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Abstract

This paper investigates the role oftrust metrics
in attack-resistant public key certification. We
present an analytical framework for understand-
ing the effectiveness of trust metrics in resisting
attacks, including a characterization of the space
of possible attacks. Within this framework, we
establish the theoretical best case for a trust met-
ric. Finally, we present a practical trust metric
based on network flow that meets this theoretical
bound.

1 Introduction

Many public key infrastructures have been pro-
posed and some have been deployed. Almost
all, however, suffer from a worrisome problem: a
compromise of a single key leads to a successful
attack on the entire system. For example, an at-
tacker who gains the root key of a certification hi-
erarchy such as PEM [Ken93] can cause anyone
in the entire system to accept an arbitraryforgery
(defined to be an incorrect name/key binding, in-
serted into the system maliciously).

Recent interest in authentication systems cen-
ters on systems requiring a certain number of
keys (more than one) to be compromised before a
forgery is accepted. This work generally focusses
on the concept of atrust metric, defined here as a
function that computes atrust valuefrom a set of
digitally signedcertificates. Informally, a good
trust metric ensures that there are really multiple
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independent sources of certification, and rejects
(by assigning low trust values) assertions with in-
sufficient certification.

The previous work raises many questions, in-
cluding:

� To which kinds of attack is a trust metric re-
sistant?

� Which trust metric is best?

� How well do these trust metrics work?

This paper answers these questions by analysis
of the possible attacks against trust metrics. After
introducing a certificate system and its mapping
to a graph model (Section 2) and more formally
defining the notion of a trust metric (Section 3),
we present an analytical framework for quanti-
fying the success of various attacks against trust
models (Section 4).

To make the analysis tractable, this paper
makes two assumptions. First, we assume
that most good name/key bindings are accepted.
This assumption is not always valid—for high-
security applications, it may be desirable to have
a very restricted “guest list.” However, for ap-
plications such as key distribution for IP secu-
rity [Atk95] and widespread secure e-mail, it is a
valid assumption. In such applications, if the trust
metric often rejects good name/key bindings,
then either connections often fail, or else they
must be established insecurely. In either case,
a trust metric that accepts most good name/key
bindings would seem to be a better alternative.

The second assumption is that the name space
is opaque, i.e. no information can be gained from
the name itself. Most Internet names have some
structure, but relationships between names often



# nodes needed # nodes needed # edges needed
to mount to mount to mount
successful successful successful

metric node attack edge attack edge attack
shortest path 1 1 1

Maurer 1 1 d

Reiter & Stubblebine d d d

Maxflow d d d

Maxflow-edge d �d2 �d2

best case d �d2 �d2

Figure 1: A comparison of the trust metrics.

have little to do with certification relationships,
which makes this structure difficult to exploit.

Given this background, the remainder of the
paper is devoted to answering the preceding ques-
tions, summarized as follows:

� No trust metric can protect against attacks
ond keys or more, whered is the minimum
number of certifiers on any widely accepted
key (Section 5).

� There is an optimal trust metric based on
maximum network flow. Such a metric pro-
tects against almost any attack on fewer than
d keys (Section 6).

� Of previously published trust metrics, the
Reiter & Stubblebine [RS97a] trust metric is
close to optimal, while the Maurer trust met-
ric [Mau96] is easily attacked (Section 7).

Another contribution of the paper is to distin-
guish between two different types of attacks on
certification systems. The most general form of
attack assumes that the attacker is capable of gen-
erating arbitrary certificates. This attack corre-
sponds to stealing the secret keys of the victim,
and is called anode attack.

However, a far more restricted attack is effec-
tive against many of the trust metrics and can be
easily mounted without stealing secret keys. It
suffices to trick owners of the secret keys into cer-
tifying that untrustworthy keys are trustworthy;
this attack is called anedge attack.Fortunately,
it is possible to design trust metrics to be more
resistant to edge attacks than to node attacks.

Figure 1 is a table that briefly summarizes
these results. Here, “shortest path” is the trust
metric that simply measures the length of the
shortest chain from client to target. “Maurer” is
a simplified version of the trust metric proposed
by Maurer [Mau96]. “Reiter & Stubblebine” is
the bounded vertex disjoint path metric as de-
scribed in [RS97a]. “Maxflow” is the maximum
network flow metric optimized for node attacks
(Section 6). “Maxflow-edge” is the maximum
network flow metric optimized for edge attacks
(Section 6.2). In this table,d is the number of cer-
tificates issued for each key in the system, and�

is a factor indicating the amount of sharing of cer-
tification keys, generally in the range of [0.5..1]
(see Section 5.4).

