledge about the system and

parts of overheard messages.

Although it is simplest to formulate an adver-

sary that nondeterministically chooses between

all possible actions at every step of the proto-

col, it is more e�cient to reduce the choices to

those that actually have a chance of a�ecting

other participants.

3. State the desired correctness condition. A typ-

ical correctness criterion includes, e.g., that no

secret information can be learned by the in-

truder. More details about the correctness cri-

terion used for our SSL model are given in Sec-

tion 3.

4. Run the protocol for some speci�c choice of sys-

tem size parameters. Speaking very loosely, sys-

tems with 4 or 5 participants (including the ad-

versary) and 5 to 7 intended steps in the origi-

nal protocol (without adversary) are easily an-

alyzed in minutes of computation time using a

modest workstation. Doubling or tripling these

numbers, however, may cause the system to run

for many hours, or terminate inconclusively by

exceeding available memory.

5. Experiment with alternate formulations and re-

peat. This is discussed in detail in Section 4.

2.3 The intruder model

The intruder model described above is limited in

its capabilities and does not have all the power that

a real-life intruder may have. In the following, we

discuss examples of these limitations.
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No cryptanalysis. Our intruder ignores both

computational and number-theoretic properties of

cryptographic functions. As a result, it cannot per-

form any cryptanalysis whatsoever. If it has the

proper key, it can read an encrypted message (or

forge a signature). Otherwise, the only action it can

perform is to store the message for a later replay.

We do not model any cryptographic attacks such as

brute-force key search (with a related notion of com-

putational time required to attack the encryption)

or attacks relying on the mathematical properties of

cryptographic functions.

No probabilities. Mur' has no notion of proba-

bility. Therefore, we do not model \propagation" of

attack probabilities through our �nite-state system

(e.g, how the probabilities of breaking the encryp-

tion, forging the signature, etc. accumulate as the

protocol progresses). We also ignore, e.g., that the

intruder may learn some probabilistic information

about the participants' keys by observing multiple

runs of the protocol.

No partial information. Keys, nonces, etc. are

treated as atomic entities in our model. Our intruder

cannot break such data into separate bits. It also

cannot perform an attack that results in the partial

recovery of a secret (e.g., half of the secret bits).

In spite of the above limitations, we believe that

Mur' is a useful tool for analyzing security proto-

cols. It considers the protocol at a high level and

helps discover a certain class of bugs that do not in-

volve attacks on cryptographic functions employed

in the protocol. For example, Mur' is useful for dis-

covering \authentication" bugs, where the assump-

tions about key ownership, source of messages, etc.

are implicit in the protocol but never veri�ed as part

of the message exchange. Also, Mur' models can

successfully discover attacks on plaintext informa-

tion (such as version rollback attacks in SSL) and

implicit assumptions about message sequence in the

protocol (such as unacknowledged receipt of Fin-

ished messages in SSL). Other examples of errors

discovered by �nite-state analysis appear in [8, 9, 11]

and in references cited in these papers.

3 The SSL 3.0 handshake protocol

The primary goal of the SSL 3.0 handshake pro-

tocol is to establish secret keys that \provide privacy

and reliability between two communicating applica-

tions" [6]. Henceforth, we call the communicating

applications the client (C) and the server (S). The

basic approach taken by SSL is to have C generate

a fresh random number (the secret or shared secret)

and deliver it to S in a secure manner. The secret

is then used to compute a so-called master secret

(or negotiated cipher), from which, in turn, the keys

that protect and authenticate subsequent communi-

cation between C and S are computed. While the

SSL handshake protocol governs the secret key com-

putation, the SSL record layer protocol governs the

subsequent secure communication between C and S.

As part of the handshake protocol, C and S

exchange their respective cryptographic preferences,

which are used to select a mutually acceptable set

of algorithms for encrypting and signing handshake

messages. In our analysis, we assume for simplic-

ity that RSA is used for both encryption and signa-

tures, and cryptographic preferences only indicate

the desired lengths of keys. In addition, SSL 3.0 is

designed to be backward-compatible so that a 3.0

server can communicate with a 2.0 client and vice

versa. Therefore, the parties also exchange their re-

spective version numbers.

The basic handshake protocol consists of three

messages. With the ClientHello message, the client

starts the protocol and transmits its version number

and cryptographic preferences to the server. The

server replies with the ServerHello message, also

transmitting its version number and cryptographic

preferences. Upon receipt of this message, the client

generates the shared secret and sends it securely to

the server in the secret exchange message.

