
The following paper was originally published in the
Proceedings of the 7th USENIX Security Symposium

San Antonio, Texas, January 26-29, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Towards Web Security Using PLASMA

Annette Krannig
Fraunhofern-Institute for Computer Graphics IGD



Towards Web Security UsingPLASMA

Annette Krannig
Fraunhofer–Institute for Computer Graphics IGD, Germany

Abstract

The World Wide Web is one of the most significant multi-
media applications ever developed — and therefore secur-
ing the web is one of the most pressing problems. There
exist a number of approaches for securing the World Wide
Web which, however, usually pursue what one might call
a low level approachwithout being able to give adequate
consideration to the specific requirements of this multi-
media (or hypertext) system.
The subject of this paper is the realization of an ade-
quate security system, which is capable of detecting the
different media and structures within hypertext systems
and therefore apply different cryptographic mechanisms

to them; this resulted in the development of the system
PLASMA (Platform for SecureMultimediaApplications).

PLASMA is a security platform designed within the frame
of the Berkom R&D-programme at the Fraunhofer–IGD
in Darmstadt whose prototype was developed to provide a
means for secure multimedia telecommunications. In or-
der to demonstrate the capabilities of PLASMA, it was in-
tegrated into a W3 scenario. The advantages of PLASMA

when used in the World Wide Web as well as the archi-
tecture created for the integration process are described in
the following section.

Keywords

World Wide Web, High level security, Multimedia, Secure communications platform

1 Introduction

Secure telecommunications is a subject which has been
addressed extensively in the past; the same is true for the
secure World Wide Web. An overview of this topic may
be found in the paper by P. Lipp and V. Hassler [10]. Pro-
tocol realizations such as SHTTP [14] or SSLeay [13], an
implementation of SSL [5], are examples of the prior art
in this field.
Yet even in 1996 B. Fernandez noted in [3] that these
works concentrated primarily onlow level security; these
approaches do not address the multimedia or structural
elements of the application documents. This is an area
which has received scant attention in the past and on
which this paper tries to shed some light.

From [3]: “Hypertext systems encompass multimedia
documents with hyperlinks connecting to other
similar documents. Multimedia documents and
their hyperlinks may contain a variety of media
including audio, video, animation, graphics and
text. Extensive research is going on about hyper-
text/multimedia systems as they are the upcom-

ing platform for worldwide transfer of informa-
tion. With this rapid growth in hypertext docu-
ments and WWW sites, their security is a top pri-
ority issue. Compared with other topics, this is a
relatively neglected aspect. This is strange because
the richness and variety of multimedia information
provides with many opportunities to access unau-
thorized information. Most of the work until now
has focused on methods to protect the information
or authenticate the users using cryptographic mea-
sures. While these are certainly useful, they are too
low level to control access based on logical proper-
ties of the document information.”

To overcome these deficiencies a security platform
PLASMA for multimedia telecommunications and appli-
cations has been designed and implemented for differenti-
ating between media and structural components and using
different cryptographic algorithms accordingly. For the
purpose of demonstrating the functionality of PLASMA,
the World Wide Web was chosen. The reasons for this
were that on one hand more and more transactions occur
via the web, making the WWW one of the principal appli-



cations in electronic communications overall; on the other
hand the World Wide Web constitutes a multimedia sys-
tem as well as a hypertext system with components which
can be distinguished by the structure of the application
documents.
PLASMA was a project within the R&D–programme of
Deutsche Telekom Berkom GmbH, which is a subsidiary
of Deutsche Telekom AG. Deutsche Telekom has devel-
oped a product version of PLASMA which is based on
Deutsche Telekom’s security technology as well as the re-
sults of the PLASMA research project. PLASMA is cur-
rently available for several operating systems. In this con-
tribution all mentioning of PLASMA refer to the PLASMA

research project and the PLASMA prototype realized in
this project.

