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Abstract

The security policies for computing resources must
match the security policies of the organizations that
use them; therefore, computer security policies must
be adaptive to meet the changing security environ-
ment of their user-base. This paper presents four
methods for implementing adaptive security poli-
cies for architectures which separate the de�nition
of the policy in a Security Server from the enforce-
ment which is done by the kernel. The four methods
discussed include

� reloading a new security database for the Secu-
rity Server,

� expanding the state and security database of
the Security Server to include more than one
mode of operation,

� implementing another Security Server and
handing o� control for security computations,
and

� implementing multiple, concurrent Security
Servers each controlling a subset of processes.

Each of these methods comes with a set of trade-
o�s: policy 
exibility, functional 
exibility, security,
reliability, and performance. This paper evaluates
each of the implementations with respect to each
of these criteria. Although the methods described
in this paper were implemented for the Distributed
Trusted Operating System (DTOS) prototype, this
paper describes general research, and the conclu-
sions drawn from this work need not be limited to
that development platform.1

1This work was supported by Rome Laboratory contracts

F30602-95-C-0047 and F30602-96-C-0210. Portions of the

DTOS Overview found in Section 4 appeared in [SKTC96].

1 Introduction

Real organizations do not have static security poli-
cies. Rather, they have dynamic policies that
change, either as a matter of course, or to allow
them to react to exceptional circumstances. The
computing resources of these organizations must re-

ect the organization's need for security while af-
fording users the 
exibility required to operate in a
changing environment.

Any implementation of adaptive security presents
its own set of advantages and disadvantages. While
this paper compares four methods for implementing
adaptive security policies, it is important to keep the
needs of the organizations in mind in order to ade-
quately compare implementations of adaptive secu-
rity. Section 2 outlines some of the possible scenar-
ios requiring adaptive security policies and provides
a number of examples of adaptive policies that are
useful to the later discussion. Section 3 describes
the range of possible implementations for adaptive
security given the basic security architecture of the
DTOS prototype and provides a brief sketch of the
implementations discussed in Section 5. Section 4
provides more background on DTOS, which was
used to implement each of the four methods de-
scribed in this paper. Section 5.1 describes the cri-
teria against which implementations of adaptive se-
curity may be measured. The �nal subsections of
Section 5 describes in greater detail the four spe-
ci�c implementations researched at Secure Comput-
ing Corporation and evaluates each with respect to
the criteria from Section 5.1.



2 Motivating Examples for Adaptive

Security

The �rst example of adaptive security consists of
organizations that need to change their policies at
regular intervals. For example, a bank may have one
security policy enforced during business hours and
another policy enforced after hours. The business
hours policy would grant broad sets of permissions
to various sets of employees in order complete nor-
mal banking transactions; however, a more restric-
tive policy would be in e�ect after hours to prevent
system users from altering banking data in unin-
tended ways.

Some organizations may need to release sensitive
documents at speci�c times. For commercial orga-
nizations it may be a press release of new product in-
formation that must not be available from the web-
server until a speci�ed time. Military organizations
may have similar needs to make information avail-
able to allies on a timed-release basis. Conversely,
today's commercial partner or military ally may be
an tomorrow's adversary, in which case they should
not be allowed to receive various forms of informa-
tion.

Other organizations may need to adapt their se-
curity policies based on the tasks performed by
the users. For example, in the banking example
cited above, some tasks may be critical to perform
despite the more restrictive policy enforced after
5:00 PM. High-priority or urgent tasks may need
to be granted special permissions to complete on-
going operations despite the general change of pol-
icy. Other task-based policies may make use of an
assured pipeline, like that proposed by Boebert and
Kain [BK85]. Assured pipelines address situations
in which a series of tasks must be performed in a
particular order and the control 
ow must be re-
stricted. An adaptive policy might change the set
of permissions associated with a single process as
it completes a series of operations. As the process
completes one operation, the permission set changes
to allow the process to complete the next operation
but to prevent it from revisiting any objects that
it needed for earlier operations. A related secu-
rity policy would be the Chinese Wall introduced
by Brewer and Nash [BN89], which is intended to
prevent con
icts of interest in commercial settings.
Brie
y, under a Chinese Wall security policy a sub-
ject may initially be allowed permission to an entire
class of objects, but as soon as the subject accesses
one element of the class, permissions to access any
other object of that class are denied.

Role-based security policies form another class of
adaptive security policies. A role is distinguished
from a task in that an individual has an on-going
need to complete a set of tasks. (See [SC96],
[FCK95], and [Hof97].) In commercial settings,
roles may be used to enforce separation of duties
[CW87]. For example one role may be granted au-
thority to issue purchase orders while another has
authority to pay for those purchases. However, for
small companies it may be necessary for one indi-
vidual to perform actions in more than one role,
though not necessarily at one time to provide the
proper controls and oversight. In military opera-
tions it may be necessary for an individual to per-
form actions in more than one role simultaneously.
For example, in the Navy the role of the Watch Of-
�cer on a ship may be performed by the Chief En-
gineer. This person may need to ful�ll both roles
simultaneously. Similarly, the Command Duty Of-
�cer may need to perform actions reserved for the
Commanding O�cer in times of emergency. Priv-
ilege to invoke these dual roles should be reserved
for extreme situations.