Since we were not aware of any formal de�nition

of SSL 3.0, we based our model of the handshake

protocol on the Internet draft [6]. The draft does not

include a precise list of requirements that must be

satis�ed by the communication channel created after

the handshake protocol completes. Based on our

interpretation of the informal discussion in Sections

1 and 5.5 of the Internet draft, we believe that the

resulting channel can be considered \secure" if and

only if the following properties hold:

� Let SecretC be the number that C considers the

shared secret, and SecretS the number that S

considers the shared secret. Then SecretC and

SecretS must be identical.

� The secret shared between C and S is not in

intruder's database of known message compo-

nents.

� The parties agree on each other's identity and

protocol completion status. Suppose that the

last message of the handshake protocol is from
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S to C. Then C should reach the state in which

it is ready to start communicating with S using

the negotiated cipher (DoneC) only if S is al-

ready in the state in which it is ready to start

communicating with C using the negotiated ci-

pher (DoneS). Conversely, S should reach the

state DoneS only if C is in the state in which it

is waiting for the last message of the handshake

protocol.

� The cryptographic algorithms selected by the

parties for encryption and authentication of

handshake messages are the strongest ones that

are supported by both C and S. We model this

by requiring that the cryptosuite stored by S as

C's cryptographic preferences is identical to the

one actually sent by C, and vice versa.

� The parties have a consistent opinion about

each other's version, i.e., it is never the case

that an SSL 3.0 client and a 3.0 server are com-

municating using the SSL 2.0 protocol.

We propose that any violation of the foregoing in-

variants that goes undetected by the legitimate par-

ticipants constitutes a successful attack on the pro-

tocol.

SSL 3.0 supports protocol resumption. In the ini-

tial run of the protocol, C and S establish a shared

secret by going through the full protocol and com-

puting secret keys that protect subsequent commu-

nication. SSL 3.0 allows the parties to resume their

connection at a later time without repeating the full

protocol. If the ClientHello message sent by C to S

includes the identi�er of an SSL session that is still

active according to S's internal state, S assumes that

C wants to resume a previous session. No new secret

is exchanged in this case, but the master secret and

the keys derived from it are recomputed using new

nonces. (See Section 4.8 for an explanation of how

nonces are used in the protocol to prevent replay

attacks, and Appendix B to see how the master se-

cret is computed from the nonces and shared secret.)

Our Mur' model supports protocol resumption.

Finally, it should be noted that whenever one of

the parties detects an inconsistency in the messages

it receives, or any of the protocol steps fails in trans-

mission, the protocol is aborted and the parties re-

vert to their initial state. This implies that SSL is

susceptible by design to some forms of \denial of

service" attacks: an intruder can simply send an ar-

bitrary message to a client or server engaged in the

handshake protocol, forcing protocol failure.

4 Modeling SSL 3.0

We start our incremental analysis with the sim-

plest and most intuitive version of the protocol and

give an attack found by Mur'. We then add a little

piece of SSL 3.0 that foils the attack, and let Mur'

discover an attack on the augmented protocol. We

continue this iterative process until no more attacks

can be found. The �nal protocol closely resembles

SSL 3.0, with some simpli�cations that result from

our assumption of perfect cryptography (see below).

4.1 Notation

The following notation will be used throughout

the paper.

Ver i SSL version number of party i

Suitei Cryptographic preferences of party i

Ni Random nonce generated by party i

Secret i Random secret generated by party i

K+
i Public encryption key of party i

Vi Public veri�cation key of party i

signif: : :g Signed by party i

f: : :g
K
+

i

Encrypted by public key K+
i

Messages All messages up to this point

hIi Message is intercepted by the intruder

4.2 Assumptions about cryptography

In general, our model assumes perfect cryptogra-

phy. The following list explains what this assump-

tion implies for all cryptographic functions used in

SSL.

Opaque encryption. Encryption is assumed to be

opaque. If a message has the form fxg
K
+

i

, only

party i can learn x. (This is only true i� the

private key K�

i is not available to any party ex-

cept i. This is a safe assumption, given that

no participants in the SSL handshake protocol

are ever required to send their private key over

the network.) The intruder may, however, store

the entire encrypted message and replay it later

without learning x. The structure of the en-

crypted message is inaccessible to the intruder,

i.e., it cannot split the encrypted message into

parts and insert them into other encrypted mes-

sages.

Unforgeable signatures. Signatures are assumed

to be unforgeable. Messages of the form

signifxg can only be generated by the party

i. Anyone who possesses i's veri�cation key Vi
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is able to verify that the message was indeed

signed by i. We assume that signatures do not

encrypt. Therefore, x can be learned by anyone.