2 New requirements for a secure
WWW

The World Wide Web is a multimedia hypertext system; it
consists of text documents including images as well as a
host of other documents of varying structure and differing
media types.
For example, single words or simple buttons in a hyper-
text document may refer to different documents, images
or Java applications which are activated by a mouse click.
If the so–calledhyperlink is activated, the corresponding
web server is contacted and the selecteddocumentis re-
quested by the client. Thisdocumentmay be another text
document, an image, a Java applet simulating a video or a
so–calledform. Formsare sent to the client by the server,
filled out by the client and then returned to the server.
In the World Wide Web, text, images, Java applets, forms
etc. are transmitted, suggesting the use of different cryp-
tographic mechanisms for these different media types and
structural elements. Image and video data may be pro-
tected differently from textual data. For example, it is of-
ten sufficient to simply reduce the image quality of the
image data or to encrypt merely a segment of the image
(e.g. encrypting a face). Furthermore, image and video
data are of considerably larger volume than textual data
which may make the use of faster cryptographic algo-
rithms (which will then be usually less secure) neces-
sary. The divergent media and structures of an application
document or the various document types should also be
treated differently by a security platform.
Another layer of security is the protection of the entire
document during transmission. A document of a multime-
dia application is usually a composite of different media
types; yet it must be considered as a composite whole.
It is necessary to specifically associate media and crypto-

graphic protocols which determine the appropriate algo-
rithm for each media type. However, once the appropri-
ate cryptographic mechanisms for a media type within a
document have been determined, they cannot be changed
within that document context.

The selection of these security services should be per-
formed by the user since only he can decide on the ba-
sis of a specific document whether it should be signed or
merely be encrypted in transit — this makes user interac-
tions necessary.

Both are problems which are hardly if at all considered
in the current telecommunications systems yet are real-
ized in PLASMA. As a demonstration of these features,
PLASMA was integrated into the World Wide Web. The
thus developed solution will now be described. The archi-
tecture to be presented itself does not offer new insights
into the subject of web security but does demonstrate a
meaningful application for the security platform PLASMA

in the World Wide Web and the new concepts realized
within the platform, namely the idea ofhigh level secu-
rity.

Furthermore, this implementation may be used in a real–
world scenario for securing communications in the World
Wide Web since

� PLASMA allows securing several simultaneous
communication sessions; this allows a web server
to serve several clients simultaneously using secure
connections; similarly a client is capable of starting
several simultaneous requests to different servers.

� It is possible to create the presented scenarios
(and the architecture presented therein) even when
firewalls (of the packet filtering/stateful inspection
variety) are used to secure a corporate intranet.
PLASMA uses the standard HTTP protocol for tun-
neling its secure requests and replies thus facilitat-
ing real–world secured web communications[4].

� A basic functionality of any kind of cryptographic
systems is a correct key management, i.e. the proper
administration and storage of the cryptographic
keys for each user. The current realization of the
key management subsystem in PLASMA conforms
to the X.509 authentication framework [15], thus
making for a clean implementation of this vital part
of a cryptographic system.



3 What is PLASMA?

3.1 Media and structure specific crypto-
graphic operations on application doc-
uments

PLASMA is a security platform which is capable of dif-
ferentiating cryptographically between the various media
— the underlying engine also allows different structural
components of a document or different document types
as they may occur in hypertext documents in the World
Wide Web to be operated on using different cryptographic
mechanisms.