2 Certificates and graphs

The input to the trust model is a set of digi-
tally signed certificates, while the evaluation of
the trust model is based on a graph. Depend-
ing on the details of the certificate formats them-
selves, a number of different mappings from cer-
tificates to graphs are possible. For the purposes
of this paper, we use a simple but realistic certifi-
cate format and mapping into a graph.

In this example model, there arekeys, names,
and two types of certificates. Abinding certifi-
cateis an assertion of the form “I believe that sub-
ject keyk is the key belonging to namen”, signed
by an issuer key. Adelegation certificateis an as-
sertion of the form “I trust certificates signed by
subject keyk”, again signed by an issuer key. The
“I” in these statements refers to the holder of the
private key corresponding to the issuer’s public



certificate type issuer subject
delegation keyA key B
delegation keyB key C
delegation keyC key D
binding keyD (key J, “Jack”)

delegation keyA key E
delegation keyE key F
binding keyF (key J, “Jack”)

delegation keyE key G
delegation keyG key H
delegation keyH key I
binding keyI (key J, “Jack”)

Figure 2: An example set of certificates.

key.

This model corresponds fairly closely to the
PGP certificate model [PGP95] extended with
“introducer certificates,” not present in any cur-
rent implementation of PGP but proposed as a
future extension. It also resembles an X.509
certification system [X509] with opaque names
(as opposed to distiguished names) and cross-
certification.

This model is somewhat simplistic compared
to real-world certification schemes. For example,
it includes no time-dependent behavior such as
validity periods or revocation. The model does
not distinguish different kinds of certificate is-
suers, which might be users creating their own
certificates or trusted third parties. Some of the
assumptions regarding the graph structure are
more realistic for user-created certificates.

The mapping is as follows: Each key is a node
of the graph. In addition, each (key, name) pair is
also a node. Each delegation certificate maps to
an edge from the node corresponding to the issuer
key to the node corresponding to the subject key.
Each binding certificate maps to an edge from the
node corresponding to the issuer key to the node
corresponding to the (key, name) binding. Fig-
ure 2 shows an example set of certificates, and
Figure 3 shows the corresponding graph.

Let G be a certificate graph. The nodes ofG

are eitherkey nodesVk or target nodesVt, thusG
can be written as(Vk [ Vt; E). In the example of
Figure 3,Vt = f(key J; \Jack")g, andVk is all
the other keysfkey A:::key Ig.

key_A

key_D

key_B

key_H key_C

key_E

key_F
key_I

key_J

"Jack"

key_G

Figure 3: The corresponding graph.

3 Trust models on graphs

This section defines the notion of a trust model
as evaluated on graphs. Given a certificate graph
G, a source nodes 2 Vk , and atarget node
t 2 Vt, the evaluation of the trust model results in
a real number, interpreted as the degree to which
the source key should trust the target. Formally,
the trust metric is represented as a real-valued
functionM(G; s; t). The trust model is sensitive
only to the structure of the graph, not the names.
Thus, the trust metric must give the same value
for isomorphic graphs.

In an automated setting, the sources does not
use the real number directly, but simply compares
it with a threshold�(s) to determine whether the
target is trustworthy. Formally, a keys accepts
a targett iff M(G; s; t) � �(s). Little is lost
by expressing the trust metric in terms of accep-
tance rather than real numbers—by performing
multiple experiments with different thresholds, it
is possible to reconstruct the numbers with high
accuracy. Thus, where it is simpler, we use ac-
ceptance to characterize trust metrics. To avoid



working directly with real values for the� func-
tion, we often express� in percentiles, e.g.�(s)
is set so thats accepts 95% of all targets.

4 Attack models

We consider two different types of attack. In a
node attack,the attacker is able to generate any
certificate from the attacked key. Thus, in a node
attack, the attacker may add arbitrary edges (rep-
resenting delegation or binding certificates) in the
graph. This attack is feasible when the attacker
obtains the private keying material, for example
by stealing a password.

In an edge attack,by contrast, the attacker is
only able to generate a delegation certificate from
the attacked key. This attack is feasible when the
attacker is able to convince the owner of the at-
tacked key that an untrustworthy subject key is
trustworthy.

We also assume that the attacker is capable of
removing arbitrary certificates from any key and
generating arbitrary certificates from newly cre-
ated keys under its control. Removing a certifi-
cate is realized by performing a denial-of-service
attack on the communication of the certificate to
the system requesting it.

For each attack scenario, the number of keys
attacked is fixed, counting only keys for which
certificates are added.