Hashes. Hashes are assumed to be preimage resis-

tant and 2nd-preimage resistant: given a mes-

sage of the form Hash fxg, it is not computa-

tionally feasible to discover x, nor �nd any x0

such that Hash fx 0g = Hash fxg. It is there-

fore assumed that a participant can determine

whether x = x0 by comparing Hash fxg to

Hash fx 0g.

Trusted certi�cate authority. There exists a

trusted certi�cate authority (CA). All parties

are assumed to possess CA's veri�cation key

VCA, and are thus able to verify messages

signed by CA. Every party i is assumed to

possess CA-signed certi�cates for its own pub-

lic keys: signCAfi ;K
+
i g (certifying that pub-

lic encryption key K+
i indeed belongs to i) and

signCAfi ; Vig (certifying that public veri�cation

key Vi indeed belongs to i).

4.3 Protocol A

Basic protocol (A)

The �rst step of the basic protocol consists of C

sending information about its identity, SSL version

number, and cryptographic preferences (aka crypto-

suite) to S. Upon receipt of C's Hello message, S

sends back its version, cryptosuite (S selects one set

of algorithms from the preference list submitted by

C), and its public encryption key. C then generates

a random secret and sends it to S, encrypted by S's

public key.

Notice that the �rst Hello message (that from C

to S) contains the identity of C. There is no way for

S to know who initiated the protocol unless this in-

formation is contained in the message itself (perhaps

implicitly in the network packet header).

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; K
+
S

C ! S fSecretCgK+
S

hChange to negotiated cipheri

Attack on A

Protocol A does not explicitly (and securely) asso-

ciate the server's name with its public encryption

key. This allows the intruder to insert its own key

into the server's Hello message. The client then en-

crypts the generated secret with the intruder's key,

enabling the intruder to read the message and learn

the secret.

C ! S C; VerC ; SuiteC

S ! ChIi VerS ; SuiteS ; K
+
S

I ! C VerS ; SuiteS ; K
+
I

C ! ShIi fSecretCgK+
I

I ! S fSecretCgK+
S

hChange to negotiated cipheri

4.4 Protocol B

A + server authentication

To �x the bug in Protocol A, we add veri�cation

of the public key. The server now sends its public

key K+
S in a certi�cate signed by the certi�cate au-

thority. As described before, the certi�cate has the

following form: signCAfS ;K
+
S g.

We assume that signatures are unforgeable.

Therefore, the intruder will not be able to gener-

ate signCAfS ;K
+
I g. The intruder may send the cer-

ti�cate for its own public key signCAfI ;K
+
I g, but

the client will reject it since it expects S's name

in the certi�cate. Finally, the intruder may gener-

ate signI fS ;K
+
I g, but the client expects a message

signed by CA, and will try to verify it using CA's

veri�cation key. Veri�cation will fail since the mes-

sage is not signed by CA, and the client will abort

the protocol. Notice that SSL's usage of certi�-

cates to verify the server's public key depends on the

trusted certi�cate authority assumption (see Section

4.2 above).

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; signCAfS ;K
+
S g

C ! S fSecretCgK+
S

hChange to negotiated cipheri
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Attack on B

Protocol B includes no veri�cation of the client's

identity. This allows the intruder to impersonate

the client by generating protocol messages and pre-

tending they originate from C. In particular, the

intruder is able to send its own secret to the server,

which the latter will use to compute the master se-

cret and the derived keys.

I ! S C; VerC ; SuiteC

S ! ChIi VerS ; SuiteS ; signCAfS ;K
+
S g

I ! S fSecretIgK+
S

hChange to negotiated cipheri

4.5 Protocol C

B + client authentication

To �x the bug in Protocol B, the server has to verify

that the secret it received was indeed generated by

the party whose identity was speci�ed in the �rst

Hello message. For this purpose, SSL employs client

signatures.

The client sends to the server its veri�cation key

in the CA-signed certi�cate signCAfC ; VCg. In addi-

tion, immediately after sending its secret encrypted

with the server's public key, the client signs the hash

of the secret signCfHash (SecretC)g and sends it to

the server. Hashing the secret is necessary so that

the intruder will not be able to learn the secret even

if it intercepts the message. Since the server can

learn the secret by decrypting the client key ex-

change message, it is able to compute the hash of

the secret and compare it with the one sent by the

client.

Notice that the server can be assured that VC is

indeed C's veri�cation key since the intruder can-

not insert its own key in the CA-signed certi�cate

signCAfC ; VCg assuming that signatures are un-

forgeable. Therefore, the server will always use VC
to verify messages ostensibly signed by the client,

and all messages of the form signI f: : :g will be re-

jected. Even if the intruder were able to generate the

message signCfHash (SecretI)g, the attack will be

detected when the server computes Hash (SecretC)

and discovers that it is di�erent from Hash (SecretI).