What are the requirements for this – TheFilter module
The paramount requirement for the above mentioned pro-
cedure is that the application (i.e. the multimedia or hy-
pertext system) is capable of handing down information
on media structure, structural elements or document types
to the security platform. An application document there-
fore must be split into its multimedia or structural com-
ponents which in turn must be passed on in PLASMA–
specific formats to the security platform. This task is per-
formed by theFilter.
The Filter is a module that is required by the security
platform yet logically resides within the application since
only the application has the knowledge required on for-
mat structures which vary from application to application
and may even diverge strongly from prior versions of the
same application. Therefore each application must pro-
vide its own PLASMA Filter. The data structures within
PLASMA for multimedia documents are constant and can
be addressed by each application in a similar fashion; it
is the application formats which cannot be addressed ade-
quately in a general form by PLASMA.
A Filter dissects a multimedia document of the applica-
tion into its media specific components by noting the loca-
tions of subcomponents (e.g. the locations of textual and
image parts) into aScript; the media specific parts of an
application document are thus transformed into their cor-
responding media specific data objects within PLASMA 1.
If after reverting the cryptographic operations these me-
dia specific data objects of PLASMA are to be transformed
back into the plaintext document, theFilter requires this
Script. TheScript provides the required information for
theFilter to assemble the plaintext document into its orig-

inal form; the PLASMA specific text objects are written
into positions originally containing text portions; similar
procedures are followed for image data and other media
specific objects within PLASMA. Figure 1 illustrates the
concept of aFilter.
PLASMA thus obtains media specific data objects from the
Filter which are then to be processed using various cryp-
tographic mechanisms.

What further modules are required? PLASMA pro-
vides three security services for data transmissions in its
current implementation; they arenon-repudiation, confi-
dentialityandintegrity. The object–oriented design of the
security platform allows the easy integration of further se-
curity services such as theprotection from replay attacks
or thedigital signature creation2.
For PLASMA to be able to perform media specific opera-
tions on the application document data it is necessary that
the security platform can call upon different and media
specific protocols for the actual operation; this is realized
by the concept ofgeneric security services. A generic ser-
vicenon-repudiationnot only provides one fixed protocol
for realizing a non-repudiable component but rather has
access to a number of different protocols which then per-
form the actual operation3.
The security platform must be capable of activating the
particular security services for each media type or struc-
tural element and their corresponding cryptographic pro-
tocol — these can and should be media specific protocols.
The simplest and most obvious approach for this is to im-
plement the corresponding parameters as self–sufficient
modules of the platform. This results in the existence of
the modulesmedium, generic security servicesandcryp-
tographic protocols.
This architecture necessitates another module which cre-
ates the relations between these parameters; this rela-
tion must express which cryptographic protocol is to be
used for a specific medium, structural element or doc-
ument type with regard to an activated security service.
This relation is designated within PLASMA as thesecu-
rity policy since this relation actually describes the policy
or mode of operation how different media are to be pro-
tected cryptographically during transmission — it must in
some form be capable of influencing the relations between
the other three modulesmedium, generic security services
andcryptographic protocols.

1TheScript is stored together with the other media specific data objects into aContainerby PLASMA — with theContainerbeing a collection
object maintaining its subobjects as a list.

2The servicesnon-repudiationanddigital signature creationdo not differ from a purely technical viewpoint; however, in the latter case the user
must be given an opportunity to actively confirm that he wants to sign the given document.

3A cryptographic algorithm is referred to herein as a protocol since for example in the case of the DES algorithm the protocol for reverting the
encryption on behalf of the recipient is well defined.



Figure 1: The functionality of aFilter

The security policy in PLASMA is stored for each user as
an ASCII file in the home directory of each user (FSP: for-
mal security policy), thus allowing each user to configure
this policy to meet his needs prior to the secured commu-
nication itself. The actual use of these security policies
in an ongoing communications session, their enforcement
and application will be explained later.
The rough outline of the security platform is therefore pre-
determined to appear similar to Figure 2 at the left side.
It is obvious that further modules are required for the im-
plementation of “secure telecommunications” when con-
sidering the entirety of a security platform; such objects
as theSessionobject depicted in Figure 1 which imple-
ments a secure connection between two communications
partners within PLASMA — however, a detailed descrip-
tion of the object oriented design of PLASMA was already
given in [7] and shall not be repeated.