We now formally present the notion of edge
and node attacks on graphs. Given an original
certificate graphG = (Vk [ Vt; E), an attack is
represented by a new graphG0 = (V 0

k
[ V 0

t
; E0).

All of the nodes and edges inG are presumed to
be “good.” The new graph, however, contains at
least one new target nodex 2 V 0

t
� Vt which

represents the forgery.

Given a graphG, the graphG0 is a possible
node attack on the set of keysT iff:

NA((Vk [ Vt; E); (V 0
k
[ V 0

t
; E0); T ) �

8s 2 Vk � T:8t:(s; t) 2 E0 ) (s; t) 2 E

This predicate states thatG0 cannot contain

any new edges from nodes inG that are not un-
der attack. Thus, all new edges inG0 must come
from either a node attack or a new node.

In an edge attack, the edges inG0 are further
constrained so that no edges from attacked nodes
go directly to targets, only to other key nodes.

EA0((Vk [ Vt; E); (V 0
k
[ V 0

t
; E0); T ) �

8s 2 Vk:8t 2 V 0
t
: (s; t) 62 E0

EA(G;G0; T ) � NA(G;G0; T )^EA0(G;G0; T )

The last predicate simply states that attacks
must satisfy both theNA andEA0 predicates.

A consequence of theEA constraint is that
none of the edges from attacked nodes point di-
rectly to the targetx. Thus, in any path froms to
x, the attacked node must be at least distance 2
away fromx.

4.1 Quantifying the success of an attack

A central contribution of this paper is an ana-
lytical framework for quantifying the success of
attacks and thus the quality of the trust metric.
Trust metrics that make attacks less successful
are better.

The success of an attack is most directly mea-
sured as the fraction of source keys inVk accept-
ing the forgeryx. Obviously, this fraction de-
pends on the�(s) values for the source key. If
a source key is tuned to accept very few targets,
then it can reject most forgeries as well (in the ex-
treme, accepting no targets is also 100% effective
against forgeries). Thus, all measures of success
assume fixed target accept rates. For example, it
would be reasonable to fix�(s) for each source
keys so that it accepts 95% of targets. With�(s)
fixed for each key, it is meaningful to discuss the
fraction of source keys that accept a forgery from
a specific attack. Formally, the success fraction
of an attackG0 on a trust metricM is given as:

psuccess(G;G
0; x) =

jfs 2 Vk jM(G0; s; x) � �(s)gj=jVk j;

whereG = (Vk [ Vt; E)
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Figure 4: An attack.

For node attacks, it is easier to specify the at-
tack as a set of attacked nodes, rather than an at-
tack graph. The actual graph chosen maximizes
the chance of success given the node attack con-
straint NA.

pnode(G; x; T ) =

maxG0jNA(G;G0;T ) psuccess(G;G
0; x)

Measuring the success of a particular attack
may be useful in some cases, but because the
space of individual attacks is so large, it is more
useful to characterize trust metrics in terms of
their response to classes of attacks. We consider
two major classes of attacks: those mounted by
randomly choosing nodes to attack, and those
mounted by choosing nodes to maximize attack
success. In both cases, the attacks are parameter-
ized by the numbern of keys attacked.

pnoderand(G; x; n) =

avg
T�Vk^jT j=n

pnode(G; x; T );

whereG = (Vk [ Vt; E)

pnodechosen(G; x; n) =

maxT�V
k
^jT j=n pnode(G; x; T );

whereG = (Vk [ Vt; E)

It is always the case thatpnoderand(G; x; n) �
pnodechosen(G; x; n) (i.e. a chosen attack is more
effective than a random one). The functions
pedge, pedgerand, andpedgechosen are all defined
analogously, usingEA in place ofNA.

5 Best case analysis

In this section, we address the question: What
is the best possible performance of a trust met-
ric? To make this question tractable, we apply
two simplifying assumptions. First, we assume
the indegree of every node in the graph is a con-
stantd. Second, we assume that most source keys
accept most targets in the certificate graph. More
formally, �(s) of each sources is set so thats
accepts the fractionw of all targets. In this anal-
ysis, we assume that most clients will want to ac-
cept most good targets, so a reasonable value for
w would be 99%. Given these assumptions, we
prove tight bounds on the best-case performance
of any possible graph-based trust metric in resist-
ing attacks.

The assumption of constant indegreed instead
of a minimum indegree seems to be necessary
to avoid overly centralized graphs, i.e. ones in
which most nodes have a single edge to a central
node. Such a graph meeting a minimum indegree
constraint is easily constructed, but has the obvi-
ous weakness that an attack on the central node
will cause most keys to accept forgeries.