Instead of signing the hashed secret, the client

can sign the secret directly and send it to the server

encrypted by the server's public key. The SSL de�-

nition, however, does not include encryption in this

step [6, Section 5.6.8]. We used hashing instead of

encryption as well since we intend our incremen-

tal reconstruction of SSL to follow the de�nition as

closely as possible. One of the anonymous reviewers

suggested that hashing is used instead of encryption

so that the encrypted part of the message (i.e., a

secret as opposed to a signed secret) �ts within the

modulus size of the server's encryption function.

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; signCAfS ;K
+
S g

C ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

hChange to negotiated cipheri

Attack on C

Even though the intruder can modify neither keys

nor shared secret in Protocol C, it is able to attack

the plaintext information transmitted in the Hello

messages. This includes the parties' version numbers

and cryptographic preferences.

By modifying version numbers, the intruder can

convince an SSL 3.0 client that it is communicating

with a 2.0 server, and a 3.0 server that it is commu-

nicating with a 2.0 client. This will cause the parties

to communicate using SSL 2.0, giving the intruder

an opportunity to exploit any of the known weak-

nesses of SSL 2.0.

By modifying the parties' cryptographic prefer-

ences, the intruder can force them into selecting a

weaker encryption and/or signing algorithm than

they normally would. This may make it easier for

the intruder to decrypt the client's secret exchange

message, or to forge the client's signature.

C ! ShIi C; VerC ; SuiteC

I ! S C; VerI ; SuiteI

S ! ChIi Ver I ; SuiteS ; signCAfS ;K
+
S g

I ! C Ver I ; SuiteI ; signCAfS ;K
+
S g

C ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

hChange to negotiated cipheri
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4.6 Protocol D

C + post-handshake veri�cation of plaintext

The parties can prevent attacks on plaintext by re-

peating the exchange of versions and cryptographic

preferences once the handshake protocol is complete;

the additional messages will be called veri�cation

messages. Since the intruder cannot learn the shared

secret, it cannot compute the master secret and the

derived keys and thus cannot interfere with the par-

ties' communication after they switch to the negoti-

ated cipher.

Suppose the intruder altered the cryptographic

preferences in the client's Hello message. When the

client sends its version and cryptosuite to the server

under the just negotiated encryption, the intruder

cannot change them. The server will detect the dis-

crepancy and abort the protocol. This is also true

for the server's version and cryptosuite.

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; signCAfS ;K
+
S g

C ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

C ! S fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

The above protocol is secure against attacks on

version numbers and cryptographic preferences ex-

cept in the following circumstances:

1. If an attack on version number in the �rst Hello

message causes the parties to switch to a di�er-

ent protocol such as SSL 2.0, they will not ex-

change veri�cation messages and the attack will

not be detected. See Section 4.9.2 for further

discussion of anomalies related to the version

rollback attack.

2. By changing cryptosuites in the Hello messages,

the intruder may force the parties to use a very

weak public-key encryption algorithm that can

be broken in real time (i.e., while the current

run of the handshake protocol is in progress).

If the intruder can break the encrypted mes-

sage containing the client's secret, it can com-

pute the master secret and the derived keys and

will thus be able to forge post-handshake veri�-

cation messages. The only defense against this

kind of attack is to prohibit SSL implementa-

tions from using weak cryptographic algorithms

in the handshake protocol even if hello messages

from the protocol counterparty indicate prefer-

ence for such algorithms.

Attack on D

In Protocol D, the parties verify only plaintext in-

formation after the handshake negotiation is com-

plete. Since the intruder cannot forge signatures, in-

vert hash functions, or break encryption without the

correct private key, it can neither learn the client's

secret, nor substitute its own. It may appear that

D provides complete security for the communication

channel between C and S. However, Mur' discov-

ered an attack on client's identity that succeeds even

if all cryptographic algorithms are perfect.

Intruder I intercepts C's hello message to server

S, and initiates the handshake protocol with S un-

der its own name. All messages sent by S are re-

transmitted to C, while most of C's messages, in-

cluding the post-handshake veri�cation messages,

are re-transmitted to S. (See the protocol run be-

low for details. Re-transmission of C's veri�cation

message is required to change the sender identi�er,

which is not shown explicitly below.) As a result,

both C and S will complete the handshake protocol

successfully, but C will be convinced that it is talk-

ing to S, while S will be convinced that it is talking

to I .