How are the modules activated? Thegeneric security
servicesmodule could be activated by user activity or al-
ternatively, they might get activated sequentially. The
modulecryptographic protocolsmust interact with the
underlying security technology which provides the ac-
tual implementation of the cryptographic algorithms. The
mediummodule obtains its data from theFilter and differ-
entiate the data stream into several classes. Thesecurity
policy can be set directly by the user or by a security ad-
ministrator.

3.2 Secure telecommunications using
PLASMA

What are the basic requirements for secure telecommuni-
cations which are, of course, also realized in PLASMA?
First of all each user trying to establish a secure connec-
tion to one or multiple communications partners requires

access to his personal security–relevant data. These data
are stored in a specially secured area, access to which is
possible only using a valid PIN.
PLASMA requests this PIN upon establishment of a secure
connection from the user. If the PIN entered is correct,
the storage area (which can best be thought of as a Smart-
Card) is opened and the user is then enabled to create a
secure communications session; otherwise the establish-
ment process is stopped at this point.
After this access control for the personal security relevant
data of the user which in particular contain cryptographic
keys it is also necessary for the user to gain certainty about
the identity of the communications partner; this requires
a mutual authentication of the participating parties in the
best case, for which several protocols exist. In PLASMA,
this is implemented by means of the X.509 authentication
protocol [15].
After a successful X.509 three-way-authentication all par-
ticipants are well informed about the identity of their
counterparts: The web server knows which client wants
to access his data and conversely the client knows he has
contacted the correct web server — such information is
vital, particularly in the case of online transactions and
electronic commerce.
During the authentication the security policies, the public
asymmetric keys including certificates as well as the ses-
sion keys which are later used for transferring confiden-
tial data are exchanged4. The concept of security policies,
the exchange thereof in the authentication phase and the
subsequent reconciliation of the policies of both commu-
nications partners are significant elements of PLASMA: an
application document is processed by PLASMA according
to the rules extracted from aCoordinated Security Pol-
icy CSP. The CSP is calculated from the security poli-
cies (FSPs) of the communications partners which are ex-
changed during the authentication phase.

4For the necessary background of cryptographic material refer for example to [15].



Figure 2: Relevant modules and a possible security policy

A security policy which yields a relation between the
modules medium/structure, cryptographic protocols and
security services, thus assigning a cryptographic protocol
to a combination of a medium and an activated security
service is partitioned into two segments: theprofile and
therule part.
The profile part lists the cryptographic protocols available
for each security service; this is useful since it may be
the case that one of the communicating partners is willing
only to communicate if SmartCards are used for storing
the cryptographic keys or even that one side wants to ex-
clude a simplistic cryptographic algorithm from the nego-
tiation since it is deemed too insecure by that party.
The rule part lists the specific cryptographic protocols
which are to be used when encountering a given media
or structural type of an application document in order to
provide a requested security service5 (cf. Figure 2, right
side).
These security policies are created locally at each user’s
site and must be reconciled prior to the communication
proper and immediately after the mutual authentication
with communications partner; result is theCSP, men-
tioned before. To achieve this the set intersection of the
profile parts of both policies is generated; in the case of
the rule parts the set union is created. This way only such
protocols are allowed for the communication which are
available on both sides of the communications channel
and only those cryptographic protocols are selected which
do not contradict any rule from either party.
After a successful authentication of the communications
partners the secure communication itself between the par-
ticipating parties may commence. To achieve secure com-
munications, the security services confidentiality, non-
repudiation and integrity are made available by PLASMA 6.
Using PLASMA it is now possible to send messages with
guaranteed integrity, i.e. the message will arrive prov-
ably at the recipient as it has been sent by the sender;

non-repudiable message passing means that the sender of
the message is uniquely identifiable by the recipient – be-
yond that the non-repudiation automatically includes the
integrity of the transmitted document; lastly, PLASMA is
capable of generating confidential messages, i.e. mes-
sages which only authorized parties – the sender and the
recipient – are able to decrypt; all other parties can only
access the message in encrypted form.
The concept of security polices and, correspondingly,
the media–specific operations which also include the
structural properties of an application document are now
brought to the fore in the following: the generic security
services are activated by default sequentially by PLASMA