There are several cases, each of which has a
slightly different analysis. The general plan is to
describe a feasible attack resulting in a graphG0

isomorphic to the original graphG (modulo un-
reachable nodes), with a forgeryx in place of a
victim v. No trust metric can distinguish the two
graphs, thus clients accept the forgeryx with the
same success fraction as they accepted the victim
v.

The idea of the attack is shown graphically in
Figure 4, showing how the original graph of Fig-



ure 3 is modified—all edges to the victim, in this
case (keyJ, “Jack”), are removed and replaced
with edges to the forgery, here (keyX, “Jack”).
The nodes attacked (keyD, key F, and keyI) are
highlighted with wedges.

We consider the following classes of attacks:

� Node attack with a given certificate graph
and the attacker chooses the attacked nodes
(Section 5.1).

� Node attack with a random certificate graph
and the attacked nodes chosen randomly
(Section 5.2).

� Node attack with a given certificate graph
and the attacker chooses a single attacked
node (Section 5.3)

� Edge attack with a given certificate graph
and the attacker chooses the attacked nodes
(Section 5.4).

In cases where attacks succeed against ran-
domly chosen nodes, the analysis of the chosen
node case is not necessary—if the attack works
in the former case, it certainly works in the lat-
ter. Further, there is a theoretical problem with
mounting an attack with randomly chosen at-
tacked nodes against a given certificate graph: the
trust metric could just compare the attacked graph
against the original graph and reject any certifica-
tions if they don’t match, an unfair advantage to
the trust metric in practice. By showing that the
attack works against random graphs, we suggest
that it works against most realistic certification
graphs.

5.1 Node attack; given certificate graph;
attacker chooses nodes

In the first case, we assume a fixed certificate
graph with the constraint that the indegree of each
node isd. The attack is simple. First, the at-
tacker identifies the nodev that is accepted by
the largest number of keys. Then, the attacker
chooses thed predecessors of that node to attack.
Finally, the attacker removesv and its predeces-
sor edges (recall that we assume attackers can re-
move arbitrary edges, see Section 4), and gener-
ates new certificates from each ofv’s predeces-
sors to the forgery nodex.

If all keys accept at least the fractionw of tar-
gets, then there must be a targetv that is accepted
by at least the fractionw of the keys (using the
pigeonhole principle). Thus, the success fraction
is at leastw.

The attack works even if the assumption that
sources acceptw fraction of all good targets is
relaxed. It suffices that there is a single target
which is widely accepted by a large fraction of
clients, which is very likely in any certification
system.

5.2 Node attack; random certificate
graph; attacked nodes chosen ran-
domly

Consider the following procedure for gener-
ating a random certificate graph. First choose
the number of nodes. Second, for each noden,
choosed random predecessors (other thann).

The attack is as follows. Choose a nodev at
random. Removev and its predecessor edges.
Generated random edges from the remaining
nodes to a new nodex.

The resulting graph is clearly a member of the
set of graphs that may be generated by the ran-
dom process. Further, it should be clear that the
distribution is identical to that of the original ran-
dom process for constructing graphs. Therefore,
no metric can distinguish between the graphs
generated randomly and attacked graphs derived
from those generated randomly.

5.3 Node attack; given certificate graph;
a single node is chosen randomly

For this attack, we assume that the attack is on
one node chosen randomly. For certificate graphs
with large constant indegree, such an attack can-
not be very successful, but for certificate graphs
in which a substantial fraction of the nodes have
indegree 1 (as is the case with the certificate
graph stored on the PGP keyservers [McB96]),
the attack can have some success.

The attack only works if the attacked node has
a successorv with indegree 1. The attack itself



is analogous to those above. Removev from the
graph, generate an edge from the attacked node
to x, and generate edges fromx to the successors
of v. The resulting graph is isomorphic to the
original.

Assuming that keys are tuned to accept all
good nodes, the success fractionp is equal to the
fraction of nodes that have successors of indegree
1 (call this fractionf1). Assuming that keys ac-
cept good targets with probability at leastw, then
the success fraction is at leastp = (1 � (1 �

w)=(1� f1)) (this formula is the lower bound of
the probability of the conjunction of two events
when the events are not guaranteed to be inde-
pendent).

5.4 Edge attack; given certificate graph;
attacker chooses nodes

Let pred(v) be the predecessors ofv, and let
pred2(v) = [v02pred(v)pred(v

0). The attack
is as follows: find a nodev accepted by a suf-
ficiently large number of keys and that has the
smallestpred2(v), which are the nodes attacked.
For each noden in pred(v), generate a new
noden0. Remove all the edges frompred2(v) to
pred(v), replacing them with edges to the newly
created nodes.