Multi-level security (MLS) rules as applied in the
military and intelligence communities form a �nal
class of examples of security policies that must be
adaptive. Adaptive policies may allow either a re-
laxation or selective hardening of con�dentiality re-
strictions. Under MLS rules all objects are labeled
according to the sensitivity of the data they con-
tain (e.g., Top Secret, Secret, Con�dential, and Un-
classi�ed). By the simple security rule, users and
subjects are allowed access to observe objects only
if their clearance level is equal to or exceeds the
sensitivity of the object (see [BL73]). During an
emergency it may be necessary to consolidate lev-
els into two levels: one for Secret and Top Secret
�les, and another for the remainder. Thus, under
the relaxed rules, someone formerly cleared for Se-
cret could access �les formerly labeled as Top Se-
cret. For example, military o�cers may only have
clearance to the Secret level, but once their troops
are under �re, they may need to access Top Secret
information such as the location or capabilities of
enemy forces. Conversely, con�dentiality rules and
other security measures could be \hardened" based
on DEFCON alert status or following detection of
a possible intrusion. There are a number of ways to
\harden" a system. For example, one could increase
internal controls, perform full audits rather than se-
lective audits, or require additional authentication
measures.



3 Implementation Space

The DTOS prototype provides a security architec-
ture that separates the enforcement of the security
policy from its de�nition. Since this type of security
architecture is not unique to the DTOS prototype,
results from this paper apply to a variety of systems
with similar architectures.

Elements available to adapt the security policy in-
clude the following:

� the number or complexity of the databases that
a Security Server uses to initialize its internal
state

� the number of Security Servers available to the
microkernel for security computations

� the control over which Security Server makes
security computations on behalf of the micro-
kernel

Although the number of possible implementations
is large, this paper describes the following represen-
tative implementations:

� One Security Server and multiple databases
| adapting the policy by forcing the Secu-
rity Server to re-initialize from a new security
database.

� One Security Server and one database | adapt-
ing the policy by expanding the internal state of
the Security Server and increasing the complex-
ity of the security database to describe more
than one set of security policy rules and by pro-
viding the Security Server with a mechanism for
changing its mode of operation.

� Multiple Security Servers with a single active
server providing one point of control over se-
curity computations | adapting the policy by
providing a mechanism to hand o� the respon-
sibility of computing access decisions from one
server to another. Thus, one and only one Se-
curity Server de�nes the policy at any given
time.

� Multiple, concurrent Security Servers with re-
sponsibility for security computations parti-
tioned by tasks | adapting the policy by as-
signing a pointer to a speci�c Security Server
to each new process. In this method, whenever
a process makes a request to the microkernel
for service, the microkernel submits requests for

access computations to the Security Server that
is associated with that process and which de-
�nes the security policy with respect to that
process.

4 DTOS Overview

This section provides an overview of DTOS, the op-
erating system used to implement the four methods
discussed in this paper.

DTOS was designed around a security architecture
that separates enforcement from the de�nition of
the policy that is enforced. This architecture allows
the system security policy to be changed without
altering the enforcement mechanisms. The policy is
de�ned as a function that maps a pair of security
contexts to a set of permissions. Each pair of se-
curity contexts represents the security context of a
subject and the security context of an object that
the subject attempts to access. Currently, DTOS
implements security contexts consisting of level, do-
main, user, and group, but the set of attributes that
form a security context is con�gurable. Enforce-
ment consists of determining whether the permis-
sions speci�ed by the policy are adequate for an ac-
cess being attempted. The generality of the DTOS
security architecture has been studied as part of
the DTOS program [Sec97]. The conclusion of this
study is that a large variety of security policies, use-
ful for both military and commercial systems, can
be implemented.

The basic DTOS design consists of a microker-
nel and a collection of servers. The microker-
nel implements several primitive object types and
provides InterProcess Communication (IPC), while
the servers provide various operating system ser-
vices such as �les, authentication, and a user in-
terface [FM93, Min95]. Of particular interest is a
Security Server that de�nes the policy enforced by
the microkernel and also possibly by other servers.
When a request is made for a service provided by
the microkernel, the microkernel sends identi�ers for
the security contexts of the subject and object to
the Security Server. These identi�ers are referred
to as security identi�ers or SID's. A context con-
tains attributes about a subject or object that are
necessary for making security decisions. For exam-
ple, the context may contain the domain of a subject
or the type of an object, or the level of a subject or
object. The information that makes up the context
is dependent on the policy. The actual contexts are



local to the Security Server and are not available to
the microkernel. The Security Server then computes
permissions for the context pair, as de�ned by the
policy that it represents, and replies to the micro-
kernel. The microkernel is ignorant of the context
of each entity since it only enforces the permissions
that the � computes on its behalf. Finally, the mi-
crokernel determines if the permissions required for
the request were present in the reply. Other servers
can communicate with the Security Server in a sim-
ilar fashion.

For example, a Security Server implementing an
MLS policy might maintain subject and object con-
texts consisting of a level. For the microkernel to en-
force the simple security and *-property of the Bell
and LaPadulamodel [BL73], the Security Server will
grant a write permission only if the level for the ob-
ject security identi�er dominates that of the level for
the subject security identi�er, and it will grant read
permission only if the level for the subject identi-
�er dominates that for the object identi�er. Both
permissions may be granted if the levels are equal.
A �le server would check for write permission be-
fore allowing a request to alter a �le. An alterna-
tive Security Server might provide UNIX-like access
controls by maintaining a user and a group for each
subject context and an owner, group, and access
control bits for each object context. This type of
Security Server will grant permissions based on the
access control bits depending on whether the user in
the subject context matches that of the owner and
whether the groups match.

A prototype DTOS microkernel and Security Server
has been built by Secure Computing. The microker-
nel is based on Mach, developed at Carnegie Mellon
University [Loe93, Ras91]. A version of the Lites

UNIX emulator, modi�ed by the government, pro-
vides secured UNIX functionality.