or after explicit user interaction — only the user may de-
cide at runtime whether a document to be transmitted shall
be signed or protected against a loss of confidentiality.
Consequently, a media specific cryptographic protocol
matching the activated security service and current me-
dia type must be selected which will then be used to meet
the security policies’ goal. To achieve this, the security
policy CSPis queried; this object is structured as a table
assigning each media type and generic security service a
specific cryptograpic protocol (cf. Figure 2 at the right
side).
The result of this query is a cryptographic protocol which
is subsequently activated by PLASMA. The data are trans-
mitted to this protocol which will then perform the cryp-
tographic operations specific to itself on these data.
Lastly, an integral part of each secure communications
session is the ability to dismantle such a connection prop-
erly in such a way as to disallow a possible intruder the
disruption of such a connection. Therefore this function-
ality has been integrated into PLASMA.
The possibility of user interaction is, similar to the media
specific operation on an application document, only pos-
sible if the security platform is situated logically close to
the application and is capable of communicating with the

5The “protocol”Noneis for document parts which should not be treated cryptographically.
6Through the object oriented design of the security platform PLASMA, as described in [7], it is easily possible to integrate further generic security

services into the platform.



application. This goal has been reached within PLASMA

by taking the approach of locating the platform close to
the application based on the concept of the GSS-API [9],
[17].
An essential feature of any kind of security (in the crypto-
graphical sense) is the need for key management, i.e. the
proper administration and storage of the cryptographic
keys for each user. PLASMA is based on a security tech-
nology which implements the cryptograpic algorithms (cf.
[7]). The implementation used as a security technology in
PLASMA is SecuDe (cf. [16]); it is also possible to imple-
ment it using a different security technology, for example
utilizing the widely spread security package PGP [18].
Therefore the key management of PLASMA is fundamen-
tally dependent on the functionality of the underlying se-
curity technology. If these security technologies offer key
management themselves, PLASMA can merely integrate
it into itself; otherwise it needs to be modeled within the
platform itself; the security technologies PGP and SecuDe
for example offer proprietary utilities for certification of
their keys and also define the makeup of certified keys
and certificates7.

4 The integration of PLASMA into
the World Wide Web

There are two well–distinguished layers in this W3 sce-
nario. The first layer is that of the World Wide Web and
is situated between the browser, the proxy and the CGI
programs. In this layer, the client poses requests to the
server by activating a hyperlink; this hyperlink contains a
call to a CGI program which creates the server’s response:
a HTML page which in turn contains a hyperlink to the
next CGI program in the sequence; this is the layer of the
HTTP protocol.
The second layer is located between the PLASMA applica-
tions on the client and server sides. Here, data are passed
through to the security platform so that PLASMA may per-
form cryptographic operations on them. The protocol to
be used between the PLASMA applications is predeter-
mined by the application independent API of PLASMA

and may be considered separable into three phases: The
connection establishment and authentication phase, the
secure document transmission phase, and the connection
teardown phase.