The number of nodes that must be attacked is
bounded from above byd2. In practice, there is
some� such that there exists a widely accepted
noden with �d2 = jpred2(n)j. In this formu-
lation,� is bounded from above by 1. It is very
near one for random graphs, and it is hoped to
be fairly high (greater than 0.5, say) for realistic
certification graphs.

6 Network flow trust metric

This section presents a trust metric based
on maximum network flows over the certificate
graph. The analysis of this trust metric shows that
its performance almost exactly matches the best
case bounds presented above.

The trust metric is defined as follows. As
before, lets be the source andt be the target.

key_A

.333
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key_I

key_J

"Jack"

key_G

key_D

.333

.5

.333 .333

.333

.333

key_B

.5

key_F

Figure 5: Node capacities for network flow trust
metric.

Each noden in the graph is assigned a capacity
C(s;t)(n) = max(fs(dist(s; n)); gt(dist(n; t))),
where dist(s; t) is the length of the shortest path
through the graph froms to t. The trust metric is
parameterized by the exact definitions offs and
gt.

In this section, we presentfs andgt designed
to resist node attacks, but not to do particularly
well against edge attacks. Letsucc(s) be the set
of successors ofs. Define

fs(l) =

�
max( 1

d
; 1
jsucc(s)j

) if l = 1
1
d

if l � 2

gt(l) =
1
d

These values are calculated to result in a net-
work maxflow of 1 for most(s; t) pairs in the
certificate graph. These values forfs andgt guar-
antee that the number of nodes withC(n) > 1=d

is no greater thand.

An example is shown in Figure 5, in which
each node (except for the source and target nodes)



is annotated with its capacity. In this example,
d = 3, fs(1) = 0:5, fs(2:::) = :333, and
gt(1:::) = 0:333 (actually, thed = 3 constraint
is only met for the target node—additional edges
needed to satisfyd = 3 for all nodes are omitted
for brevity).

This example demonstrates why raising node
capacities near the source improves security. If
the node capacities were constant, they would
need to be set at 0.5 to ensure a maxflow of
1. With these settings, most attacks on two
nodes succeed. With capacities raised near the
source, the only successful two node attack is on
fkey B; key Eg. Considering a random attack,
as the graph grows the probability of choosing
nodes that are all near any given source key be-
comes much lower. Even considering a chosen
node attack, attacking nodes near one source will
not in general be effective against other sources.

In another example, assume a random certifi-
cate graph as described in Section 5.2 and the
unit capacity maxflow metric. Since roughly half
of the nodes in such a graph will have outdegree
less thand, the threshold must be set at less thand

for approximately half of the keys, implying that
half of all source keys accept an attack ond � 1

keys.

To summarize, in a well-connected graph (i.e.
multiple paths between most nodes), with con-
stant capacities, the trust metric is limited by the
minimum of the outdegree of the source and the
indegree of the target. With capacities increased
near the source, the trust metric is limited only by
the indegree of the target.

6.1 Analysis: node attacks

The best case analysis shows that a node attack
on d nodes is likely to be successful, no matter
which trust metric is used. This section shows
that, with the network flow trust metric, a node
attack ond�1 nodes is unlikely to be successful.
Thus, the network flow metric is nearly optimal
against node attacks.

We assume an attack where the attacker
chooses the nodes to be attacked, as it subsumes
the random case (i.e. a trust metric which suc-
cessfully resists a chosen node attack also resists

a randomized attack). We first fix a setS of nodes
to attack. Given this set, we analyze the fraction
Vk that will accept the forgery. Our goal is to find
a tight upper bound on this fraction.

Let us define a nodes assusceptibleto an at-
tack onS iff there exists a nodeu in S such
that C(s;t)(u) > 1=d. For any set of nodesS
wherejSj = l there can be no more thanld sus-
ceptible nodes, because the indegreed is fixed,
and because the set of susceptible nodes is con-
tained in the predecessors of nodes inS. Thus, at
least the fraction1 � ld=jVkj of all nodesu 2 S

haveC(s;t)(u) = 1=d. We know thatS is a cut
of G0 because theNA predicate ensures that all
edges fromVk to the new nodes (V 0

k
� Vk) orig-

inate from the attacked keys. Therefore, the to-
tal network flow is bounded by�u2S :C(s;t)(u),
which in this case is no more thanl=d. Thus,
for at least1 � ld=jVkj of the source nodes, at-
tacks on less thand nodes fail (i.e. for alll < d,
pnodechosen(G; x; l) � ld=jVkj).