The object types implemented by the microkernel
include task, thread, and port. Tasks and threads
represent the active subjects, or processes, in the
system. Each task has a security context that is
used for security decisions involving that task. The
state of each task includes virtual memory consist-
ing of a set of disjoint memory regions, each of which
is backed by a server that is used to swap pages of
the region in and out of physical memory. Each
task contains a collection of threads, each of which
is a sequential execution, that share the task's vir-
tual memory and other resources. A server is im-
plemented as one or more tasks.

The ports are unidirectional communication chan-
nels that the tasks use to pass messages. Tasks use

capabilities to name ports, and these are kept in an
IPC name space on a per task basis. Each capa-
bility speci�es the right to either receive from or
send to a particular port. These capabilities may
be transferred to another task by sending a message.
For each port there is exactly one receive capability.
Therefore, at most one task can receive messages
from the port. IPC is asynchronous in that mes-
sages are queued in the port and the sending task
does not wait until its message has been received.
An exception is when the microkernel is the receiv-
ing task, in which case the sender waits until the
microkernel �nishes processing the message.

Sending or receiving a message is a Mach microker-
nel operation to which DTOS has added security
controls that enforce the security policy. Thus, pos-
session of the appropriate capability for a port is
necessary but not su�cient in order to send or re-
ceive a message from that port. The security con-
texts of the task and the port must also permit the
operation. The policy also constrains what capabil-
ities may be passed in a message sent or received by
a task.

The Security Server receives requests from the mi-
crokernel through the microkernel security port and
from other servers through a general security port.
Requests contain four elements:

� an operation identi�er | allowing the Security
Server to specify history-based policies that de-
pend on the sequence of operations made on an
object,

� a subject security identi�er (SSI) | represent-
ing the security context of the subject,

� an object security identi�er (OSI) | represent-
ing the security context of the object, and

� a send capability for a reply port.

The Security Server replies by sending the permis-
sions for that pair to the reply port (Figure 1). Not
shown in this �gure is the fact that the Security
Server both de�nes and enforces a policy for the
requests that it receives. It might allow security de-
termination requests from some subjects, but not
from others. Similarly, it might allow security de-
termination requests from a particular subject only
for certain (SSI,OSI) pairs.

Security enforcement as described above would be
very expensive due to the large number of messages
that must be exchanged between the microkernel
and the Security Server. The solution in DTOS is
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to cache (SSI,OSI) pairs with their permissions in
the microkernel [Min95]. When the microkernel re-
ceives a request, it �rst looks in the cache for the
appropriate (SSI,OSI) pair. If that pair is in the
cache, the microkernel uses the cached entries. Oth-
erwise, it sends the pair to the Security Server to
determine the permissions, usually also caching the
reply. (Part of the permission set returned is per-
mission to cache the reply | caching would not be
permitted for permissions granted for a single oper-
ation by a dynamic policy.) Since sending to and re-
ceiving from a port are microkernel operations con-
trolled by the policy, the cache must be preloaded
with permission for the Security Server to send and
receive from the designated ports.

In order to implement a di�erent policy (either by
changing the current � or by referring to a new �)
there must be a mechanism for 
ushing permissions
from the microkernel's cache. Otherwise, if the new
policy removes permissions from the system for a
speci�c (SSI, OSI) pair, and the microkernel has
already cached the permissions for that pair, then
the microkernel would continue to enforce the old
policy rather than consult the � de�ning the new
policy. Therefore, the � must issue a command to
the microkernel, and any other servers registered as
caching permissions determined by the �, telling it
to 
ush its cache. However, it would be impractical
for the microkernel to 
ush every permission in its
cache; if it did, then the entire system would come
to a halt. Therefore, some permissions are hard
coded. These include some of the basic permission
required for IPC between the subjects comprising
the operating system itself.

The separation between policy and enforcement in
the DTOS prototype make it attractive for study-
ing adaptive security. The work described in this
report discusses re�nements to the design that are
important for these policies.

5 Comparison of Implementations

This section of the paper describes each of the meth-
ods for changing the security policy in greater detail
along with the capabilities and limitations presented
by each. However, we begin by describing the crite-
ria against which the four implementation methods
are evaluated in Section 5.1. The methods them-
selves are described in Sections 5.2 through 5.5

5.1 Criteria for Evaluation

An adaptive security policy for a computer system
must have the 
exibility to meet the security re-
quirements of the organization that �elds the sys-
tem. There are two types of 
exibility to consider:

� Policy 
exibility | the range of policies that a
system can support before and after a transi-
tion between policies.

� Functional 
exibility | the ability of users to
complete tasks despite the transition of policies.

However, greater 
exibility may come at the ex-
pense of security, and the greater complexity re-
quired for some types of transitions may also have
an impact on the reliability of the system.

The criteria identi�ed here are not independent of
one another; in fact, examining various implementa-
tions of adaptive security leads to a series of trade-
o�s with respect to these criteria. The conclusions
that are drawn from the analysis of the four imple-
mentations re
ect the nature of the dependence of
the criteria upon one another.

Policy Flexibility In the context of adaptive se-
curity, the concept of policy 
exibility could be mea-
sured by the amount of change one is allowed to
make and whether the system can enforce an arbi-
trary new policy. Thus, policy 
exibility depends
on the number (or lack) of constraints that must be
satis�ed by the successor policy for a given prede-
cessor policy.

Functional Flexibility Functional 
exibility ad-
dresses whether the policy transition is graceful or
harsh with respect to the applications that are run-
ning at the time of the transition. A harsh transition
might be like turning o� the power and re-booting
the system, whereas a graceful transition may ap-
pear seemless to the user and most applications on



the system. A harsh policy transition may prevent
users from performing necessary, possibly urgent,
tasks, rather than allowing them to complete their
tasks in an evolving security environment. The ideal
is to allow necessary tasks to complete while termi-
nating tasks that are not only disallowed under the
new policy, but which represent a security risk in
the new environment.