Notice that I does not have access to the secret

shared between C and S. Therefore, it will not be

able to generate or decrypt encrypted messages af-

ter the protocol is complete, and will only be able

to re-transmit C's messages. However, the server

will believe that the messages are coming from I ,

whereas in fact they were sent by C.

This kind of attack, while somewhat unusual in

that it explicitly reveals the intruder's identity, may

prove harmful for a number of reasons. For example,

it deprives C of the possibility to claim later that it

communicated with S, since S will not be able to

support C's claims (S may not even know about

C's existence). If S is a pay server providing some

kind of online service in exchange for anonymous

\electronic coins" such as eCash [5], I may be able

to receive service from S using C's cash. Recall,

however, that I can only receive the service if it is
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not encrypted, which might be the case for large

volumes of data.

C ! ShIi C; VerC ; SuiteC

I ! S I; VerC ; SuiteC

S ! I VerS ; SuiteS ; signCAfS ;K
+
S g

I ! C VerS ; SuiteS ; signCAfS ;K
+
S g

C ! ShIi signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

I ! S signCAfI ; VIg; fSecretCgK+
S

;

signI fHash (SecretC)g

hChange to negotiated cipheri

S ! I fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC )

I ! C fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC )

C ! ShIi fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC )

I ! S fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC )

4.7 Protocol E

D + post-handshake veri�cation of all mes-

sages

To �x the bug in Protocol D, the parties verify all

of their communication after the handshake is com-

plete. Now the intruder may not re-transmit C's

messages to S, because C's Hello message contained

C, while the Hello message received by the server

contained I . The discrepancy will be detected in

post-handshake veri�cation.

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; signCAfS ;K
+
S g

C ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC )

C ! S fHash (Messages)gMaster(SecretC )

Attack on E

I observes a run of the protocol and records all of

C's messages. Some time later, I initiates a new run

of the protocol, ostensibly from C to S, and replays

recorded C's messages in response to messages from

S. Even though I is unable to read the recorded

messages, it manages to convince S that the latter

is talking to C, even though C did not initiate the

protocol.

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; signCAfS ;K
+
S g

C ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC )

C ! S fHash (Messages)gMaster(SecretC )

Next run of the protocol ...

I ! S C; VerC ; SuiteC

S ! ChIi VerS ; SuiteS ; signCAfS ;K
+
S g

I ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

hChange to negotiated cipheri

S ! ChIi fHash (Messages)gMaster(SecretC)

I ! S fHash (Messages)gMaster(SecretC)

4.8 Protocol F

E + nonces

By adding random nonces to each run of the pro-

tocol, SSL 3.0 ensures that there are always some

di�erences between independent runs of the proto-

col. The intruder is thus unable to replay veri�cation

messages from one run in another run.
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C ! S C; VerC ; SuiteC ; NC

S ! C VerS ; SuiteS ; NS ; signCAfS ;K
+
S g

C ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC )

C ! S fHash (Messages)gMaster(SecretC )

Attack on F

The exact semantics of the veri�cation messages

exchanged after switching to the negotiated cipher

(i.e., Finished messages in the SSL terminology) is

somewhat unclear. Section 5.6.9 of [6] states: \No

acknowledgment of the �nished message is required;

parties may begin sending encrypted data immedi-

ately after sending the �nished message. Recipients

of �nished messages must verify that the contents

are correct." The straightforward implementation

of this de�nition led Mur' to discover the following

attack on Protocol F :

1. I modi�es the Hello messages, changing the

legitimate parties' cryptosuites so as to force

them into choosing a weak public-key encryp-

tion algorithm for the secret exchange.

2. I records the weakly encrypted SecretC as it is

being transmitted from C to S.

3. After C and S switch to the negotiated cipher,

I delays their veri�cation messages inde�nitely,

preventing them from discovering the attack on

cryptosuites and gaining extra time to crack

the public-key encryption algorithm and learn

SecretC .

4. Once the secret is learned, I is able to compute

the keys and forge veri�cation messages.

Since we did not model weak encryption that can

be broken by the intruder, we also did not model

the last step of the attack explicitly. Instead, if the

model reached the state after the third step, the at-

tack was considered successful.

Note that in the actual SSL 3.0 protocol SecretC
is not used directly as the symmetric key between

C and S. It serves as one of the inputs to a hash

function that computes the actual symmetric key.

Therefore, even if the intruder is able to �gure out

the symmetric key, this will not necessarily compro-

mise the shared secret SecretC .