It should be clear thatpnodechosen(G; x; l) falls
off very quickly asl decreases. In the case where
s has at leastd successors,s will not accept any
attack on less thand nodes.

6.2 Edge attacks

Here arefs andgt tuned to resist edge attacks:

fs(l) =

8<
:

max( 1
d
; 1
jsucc(s)j

if l = 1

max( 1
�d2

; 1
jsucc2(s)j

) if l = 2
1

�d2
if l � 3

gt(l) =

�
1
d

if l = 1
1

�d2
if l � 2

Again, we expect there to be a maxmimum
flow of 1 for most(s; t) pairs in the graph. For
certificate graphs expected to arise in practice,
values of� in the range[0:5::1]will lead to a high
rate of acceptance. For random graphs,� can be
very near unity.

An example is given in Figure 6, in which the
immediate successors ofs and immediate pre-
decessors oft have capacity 0.333 and all other
nodes have capacity .125. The example also
shows why a value of 1 for� is not reasonable—
in this case, it would causes to rejectt because
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Figure 6: Node capacities for metric tuned for edge attacks.

the predecessors oft share some predecessors. In
this example, setting� = 0:888 ensures thats
acceptst.

6.3 Analysis: edge attacks

The analysis is analogous to that for node
attacks, similarly assuming that the attacker
chooses the nodes to attack.

Analogous to Section 6.1, let us define a node
s as susceptible to an edge attack onS iff there
exists a nodeu for which C(s;t)(u) >

1
�d2

and
u 62 pred(t). The number of susceptible nodes is
no more thand + d2, by of the definition offs.
Thus, at least the fraction1 � k(d + d2)=jVkj of
all nodesu 2 S haveC(s;t)(u) =

1
�d2

.

The total network flow froms to t is bounded
by the minimum cut across the nodes, and hence
any cut. Consider the cut across nodesS, which
in this case is no more thank=(�d2). Thus, for at
least the fraction1� k(d+ d2)=jVkj of all node,
edge attacks on less than�d2 nodes fail.

7 Comparison to related work

Our analytical framework for evaluating trust
metrics is new but was inspired by the work of
Reiter and Stubblebine [RS97a, RS97b]. Their
discussion of the bounded vertex disjoint paths
trust model gave one criterion for resistance to
attack: with a threshold ofk independent paths,
attacks onk � 1 or fewer nodes will never suc-
ceed. In [RS97b], Reiter and Stubblebine show a
clear example of a trust metric that isnot resistant
to attack—they demonstrate that in the BBK trust
metric [BBK94], an attack on a single node can
result in arbitrary manipulation of the trust value.
This paper extends their initial work into an ana-
lytical framework for comparing trust models in
a variety of attack situations.

The general approach of using maximum net-
work flow has been proposed independently by
David Johnson, as mentioned in [RS97a]. A dif-
ferent trust metric based on maximum network
flow was proposed in [RS97b]. To our knowl-
edge, the idea of increasing the node capacities
near the source and target of the query is new. In-
creasing the capacities near both the source and
target has a small effect on node attacks (because
the metric is already close to the bound), but does
greatly improve resistance to edge attacks—from
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Figure 7: A graph with a bottleneck.

d to�d2.

Reiter and Stubblebine [RS97a] propose a trust
metric based on counting bounded vertex-disjoint
paths. In the absence of a path length bound, this
trust metric is equivalent to maximum network
flow with unit capacities. The question remains:
does the imposition of the path length bound im-
prove the metric? Here, we argue that the answer
is no.

Assume that trust metricM1 is maximum flow
(without a bound) and a threshold ofk1, and that
trust metricM2 is bounded vertex disjoint paths
and a threshold ofk2. For the metrics to be com-
pared directly, source keys must have similar tar-
get accept rates. Because the bound causes fewer
independent paths to be accepted,k1 > k2. Thus,
there is a class of attacks onk2 keys accepted
by M2 but notM1. It is important to stress that
this analysis depends on the assumption that the
metric accepts most good keys. For metrics that
accept only a fraction of the good keys, length
bounds in metrics may be useful.