Security The existence of a mechanism or
method of changing policies may introduce secu-
rity vulnerabilities. In assessing a method of policy
adaptation, one must consider the security risks that
are inherent in that method. Furthermore, each
type of policy transition must be assessed for the
relative di�culty of providing formal assurance ev-
idence in support of the policy transition.

Reliability Each method of policy transition in-
troduces a measure of complexity into the system.
Changing policy may expose the system to certain
risks which decrease the stability of the entire sys-
tem.

Performance The ability to change policies
quickly has impact on the needs of the user for
security, functionality, and reliability. A complex
hand-o� may allow greater 
exibility between poli-
cies enforced before and after the transition, but it
may also present greater security risks. A less com-
plex hand-o� may provide performance gains at the
expense of functional grace or 
exibility.2

5.2 Loading A New Policy Database

One possible method for implementing a new secu-
rity policy is to change the way that the Security
Server de�nes it by creating a second database and
re-initializing the Security Server. A method for do-
ing this existed on the DTOS prototype. During the
boot process, the microkernel operates on a hard-
coded cache of permissions until the Security Server
is ready for operation. Once the Security Server
has initialized, the microkernel places the command
SSI load security policy on the security port of
the Security Server. This command causes the Se-
curity Server to read the security database to con-
struct a table in its internal memory that maps SSIs

2Performance seemed to a natural criterion to include.

Unfortunately, the performance data is incomplete. Despite

this problem, the authors have chosen to include partial data

although it is somewhat inconclusive.

and OSIs to permissions. The Security Server then
tells the microkernel to 
ush its cache of permis-
sions, and from that point onward, the policy de-
�ned by the Security Server is the policy enforced
by the microkernel. The same command can be used
to replace one table with another. Once the Secu-
rity Server has loaded the new policy, it tells the
microkernel to 
ush its cache, and the new policy is
enforced by the microkernel.

The command to reload the policy can be encap-
sulated in a user-invoked program or in some au-
tomated process which changes the policy at the
triggering of some event. Thus, the policy can be
changed at regular intervals using a process like
the UNIX utility cron, or by a background process
which monitors the system for intrusion events.

Policy Flexibility This method relies heavily on
the tables that can be loaded into the Security
Server from the security database. Since the tables
are indexed by the SSI and OSI, the management of
the system is easiest if the Security Server loads a
new policy which is similar to the old one; thus lim-
iting the granularity of the allowable policy changes.
A radical change of policy requires that each entity
in the system have a security context which can be
recognized by the active Security Server both before
and after the policy change.

For initial policies based on Type Enforcement3 (see
[BK85]) or MLS access rules, it would be di�cult to
make radical changes in the policy. Every entity
that has a type or domain associated with it must
also have the attributes necessary for enforcing the
di�erent policy. Thus, to change from a Type En-

forcement policy to a UNIX-like security policy, it
would be necessary for objects and processes to have
attributes necessary for both security mechanisms.
For objects it is necessary to maintain contexts for
the sensitivity level of the object as well as the users
and groups which may have access to the object.
For subjects, it is necessary to maintain the clear-
ance level of the subject as well as the user of the
subject. It is also necessary to maintain a database
listing the group membership.

3A thumbnail sketch of Type Enforcementdescribes it as a

type of mandatory access control policy in which each object

has a security attribute known as a type and each subject has

an attribute known as a domain. Subjects are granted access

to read, write, or execute objects based on the domain-type

pair. Roles can be constructed for users by forming sets of

domains in which users may have subjects operating.



Functional Flexibility Since the transition be-
tween policies during the loading of a new policy is
nearly atomic, this implementation is quite harsh
on running applications. Any application which
ceases to have permission to perform any task un-
der the new rules is essentially orphaned. This
abrupt change of behavior is probably acceptable,
and may even be desirable in some contexts (e.g.,
military emergencies). However, in some contexts
this abruptness would cause considerable di�culty.
In the banking example presented in Section 1, there
may be occasions when a particular user must com-
plete a speci�c transaction before the end of the day.
However, if the policy transition time occurs at 5:00
PM sharp and the user needs an additional �fteen
to twenty minutes to complete the task, then the
policy may hinder bank employees from completing
vital tasks. This would doubtlessly be unacceptable
under this scenario.

Security The immediacy of the transition of this
method provides for the greatest security; the users
always know exactly which policy is the current pol-
icy. As will be shown below, this is not always the
case with other methods.

Although the security database is a critical object
that should be protected from unauthorized mod-
i�cation, the security database could be changed
while the system is in operational mode. Assum-
ing that the system is �elded with adequate physi-
cal and procedural security constraints, the security
database is more susceptible to replacement or mod-
i�cation during operation than the database (and
system) would be to attacks conducted between suc-
cessive boots of the system. If subverted software
could replace the intended database with a di�erent
�le, the system would enforce the wrong policy.

The issue of who can authorize, authenticate, and
execute the policy change is a clear security concern.
In the DTOS prototype, authority to reload the se-
curity policy is restricted to subjects that have the
permission ss gen load policy. Authorization to op-
erate subjects with this permission can be restricted
to certain processes, to roles, or to sets of individu-
als with other security mechanisms.

As for the assurance of such a system, there would
be some concerns about the 
ow of information
across transitions. Consider the following example:
Suppose that under one policy a subject in domain
D1 has no permission to observe data in objects of
type T1 but does have permission to observe data
in objects of type T2. Furthermore, no domain that

may observe objects of type T1 may write to any
object of a type that D1 may observe (e.g., T2).
Under this policy alone, there is no possible 
ow of
information from type T1 to domain D1. Under a
second policy, subjects in domain D2 may observe
data in T1 and write to objects of type T2, but D1 is
no longer authorized to observe objects of type T2.
Under the second policy, no information may 
ow
from T1 to D1. However, after a transition from the
second policy to the �rst, it would be possible for
a subject in domain D2 to pass information from
objects of type T1 to a subject in domain D1.