To obtain SecretC , the intruder has to force the

parties into choosing weak public-key encryption for

the secret exchange message, and then break the

chosen encryption algorithm in real-time. This at-

tack can only succeed if both parties support cryp-

tosuites with very weak public-key encryption (e.g.,

with a very short RSA key). We are not aware of

any existing SSL implementations for which this is

the case.

4.9 Protocol Z (�nal)

To prevent the attack on Protocol F, it is su�-

cient to require that the parties consider the protocol

incomplete until they each receive the correct veri�-

cation message. Mur' did not discover any bugs in

the model implemented according to this semantics.

Alternatively, yet another piece of SSL can be

added to Protocol F. If the client sends the server

a hash of all messages before switching to the ne-

gotiated cipher, the server will be able to detect an

attack on its cryptosuite earlier.

C ! S C; VerC ; SuiteC ; NC

S ! C VerS ; SuiteS ; NS ; signCAfS ;K
+
S g

C ! S signCAfC ; VCg; fSecretCgK+
S

;

signCfHash (Messages)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC )

C ! S fHash (Messages)gMaster(SecretC )

Mur' was used to model Protocol Z with 2

clients, 1 intruder, 1 server, no more than 2 simul-

taneous open sessions per server, and no more than

1 resumption per session. No new bugs were discov-

ered. However, Mur' found two anomalies in the

protocol employed to resume a session.

4.9.1 Protocol Z with resumption: crypto-

suite attack

Adding the extra veri�cation message su�ces for the

full handshake protocol but not for the resumption

protocol. When a session is resumed, the parties

switch to the negotiated cipher immediately after
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exchanging Hello messages. Therefore, the intruder

can alter cryptographic preferences in the Hello mes-

sages and then delay the parties' Finished messages

inde�nitely, preventing them from detecting the at-

tack. It appears that this attack does not jeopardize

the security of SSL 3.0 in practice, since no secret

is exchanged in the resumption protocol. In fact,

it is not clear to us if the cryptosuites in the Hello

messages are used at all in the resumption protocol.

4.9.2 Protocol Z with resumption: version

rollback attack

In our model of Protocol Z, the participants switch

to SSL 2.0 if a version number in the Hello messages

is di�erent from 3.0. (Since the Internet draft for

SSL 2.0 has expired and is not publicly available at

the moment, we included a speci�cation of SSL 2.0

in Appendix A.)

The Finished messages in SSL 2.0 do not include

version numbers or cryptosuites, therefore Protocol

Z is susceptible to the attack on cryptographic pref-

erences described in Section 4.5. In the following

example, it is assumed for simplicity that client au-

thentication is not used. Also, SSL 2.0 Hello mes-

sages have a slightly di�erent format than SSL 3.0

Hello messages and do not contain explicit version

information. To simplify presentation, we assume

that the intruder converts a 3.0 Hello message into

a 2.0 Hello message simply by changing the version

number.

C ! ShIi C; 3:0; SuiteC ; NC

I ! S C; 2:0; SuiteI ; NC

S ! ChIi 2:0; SuiteS ; NS ; signCAfS ;K
+
S g

I ! C 2:0; SuiteI ; NS ; signCAfS ;K
+
S g

C ! S fSecretCgK+
S

hChange to negotiated cipheri

C ! S fNSgMaster(SecretC)

S ! C fNCgMaster(SecretC )

To prevent the version rollback attack, SSL 3.0

clients add their version number to the secret they

send to the server. When the server receives a se-

cret with 3.0 embedded in it from a 2.0 client, it

can determine that there has been an attack on the

client's Hello message in which the client's true ver-

sion number (3.0) was rolled back to 2.0.

However, this defense does not work in the case

of session resumption. Mur' discovered a version

rollback attack on the resumption protocol. The at-

tack succeeds since in the resumption protocol, the

client does not send a secret to the server, and the

intruder's alteration of version numbers in the Hello

messages goes undetected.

Strictly speaking, this attack is not a violation of

the speci�cation [6], since the latter implicitly allows

an SSL session that was established using the 3.0

protocol to be resumed using the 2.0 protocol. How-

ever, this attack makes implementations of SSL 3.0

potentially vulnerable to SSL 2.0 weaknesses. Wag-

ner and Schneier [14] reach a similar conclusion in

their informal analysis of SSL 3.0.

4.10 Protocol Z vs. SSL 3.0

Figure 1 shows the de�nition of the SSL 3.0

handshake protocol according to [6]. When sev-

eral messages from the same party follow each other

in the original de�nition, they have been collapsed

into a single protocol step (e.g., Certi�cate, Client-

KeyExchange, and Certi�cateVerify were joined into

ClientVerify). The underlined pieces of SSL 3.0 are

not in Protocol Z.