An intriguing metric proposed by [Mau96] as-
signs probabilities to each edge and performs a
randomized experiment on whether the target is
reachable from the source. Maurer’s paper used a
different certificate format and mapping than as-
sumed here. Maurer’s graphs have two different
kinds of edges, but it is possible to consider a
simplified form of his model in which there is a
single edge. If we assume that the probabilities
on the edges are constant across the entire graph,
then as the probability goes to zero, the Maurer
trust metric becomes consistent with the shortest
path trust metric. As the probability goes to one,
the Maurer trust metric becomes consistent with
a maximum network flow with unit capacities as-
signed to edges. Appendix A presents proofs of
these statements. Such a trust metric is reason-

ably effective against edge attacks, but succumbs
to an attack on a single node. For example, in the
graph shown in Figure 7, there are three edge-
independent paths froms to t, but such a graph
can be compromised by attacking the single node
at the bottleneck.

8 Discussion

We have presented an analytical framework for
understanding how a trust metric can be used to
resist attacks. Our main assumption is that keys
should accept most good targets. We have pre-
sented both a best-case theoretical limit on how
well trust metrics can perform and a practical
trust metric (based on network flows) that meets
this limit. Conversely, the fact that the limit is
met demonstrates that the attack described in the
theoretical analysis (Section 5) is optimal—an at-
tacker should always try to attack the keys nearest
the victim node. Under a node attack, the number
of nodes that need be attacked is the indegree of
the target.

To a first approximation, good trust metrics
measure the indegree of the target node. Us-
ing a trust metric, then, is only effective if ev-
ery accepted target has a high indegree. Thus, a
trust metric is not particularly helpful on existing
certificate graphs such as the PGP key database
[McB96], in which about 35% of the keys in the
strongly connected subgraph have one predeces-
sor. Each source key has the choice between
rejecting a large fraction of the graph or being
highly vulnerable to single key forgeries.

We have also distinguished between node at-
tacks (in which the attacker can generate any cer-
tificate from a compromised key) and edge at-



tacks (in which the attacker can only generate
delegation certificates to an untrustworthy party).
We have presented a trust metric that is far more
resistant to edge attacks than to node attacks. For
realistic values, sayd = 10 (every key is certi-
fied by at least 10 others) and� = 0:5, an at-
tacker would require 10 keys in a node attack or
50 keys in a edge attack to successfully perpetrate
a forgery.

Thus, for an attack-resistant key infrastructure
based on trust metrics to be viable, the owner of
every key must be willing and able to have a num-
ber of people to certify it. Resisting attacks is
possible, but increases the cost of certification.
Only practical experience with a prototype sys-
tem can determine whether this tradeoff is worth-
while.
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Appendix A

This appendix presents proofs that the Maurer
trust metric becomes consistent with the shortest
path and edge-constrained maxflow trust metrics
when the edge probability tends to zero or one,
respectively.

First, the definition of consistency: Two trust
metrics are consistent with each other over a
graphG if for all keys, there are no pairs of tar-
gets that are ordered inconsistently by the met-
rics, i.e.M1 andM2 are consistent overG iff:

8s; t1; t2::((M1(G; s; t1) > M1(G; s; t2)^

M2(G; s; t1) < M2(G; s; t2))_

(M1(G; s; t1) < M1(G; s; t2)^

M2(G; s; t1) > M2(G; s; t2)))

Clearly, the existence of a monotonic function
f such thatf(M1(G; s; t)) = M2(G; s; t) is a
sufficient condition thatM1 andM2 are consis-
tent with each other.

Consistency is a weaker relationship than
equivalence; it is possible for two trust metrics
to be consistent even if they differ in granularity.
In the extreme case, the constant trust metric is
consistent with all other trust metrics. Thus, the
Maurer trust metric may be somewhat “better”
than its counterparts because of its finer granu-
larity.

Next, we formally define the trust metric. The
trust metric described here is actually a simplified



version of that presented in [Mau96]. One sim-
plification is that the probability associated with
each edge is a constantp; in the original metric,
the probability can vary depending on user input,
or can be encoded in the certificates themselves.
The other major simplification is to use a graph
with only one type of edge, a consequence of
specifying the subject of a delegation certificate
by key, rather than name.

We useMMp to denote the trust metric de-
rived from assigning the probabilityp to all edges
in the graph. We defineMMp(G; s; t) to be the
probability that, in randomized experiments in
which each edge inG is colored black with prob-
ability p, there exists a path froms to t consisting
entirely of black edges.

We useSP to denote the shortest path metric.
SP(G; s; t) is defined as zero minus the shortest
path froms to t in graphG, reflecting the fact that
shorter paths are to be considered more trustwor-
thy than longer paths.

We useEDP to denote the edge disjoint path
metric. EDP(G; s; t) is defined as the number of
edge-disjoint paths froms to t in graphG.