Similarly, when dealing with MLS policies and dy-
namic security lattices, one is necessarily concerned
about loss of con�dentiality and potential contam-
ination of �les during periods of relaxed security.
Returning to a more stringent MLS policy or chang-
ing a policy using Type Enforcement requires exten-
sive audit to e�ect such \roll backs." Unfortunately,
these concerns exist for all methods.

While there do not appear to be any theoretical
frameworks nor any tool support for conducting
covert channel analyses (and simialr analyses) for
adaptive security policies, some of the formal mod-
eling and proofs might be relatively easier for a pol-
icy in which the database is simply reloaded than
for more complex policy transitions.

Reliability A tangible concern is that if the
database �le has become corrupted, then the Secu-
rity Server will not be able to read it. The e�ect of
this is that the Security Server dies, and the system
is left without any Security Server at all. Not only
would the system not be able to enforce the new, in-
tended policy, but the system would have di�culty
running at all. The microkernel and other processes
that can cache permissions computed by the Secu-
rity Server would rely solely on the permissions that
had been cached up to the time that the Security
Server went down.

Both the security and reliability concerns could be
ameliorated by placing a checksum (or a digital sig-
nature) over the security database. The Security
Server would not read in the new database unless
the checksum can be veri�ed.

Of course the discussion in the previous two para-
graphs assumes that the speci�cation of the new
database is correct. Even if the policy changes
are small, an entirely new database must be con-
structed, and it must be correct to avoid problems
(e.g., either a corrupt �le or deadlock conditions be-
tween the Security Server and microkernel). Since



it can be di�cult to specify one database correctly,
attempting to make more extensive changes reduces
the reliability of this method.

Performance This is the second fastest method
for changing policies. During performance testing, a
typical transition time (median) required 2.985 sec-
onds, and no transition required more than 3.970
seconds. Although this might not be as fast as nec-
essary in a real-time embedded system, this would
be more than satisfactory in systems such as the
banking application mentioned in the introduction.

5.3 Expanding the Database and Secu-
rity Server State

In this method of transition between policies,
when the Security Server loads its initial security
database, all of the permissions allowed under all
modes of operation are initialized in the Security
Server's internal memory. A mechanism internal to
the Security Server allows it to change policy with-
out having to read a new security database. Thus
policy changes could be triggered by a variety of
events. The policy could change based on several
events: the time of day, when a process completes
a certain task or invokes a certain permission, or
when an alarm is set o� (e.g., by a possible intru-
sion event). This method is similar to the mech-
anism described in Section 5.2; however, because
of the ability to change policies based on triggering
event it has a number of advantages which are listed
below.

Policy Flexibility This method has the same re-
strictions that loading a new database has. It is
easiest for the Security Server to alternate among
policies which are similar. For initial policies based
on Type Enforcement or MLS access rules, the new
policy must also be based on Type Enforcement or
MLS access rules. However, the mechanisms for
changing policy de�nition give this method greater

exibility than the previous method.

For example, for policies which change on a reg-
ular periodic basis (recall the banking example in
which a more stringent policy is enforced for after-
hours operation), a timing mechanism that triggers
the change of policy could be added to the Security
Server.

Another adaptation mechanism could be triggered
by the use of particular permissions. For example,

when a particular permission is requested and re-
turned to the requesting process, that permission
could be removed from the Security Server's notion
of the allowed permissions. This would render the
permission as a one-time only permission. For ex-
ample, in a commercial application a one-time per-
mission to issue payment for a purchase order would
prevent double payment.

Similarly, when a particular permission is requested
and returned to the requesting process, that per-
mission could be removed from the Security Server's
notion of the allowed permissions, and one or more
could be added. Such adaptations could be chained
together. For example, if the Security Server were
applying Type Enforcement, a process operating in
one domain might be granted access to a new type
and denied access to an old one. Thus a set of op-
erations could be performed by a single process in
a secure pipeline. Such secure pipelines are already
possible with Type Enforcement, but each operation
is performed by a separate process, each running in
a unique domain (see [BK85] and [GHS97] for more
details). This type of mechanismwould also be ideal
for enforcing the security policy known as Chinese
Wall (see [P
97] for a de�nition).

Functional Flexibility Since the transition be-
tween policies during the loading of new policy is the
most atomic, this implementation could be as harsh
on running applications as reloading the database.
However, the database could be expanded to include
several policies so that a policy transition could take
place with several intermediate policies during the
transition. A phased transition of this sort might al-
low some tasks to complete processing within �xed
time limits.

Security The security concerns here are the same
as in Section 5.2 with the exception that the security
database is read once and only once at initialization,
and thus the possibility that an untrusted user or
process has been able to corrupt it is removed from
concern.

With the expanded state of the Security Server,
changes of policy may be regulated automatically
by the time of day, as in the banking example, or
by events, as in the Chinese Wall policy. By moving
the authority for changing the policy from subjects
to events, the methods by which hostile users could
alter the enforced policy change. If a hostile user
tampers with the system clock, or forces a trigger-
ing event, or counterfeits a triggering event, then he



could control changes of policy.

The ability to \harden" system defenses automati-
cally in the event of a possible intrusion also seems
to be a particular advantage not present in reloading
the database.

Reliability This method is more reliable than
reloading the policy because we are not concerned
about the second policy being corrupted after boot-
time. However, like the previous method, changes to
the policy are limited in their granularity by prac-
tical concerns. This method makes the coding of
the Security Server more complex, which may cause
unforeseen problems; so small policy changes, this
method would be superior to specifying and reload-
ing an entirely new database. However, one should
not be tempted into making too many changes to
the policy using this method because of the poten-
tial complexity.