Assuming that the cryptographic functions are

perfect, the underlined pieces can be removed from

the SSL 3.0 handshake protocol without jeopardiz-

ing its security. However, they do serve a useful

purpose by strengthening cryptography and making

brute-force attacks on the protocol less feasible.

For example, recall that the shared secret is not

used directly as the symmetric key between C and

S. Instead, it is used as input to a (pseudoran-

dom) function that computes the actual shared se-

cret. Therefore, breaking the symmetric cipher will

not necessarily compromise the shared secret as it

would require inverting two hash functions. To

obtain the shared secret, the intruder would have

to break public-key encryption in the ClientKeyEx-

change message.

The construction of the keyed hash in ClientVer-

ify, ServerFinished, and ClientFinished messages

as Hash (K ;Pad 2;Hash (K ;Pad 1; text)) follows the

HMAC method proposed by Krawczyk [7], who

proved that adding a secret key to the function

makes it signi�cantly more secure even if the actual

hash function is relatively weak.

In general, we would like to emphasize that SSL

3.0 contains many security measures that are de-

signed to protect the protocol against cryptographic
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ClientHello C ! S C; VerC ; SuiteC ; NC

ServerHello S ! C VerS ; SuiteS ; NS ; signCAfS ;K
+
S g

ClientVerify C ! S signCAfC ; VCg;

fVerC ;SecretCgK+
S

;

signCfHash (Master(NC ; NS ; SecretC) + Pad 2+

Hash (Messages+C +

Master(NC ; NS; SecretC) + Pad1)) g

hChange to negotiated cipheri

ServerFinished S ! C fHash (Master(NC ; NS ; SecretC) + Pad 2+

Hash (Messages + S +

Master(NC ; NS; SecretC) +

Pad 1)) gMaster(NC ; NS; SecretC)

ClientFinished C ! S fHash (Master(NC ; NS ; SecretC) + Pad 2+

Hash (Messages + C +

Master(NC ; NS; SecretC) +

Pad 1)) gMaster(NC ; NS; SecretC)

Figure 1. The SSL 3.0 handshake protocol

attacks. Since we modeled an idealized protocol in

Mur' under the perfect cryptography assumption,

we found SSL 3.0 secure even without these features.

5 Optimizing the intruder model

While one goal of our analysis was \rational re-

construction" of the SSL 3.0 handshake protocol, we

were also interested in lessons to be learned about

using �nite-state analysis to verify large protocols.

We were particularly concerned about the poten-

tially very large number of reachable states, given

that the SSL handshake protocol consists of 7 steps,

and each message sent in a particular step includes

several components, each of which can be changed

by the intruder under certain conditions.

Our model of the intruder is very simple and

straightforward. There is no intrinsic knowledge of

the protocol embedded in the intruder, nor does the

design of the intruder involve any prior knowledge of

any form of attack. The intruder may monitor com-

munication between the protocol participants, inter-

cept and generate messages, split intercepted mes-

sages into components and recombine them in arbi-

trary order. No clues are given, however, as to which

of these techniques should be used at any given mo-

ment. Therefore, the e�ort involved in implementing

the model of the intruder is mostly mechanical.

The following simple techniques proved useful in

reducing the number of states to be explored:

Full knowledge. We assume that every message

sent on the network is intercepted by the in-

truder. Clearly, this assumption does not

weaken the intruder. Without it, however, most

of the states that Mur' explored were identical

as far as the state of the legitimate participants

was concerned and the only di�erence was the

contents of the intruder's database. By ensur-

ing that the database is always as full as it can

possibly be (i.e., it includes all knowledge that

can be extracted from the messages transmitted

on the network thus far), we achieved an order

of magnitude reduction in the number of reach-

able states (e.g., from approximately 200,000 to

5,000 for a single run of the protocol).

No useless messages. We optimized our intruder

model to only generate messages that are ex-

pected by the legitimate parties and that can be

meaningfully interpreted by them in their cur-

rent state. Since at any point in the protocol

sequence, each party is expecting only one par-

ticular type of message, the number of message
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types the intruder generates at each step does

not exceed the number of protocol participants.

Still, the number of ways in which the intruder

could construct individual messages might be

large since messages are generated from the

message components (keys, nonces, etc.) stored

in the intruder's database.

No useless components. If the intercepted mes-

sage can be completely recreated from the com-

ponents already in the intruder's database, the

message is discarded.