A.1 Proof for p tending to 0

We prove thatMMp becomes consistent with
SPasp tends to zero. We show this by presenting
a monotonic functionf that mapsMMp to SP,
defined as:

f(x) = maxx�p�i i; i integer

We make use of the fact that for monotonic
predicatesP , j = maxP (i)i iff P (i) and:P (i+

1).

Thus, to show thatf(MMp(G; s; t)) =

SP(G; s; t), it suffices to show the lower bound
MMp(G; s; t) � pSP(G;s;t) and the upper bound

MMp(G; s; t) < pSP(G;s;t)�1.

The lower bound is trivial. Letl denote the
length of the shortest path froms to t. Con-
sider the subgraph ofG containing only a shortest
path froms to t. The value ofMMp on this sub-

graph is computed aspl, using the series combi-
nation rule (Figure 8). Since the Maurer metric
is monotonic (i.e.G0 � G ) MMp(G

0; s; t) �

MMp(G; s; t)), andSP(G; s; t) = �l, the lower
bound follows.

To demonstrate the upper bound, we first com-
pute a breadth-first search ofG, for each noden
assigningd(n) = the length of the shortest path
from s to n. We then calculate, for each path
length l, an upper boundu(l) on the probabil-
ity that at least one noden such thatd(n) = l

is reachable on an all-black path from s, assum-
ing each edge is colored black with independent
probabilityp.

The calculation is by induction. In the base
case,u(0) = 1 trivially.

In the induction step, if no nodes at distance
l � 1 are black-reachable, then no nodes at dis-
tancel could be black-reachable. Thus, it suf-
fices to compute an upper bound on the condi-
tional probability that at least one node at dis-
tancel is black-reachable given that at least one
node at distancel � 1 is black-reachable. This
conditional probability is no greater thanpjEj.
Thus,u(l) = pjEju(l� 1) = (pjEj)l.

The proof is completed by finding a value of
p0 such that for allp < p0, u(l) < pl�1. Solving
for equality, we have:

(pjEj)l = pl�1

pjEjl = 1

p = jEj�l

By choosingp0 to solve this equation for the
maximum possible value ofl (diam, the diameter
of the graph), we satisfy the inequality for allp <
p0 and alll � diam. Thus, withp0 = jEj�diam

the result is proved.

A.2 Proof for p tending to 1

We prove thatMMp becomes consistent with
EDP asp tends to one. We show this by present-
ing a monotonic functionf that mapsMMp to
EDP, defined as:
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Figure 8: Series combination rule for Maurer metric.
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Figure 9: Parallel combination rule for Maurer metric.

f(x) = maxx�1�(1�pdiam)i i, i integer

As in the shortest path case, we show that
f(MMp(G; s; t)) = EDP(G; s; t) by show-
ing the lower boundMMp(G; s; t) � 1 �

(1 � pdiam)EDP(G;s;t) and the upper bound
MMp(G; s; t) < 1� (1� pdiam)EDP(G;s;t)+1.

To show the lower bound, choose the subgraph
which contains onlyk vertex-disjoint paths from
s to t. By using the series rule (Figure 8), each
path reduces to a single edge of probabilitypl,
wherel is the path length. Because no path can
be longer thandiam edges, the probability on the
edge is bounded from below bypdiam. Using the
parallel combination rule (Figure 9), these edges
reduce to a single edge with probability1� (1�

pdiam)k.

To show the upper bound, consider that be-
cause there are onlyk edge-disjoint paths, there
is a set of edgesF; jF j = k such that removing
those edges blocks all black paths. By compu-
tation, the probability of all these edges being re-
moved is(1�p)k. Thus, the probability of an all-
black path is bounded from above by1�(1�p)k.
To establish the upper bound, we must show that
there exists somep1 such that for allp > p1,
1� (1� p1)

k < 1� (1� pdiam1 )k+1, or equiva-
lently (1� p1)

k > (1� pdiam1 )k+1.

Becausepn � 1� (1� p)n for all 0 � p � 1

and alln > 0, this inequality is implied by:

(1� p1)
k > ((1� p1)

diam
)
k+1

By simple algebra, this is equvalent to:

p > 1� 1=(diamk+1
)

Thus, choosingp1 = 1 � 1=(diamk+1) sat-
isfies the inequality. Becausep1 monotonically
increases withk, setting it for the highest possi-
ble value ofk will satisfy the inequality for alls
andt.

These two proofs characterize the behavior of
the Maurer metric for values ofp near 0 and 1,
but not for values in between. As might be ex-
pected, simulations with the metric over various
certificate graphs indicate that its performance is
intermediate between these two cases for inter-
mediate values ofp.