Performance Explicit performance numbers are
not available for this method. However, since it
avoids the time-consuming step of reading a new
database, it is anticipated to be faster than reload-
ing the database, and expected transition times
should be less than one second. Thus, it is expected
to be the fastest of the four methods under discus-
sion.

The microkernel and other processes can cache per-
missions to improve performance; so changing pol-
icy and 
ushing the cache frequently could cause a
minor performance drag. However, permissions in
the database can be 
agged as non-cachable. Thus,
transient permissions as described above could be

agged in that way so that the microkernel would
not have to 
ush its entire cache as it does for
reloading the database. Similarly, permissions in
the database can be 
agged as those which cannot
be 
ushed. Thus, persistent permissions could be

agged so that the microkernel would not have to

ush those permissions from its cache at all, and
performance would not be adversely a�ected by the
adaptation of policies.

5.4 Handing O� Control to a New Se-
curity Server

In the Security Server hand-o�, the current Secu-
rity Server passes the receive capability for its se-
curity port to another Security Server that imple-
ments a new policy. In order to accomplish this,

the new Security Server is initialized while the cur-
rent Security Server is still in control of the policy
decisions. The new Security Server uses the com-
mand get special port to obtain the send right to
client port of the current Security Server and then
issues the transfer security ports to the current
server. The current Security Server packages the re-
ceive rights for its security port along with two other
tables of information. One table contains the map-
ping between security contexts and SIDs that it uses
to interpret incoming requests, and the other table
lists the ports of processes that may be caching se-
curity permissions. The new Security Server needs
the former to interpret requests that it receives re-
garding any processes or objects that exist prior to
the hand-o�. It needs the latter because it may
eventually need to tell these other processes to 
ush
their cached permissions. The last action of the
current Security Server is to tell all processes with
cached permissions to 
ush their caches. At this
point the new Security Server can compute access
permissions, and the microkernel and any other pro-
cesses that enforce these permissions can enforce the
new security policy.

Microkernel
Security port

Microkernel

Security Server

Host port

flush

General
Security port

Network Server

registered
network port

. . .

Registry

File Server

registered
file port

Security Server

Registry

Handoff port

flush
flush

Figure 2: Security Server Hand-O�

In order to be able to process new requests for
permission computations, the new Security Server
must be able to interpret the requests. As men-
tioned above, the old Security Server sends the ap-
propriate information for the new Security Server
to match contexts to SIDs. However, the new Secu-
rity Server has some knowledge of security contexts
prior to receiving this information from the old Se-
curity Server; so it must reconcile its understanding
of contexts with the mapping information received
from the old Security Server. It also must create
new SIDs for any new contexts which were not rec-
ognized by the old Security Server. For example,



if the both the new Security Server and old Secu-
rity Server are implementingType Enforcement and
there are new domains as part of the new policy,
the new domain must receive a SID. Similarly, if
the hand-o� occurs in order to implement dynamic
lattices as part of an adaptive MLS policy, any new
levels must receive SIDs. Once the new Security
Server has completed this reconciliation, the old Se-
curity Server can shut down.

Policy Flexibility The greatest strength of the
hand-o� method is that one can enforce a global,
radical change of policy. The new Security Server
can implement a very di�erent policy from the one
that is enforced before the hand-o�. Not only can
the new Security Server initialize from a new secu-
rity database, it can implement an entirely di�er-
ent set of algorithms for making its security compu-
tations. This may be especially important for im-
plementing dynamic lattices as part of an adaptive
MLS policy.

As discussed in Section 5.2, the only impediment to
changing the policy in a radical way is the labeling
of objects and processes with the appropriate set
of attributes which can be interpreted by both the
new and old Security Servers. In other words, rad-
ically di�erent policies may require essentially dis-
joint sets of attributes which the system designers
glue together for the context of any single entity.

Functional Flexibility In essence this method is
not di�erent from reloading the database. Changes
to the security policy are global and atomic. The
same problems exist in this method as for reloading
the databse for situations where a harsh change of
policy is undesirable, as in the banking example.

Security Some of the same security advantages
and concerns exist here as for the Reload Policy
method. As with the Reload Policy method, the
users always know exactly which policy is the cur-
rent policy. However, if the new Security Server
has to initialize from some static �le or security
database, there is always the risk that it could be
subverted. Another possibility is that the code for
a new Security Server could be subverted as well
and that a malicious Security Server could end up
in control of the permission decisions.

There remains the issue of who can authorize, au-
thenticate, and execute the policy change. The
Security Server will hand o� the security port

to the new server when it receives the command
SSI transfer security ports on its security port. Just
as in the case of the authority to reload the policy,
the permission to issue this command is restricted to
subjects that have the permission ss gen load policy.
Authorization to operate subjects with this permis-
sion can be restricted to certain roles or to sets of
individuals with other security mechanisms. The
additional concern here is that the security port is
transferred to the correct subject, the new Security
Server.

Reliability The hand-o� is a more complicated
procedure than the preceding two methods from two
points of view: of the operation itself and of the
development of the system.

From the latter point of view, the hando� requires
that a second, fully functioning Security Server be
implemented, as well as a second security database.
This solution should not be used for trivial changes
to the policy.