Flags. Every procedure executed by the proto-

col participants after receiving a message is

guarded by a ag. By changing ag values,

we can turn on and o� pieces of the protocol,

enabling incremental and \what-if" modeling

(e.g., what happens if the server does not verify

the hashed secret it receives from the client).

Running under Linux on a Pentium-120 with

32MB of RAM, the veri�er requires approximately

1.5 minutes to check for the case of 1 client, 1 server,

1 open session, and no resumptions. Less than 5000

states are explored.

The largest instance of our model that we veri�ed

included 2 clients, 1 server, no more than 2 simulta-

neous open sessions per server, and no more than 1

resumption per session. Checking took slightly un-

der 8 hours, with 193,000 states explored.

6 Conclusions

Our study shows that the �nite-state enumeration

tool Mur' can be successfully applied to complex

security protocols like SSL. The analysis uncovered

some anomalies in SSL 3.0. (None of these anoma-

lies, however, poses a direct threat to the security

of SSL 3.0.) Of these anomalies at least one had

slipped through expert human analysis, con�rming

the usefulness of computer assistance in protocol de-

sign.

We are seeking to improve on the current limita-

tions of our approach in three ways. First, modeling

a complex cryptographic protocol in the Mur' lan-

guage is a relatively time-consuming (but straight-

forward) task. Automatic translation from a high-

level protocol description language like CAPSL to

Mur' could signi�cantly reduce the human e�ort

for the analysis. Second, often the protocols have

very large numbers of reachable states. Thus, we

plan to develop techniques that reduce the number

of states that have to be explored when analyzing

cryptographic protocols. Finally, \low level" proper-

ties of the cryptographic functions used in a protocol

often cause the protocol to fail, even if it appears to

be correct at the high level. We plan to extend our

modeling approach to allow detection of such pro-

tocol failures by developing more detailed protocol

models.

Acknowledgments

We are grateful to the members of our research

group for discussions of the SSL protocol, which re-

sulted in a better understanding thereof. We would

also like to thank the anonymous reviewers for com-

ments that helped to clarify further details of the

SSL protocol.

Appendix A: SSL 2.0

This appendix outlines the SSL 2.0 protocol.

In the protocol description below, SessionId is a

number that identi�es a particular session. When

the server starts a new session with the client,

it assigns it a fresh SessionId . When the client

wants to resume a previous session, it includes its

SessionId in the Hello message, and the server re-

turns SessionIdHit which is the same session number

with the \session found" bit set.

New session

Figure 2 shows the basic SSL 2.0 protocol. Notice

that this protocol does not protect plaintext trans-

mitted in the Hello messages, making the proto-

col vulnerable to version rollback and cryptographic

preferences attacks described in Section 4.5 above.

A description of other weaknesses in SSL 2.0 can

be found in SSL-Talk FAQ [1].

Resumed session

Figure 3 shows the SSL 2.0 resumption protocol.

Resumed session with client authentica-

tion

Figure 4 shows the SSL 2.0 resumption proto-

col with authentication, where Authentication type

is the means of authentication desired by the server,

N 0

S is the server's challenge, Certi�cate type is

the type of the certi�cate provided by the client,

Client certi�cate is the actual certi�cate (e.g., a

CA-signed certi�cate signCAfC ; VCg for the client's
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ClientHello C ! S C; SuiteC ; NC ;

ServerHello S ! C SuiteS ; NS; signCAfS ;K
+
S g

ClientMasterKey C ! S fSecretCgK+
S

hChange to negotiated cipheri

ClientFinish C ! S fNSgMaster(SecretC)

ServerVerify S ! C fNCgMaster(SecretC )

ServerFinish S ! C fSessionIdgMaster(SecretC )

Figure 2. SSL 2.0 basic protocol

ClientHello C ! S C; SuiteC ; NC ; SessionId

ServerHello S ! C NS; SessionIdHit

hChange to negotiated cipheri

ClientFinish C ! S fNSgMaster(SecretC)

ServerVerify S ! C fNCgMaster(SecretC)

ServerFinish S ! C fSessionIdgMaster(SecretC)

Figure 3. SSL 2.0 resumption protocol

veri�cation key), and Response data is the data

that authenticates the client (e.g., signed challenge

signC fN
0

Sg).

Appendix B: master secret computa-

tion

The SSL 3.0 master secret is computed using

Master(NC ; NS ;SecretC) =

MD5 (SecretC + SHA ('A' +K)) +

MD5 (SecretC + SHA ('BB ' +K)) +

MD5 (SecretC + SHA ('CCC ' +K)) ;

where K = SecretC + NC + NS. In most of

this paper, the master secret is denoted simply as

Master(SecretC).
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