Unfortunately, from the former point of view, the
hand-o� procedure on the DTOS prototype is rel-
atively delicate, and this is its greatest weakness.
While these type of problems are inherent in all
four methods, they are more likely in this imple-
mentation. The unreliability is an artifact of the
Lites server which provides the microkernel with ser-
vices that allow one to use UNIX applications on
DTOS. The combination of the microkernel, Lites
server, and the Security Server is prone to paging
errors and deadlocks. To avoid these errors, the mi-
crokernel must have a su�cient set of permissions
hard-coded into its cache (these permissions are not

ushed from the microkernel). Some of the permis-
sions required by the new Security Server to com-
plete the hand-o� must be in the hard-coded cache
before the transition is initiated.

For example, the Security Server has page-able
memory. During the hand-o�, the Security Server
may start using new areas of memory while pro-
cessing a security request from the microkernel. If
a page fault occurs, then the Security Server itself
will request service from the microkernel. If the mi-
crokernel has not cached the permission required by
the Security Server, it must in turn request a se-
curity computation from the Security Server. How-
ever, the Security Server is blocked on the request
to the microkernel for service, and the microker-
nel cannot complete its request without the security
computation from the Security Server. What makes
these types of events unpredictable is the existence



of other processes on the system that may request
services from the Lites server while the security port
rights are in transit. The new Security Server de-
pends on the Lites server for services, but a thread
of execution in the Lites server can be waiting for a
security computation creating the deadlock.

Performance This is the slowest of the methods
tested. During performance testing, a typical tran-
sition time (median) required 4.900 seconds, and all
transitions fell with the range of 4.820 to 5.010 sec-
onds. This might not be as fast as the Reload Policy
method, but once again this would be more than sat-
isfactory in systems such as the banking application
mentioned in the introduction.

5.5 Adding Security Servers for New
Tasks

The �nal method for changing the security policy
is to create a set of task-based Security Servers. In
the three previously described methods, all tasks
operate under a single, monolithic policy. With this
method there may be more than one Security Server
computing access decisions for the microkernel and
other clients, each de�ning a separate set of security
rules. While the microkernel is enforcing multiple
policies, each task on the system is associated with
one and only one Security Server which serves as
its primary Security Server. In fact, each task is
associated with a list of Security Servers ordered by
precedence. There is a well-de�ned policy for each
task because there is only one way for each access
request to be computed by the entire set of Security
Servers.

For this method we introduce a new global vari-
able: the Security Server stack. Each entry in the
stack consists of a data structure containing the
security and client ports for each Security Server.
At boot time, the initial Security Server uses the
set special port command to enter the security
and client ports to the initial entry in the stack.
Another global variable, curr ss, points to that en-
try in the stack to indicate that the initial Security
Server is the current Security Server. When another
Security Server is created, it also enters its ports to
the stack at the �rst available entry, and curr ss is
incremented to the next position in the stack.

Each task has a pointer labeled ss ptr that identi-
�es the Security Server that de�nes the policy un-
der which the task is running. When tasks are cre-
ated, ss ptr is set to curr ss by default, though the

Microkernel Security
Server

Task 1

curr_ss

ss_stack

0. ptr
1. null
2. null

Task n

.

.

.

Figure 3: Security Server Stack Before \Push"

Security
Server #1

Task 1

Task n

.

.

.

Security
Server #2

Task n+1

Microkernel

curr_ss

ss_stack

0. ptr
1. ptr
2. null

Figure 4: Security Server Stack After \Push"

parent task may cause the value of ss ptr for the
new task to be set to the parent's Security Server.
Like any other process, each new Security Server it-
self operates under the policy de�ned by a Security
Server which precedes it in the stack (the Security
Server immediately preceding it would be the de-
fault). If each Security Server in the stack refers
to its immediate predecessor in the stack, then it is
truly a stack-like implementation. If the Security
Servers in the \stack" refer to servers older than
their immediate predecessors, then a graph of the
dependencies could be more accurately described as
a \tree." This tree-like structure for the dependen-
cies between the Security Servers give this imple-
mentation an interesting set of properties.

Security
Server 0

Security
Server 3

Security
Server 6

Security
Server 7

Security
Server 5

Security
Server 4

Security
Server 2

Security
Server 1

Figure 5: The tree-like dependency among a set of
Security Servers

When the microkernel receives a request, it checks



its cache for the permission. If the permission is
not in the cache, it sends a request to the Security
Server assigned to the requesting task. The Secu-
rity Server computes the requested security access,
unless it receives a request with a context that it
does not understand. If the Security Server cannot
resolve the SIDs into security contexts, it forwards
the request to its own Security Server. The request
is passed down the tree until some Security Server,
possibly the \root" Security Server, is able to resolve
the SIDs into contexts and a security computation
can be made.

This method for changing the security policy is the
most robust and possibly the most 
exible method
of the four methods discussed in this paper. How-
ever, the additional 
exibility and reliability of en-
forcing multiple security policies may come with an
increased cost for assuring the security of the sys-
tem.

Policy Flexibility This method for changing pol-
icy provides the capability for considerable 
exibil-
ity for changing the policy. However, as new Secu-
rity Server s are created, only new tasks operate un-
der the new policy rules; so changes to the system-
wide policy are local rather than global. In other
words: you can't teach an old dog new tricks, be-
cause old tasks will continue to run under the policy
de�ned by the old Security Server.

There is the possibility that the stack could be aug-
mented by using one of the other policy changing
mechanisms to force old tasks to run under a new
policy. For example, if there are two servers in the
stack at positions 0 and 1, the Security Server at
position 0 could hand o� to a third Security Server

which is identical to the Security Server in position
1. Thus, both servers operating would de�ne the
same policy, and the microkernel would be enforcing
only one policy rather than two. [In fact, the �rst
two servers could then exit, all tasks with pointers
to the second Security Server would be re-directed
to the server at position 0 (the third server), and
the system would only have one Security Server as
well as one policy.]

Functional Flexibility Functional 
exibility is
the greatest strength of the Security Server stack.
Allowing running processes to run under their orig-
inal policy is a way of \grandfathering" in their al-
lowed accesses. Thus, in our banking example, if
some user is actively working on a process at 5:00
PM which must be completed, but the bank's se-

curity policy is set to change to a more restrictive
policy at that time, the user would be allowed to
continue his task because the task is operating un-
der the less restrictive policy. However, any attempt
by a user to create new tasks after 5:00 pm would
be subject to the new, more restrictive policy.

Security This method is a double-edged sword.
It is possible that certain tasks which need to be
highly constrained could operate under more restric-
tive policies than is generally required. This could
be an advantageous design for increasing security.
However, coordinating the necessary elements could
be a nightmare for system designers and for any at-
tempts to provide formal assurance evidence. In
e�ect there would be multiple, overlapping security
policies. One could not make broad global state-
ments about the behavior of the system and the
rules in place at any given time.

Also, once a task is granted a permission to perform
some operation, it is allowed to keep that permis-
sion, even if another more restrictive Security Server
is pushed onto the stack. Thus, in the event of an
intrusion, a rogue process which has gained unau-
thorized access to system resources may be able to
continue unchecked. Thus, the gains made for func-
tional 
exibility allow for a loss of security. In or-
der to harden the defenses of a system like this, it
would be necessary to graft another method of pol-
icy change on top of this one.

Reliability This method improves upon the
hand-o� for reliability because there is no vulnera-
ble moment when the rights for the security port are
in transit. It is also more reliable than the Reload
Policy Method because the top Security Server in
the stack will still be able to make security compu-
tations even if new Security Servers fail to initialize
due to corrupted security databases.

Performance Explicit performance numbers are
not available for this method. However, it is antici-
pated to be as fast or faster than the hand-o�, and
expected transition times should be between four
and �ve seconds. The greatest factor in the per-
formance for the stack is the loading of the large
executable for creating a new server to push onto
the stack, which is also true of the hand-o�. The
hand-o� is slower because the rights to the secu-
rity port have to be transferred from one server to
the other. The Security Server stack is quicker than



loading the executable for the new server, but adds
an extra wait.

6 Conclusions

There are a number of ways of implementing adap-
tive security policies for security architectures which
separate the de�nition of the policy from its en-
forcement. From the entire range of such imple-
mentations, this paper has examined four possible
methods all of which have been implemented for the
DTOS prototype by Secure Computing. Each im-
plementation has strengths and weaknesses, and the
trade-o�s are encapsulated in Table 1 below. From
the table, the server stack and the extended state
appear to be the most attractive options for imple-
menting adaptive security, but which choices one
makes depends on the eventual application for the
implementation as suggested below.

Implementations

Reload Extend- Hand- Server

Criteria Policy ed State O� Stack

Policy Excel-

Flexibility Fair Good Fair lent

Functional Excel-

Flexibility Poor Good Fair lent

Security Good Excellent Fair Poor

Excel-

Reliability Fair lent Poor Good

Perfor- Excel-

mance Good lent Poor Fair

Table 1: Summary of Trade-O�s

When applied appropriately, reloading the policy
and the expanded state methods are the lightest
weight implementations and provide good features
for a narrow set of applications. In particular, the
key features of these two methods are that they al-
low the Security Server to change the database with-
out changing the algorithms from which the Secu-
rity Server makes its security computations. The
database and Security Server implementations for
the expanded state have the potential to become
complex. The additional complexity posed by this
work may make alternate methods for implementa-
tion more attractive. The expanded state method is
best left to small, incremental changes in the policy.
By comparison, reloading the policy is probably not
a an attractive option for system in which there are
a large number of small changes to the databases
since each change of policy would require its own

database, and the issue of scalability may be bur-
densome.

The other two methods, the hand-o� and server
stack, allow for changes to the algorithms for com-
puting permissions, and this is what accounts for
the greater degree of policy 
exibility. Because of
the multiple points of control, the security server
stack o�ers the greatest functional and policy 
ex-
ibility, and the inheritance structure of the parent-
child relationships between Security Servers o�ers
the ability to grandfather permissions for running
applications. However, that very same asset is a li-
ability. Policy changes using the stack are local, not
global. Thus, it is not possible to revoke permissions
using that method alone. Furthermore, depending
on the number of policies supported by the system,
the security server stack holds the potential for be-
ing the heaviest weight implementation.

Not addressed in Table 1 is the possibility of mixing
and matching the four methods described in this
paper to capture the best security features of one
method with the best 
exibility features of another.
For example, one might combine the security server
stack and with the hand-o� method in the following
way. Tasks would operate under task-based poli-
cies with the server stack up to a certain point in
time, allowing for local changes to the policy based
on roles and tasks, and then a server might hand o�
to its parent and shut down. For example, in the
banking application in which the more restrictive
nighttime policy is the child of the less restrictive
daytime policy (i.e., the stricter Security Server is
pushed onto the stack at 5 PM), the nighttime server
could hand o� to its parent the following morning
at 8 AM and shut down. Similarly, one might follow
the hand-o� or server stack by reloading the policy

to change the internal tables of a Security Server
without changing the fundamental algorithms by
which it operates.

Current work on adaptive security has focused on
theoretical aspects of adaptive security policies and
on various mechanisms for implementing adaptive
security. Future work on adaptive security poli-
cies should turn from the theoretical to the applied,
hopefully by implementing a demonstration system.
For example, one might implement a set of banking
applications that would operate under policies for
daytime and after-hours processing. A demonstra-
tion system of this type should also be accompanied
by formal assurance evidence such as a formal secu-
rity policy. However, until there is a real system to
examine, formal assurance for adaptive security can
only be speculative.
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