When integrating PLASMA into the WWW the principal
problem is to pass the data on both sides from the WWW
layer onto the PLASMA layer. On the serverside this is
possible using CGI programs (Common Gateway Inter-
face [12]). When using a Mosaic browser, a CCI imple-
mentation (Common Client Interface [11]) on the client
side and CGI programming on the server side would be
possible; but here it is not possible to encrypt a client’s
request8: The client formulates his request by activating
a hyperlink to a server side page. This causes the service
request to be forwareded immediately to the server. In
additionto that, the request can also be transmitted to the
CCI interface “in parallel” (and therefore to PLASMA) –
but by then it is already too late to secure the request. A
PlugIn is another possibility for a browser to pass data to
another program and to read back the response from this
program. The PlugIn API is a proprietary extension of
the Netscape Navigator API and is not supported by other
browsers.
The PLASMA relevant data are embedded into the HTTP
protocol; to fulfill the requirements for browser indepen-
dent communications there is to find a way to pass the in-
formation onto PLASMA on the way from client to server
and conversely, i.e. to filter the data for the security plat-
form. Therefore it is not possible to use a special propose
filter module because HTTP is not aware of the filter.
The proxy, however, is well known of the HTTP proto-
col. Proxies in W3 buffering the informations from the
server on clientside and handing over these data to the
browser if they are completely arrived. So the proxy is
the component where the filter functionality can be inte-
grated. Therefore PLASMA has been integrated into the
World Wide Web using a proxy on the client side and us-
ing CGI programs on the server side. This allows a secure
usage of the World Wide Web by all clients, no matter
what the browser of their choice might be (Netscape, Mo-
saic,. . . ).
The data to be passed on to PLASMA can only be trans-
ferred on WWW via the HTTP protocol. Informations
intended for PLASMA are so-called PLASMA tokens.
There exists three different kinds of PLASMA token; the
PLASMA application has to discern whether the token is
an authentication token (typeX509), a document orCon-
tainer token (typeCont ), or aFinal token (typeFinl ).
It must be possible in any phase of the protocol between
the PLASMA applications to pass data from the WWW
layer onto PLASMA:

7The certificate structures used in SecuDe comply with the X.509 authentication framework [15] which requires the existence of certification
authorities for the certification of the asymmetric public keys.

8The Mosaic browser family offers a feature to access programs such as security platforms directly from the web client. To achieve this goal,
the CCI was defined for the client side and on the server side the CGI specification was established.



Figure 3: Overview of the implemented proxy architecture

� In the authentication phase PLASMA on client side
must be able to retrieve the requests for embed-
ding the relevant PLASMA token into the PLASMA

packet.

� In the document transmission phase cryptographic
operations must be performed on the informations
regarding which document the client or user re-
quested; therefore all hyperlinks of the previously
sent pages must be embedded in PLASMA packets.

� On the server side the CGI programs detect in the
requests the embedded PLASMA tokens so they
may be passed on to the PLASMA application.

� Subsequently they retrieve a HTML page including
a hyperlink to the next CGI program in sequence as
well as the corresponding PLASMA token; this to-
ken must then be passed to the PLASMA application
on the client side.

Because these PLASMA tokens can only transferred on the
WWW, they are transferred connected to elements of the
HTTP protocol, i.e. the replies of the server and the re-
quests of the clients. These HTTP elements include com-
ments field not considered by the HTTP protocol which
can be used to fill in the identification tag for the filter-
ing process. These packages will be called in the follow-
ing as PLASMA packets. PLASMA packets contain conse-
quently an identification tag which the CGI programs and
the proxy may detect.
The communication between web client and web server is
not diverging from the normal HTTP protocol, therefore
the architecture presented here can also be performed with
a firewall. It is, however, important to note that the proxy
used as a filter should not be the same proxy used for pro-
tecting a domain by a firewall. For a secure web scenario
every client user has to start the proxy on this machine,
where he started his own PLASMA system; every user
should start in the best case his own proxy.

4.1 The components of the proxy architec-
ture

The following section deals with the components of the
secure World Wide Web architecture using PLASMA and
a proxy and describes their responsibilities. The sepa-
rate components are PLASMA itself as a server process
on the client and server side, an application of PLASMA

on both sides which is capable of calling the application
independent interface functions, the proxy on the client
side and the CGI programs on the server side which trans-
fer the data from the web server in their defined states to
PLASMA. An overview of the components used in the
proxy architecture is given in Figure 3.

PLASMA as a server process The “philosophy” of the
World Wide Web can be summed up as follows: a client
establishes a channel to a WWW server using an URL re-
quest. The server responds to this request by sending the
requested information back to the client (if possible) and
closing the communications channel immediately there-
after. If the client wants to direct another request to the
server, a new communications channel must therefore be
established.

World Wide Web servers can call external programs via
the CGI, for example to perform database accesses or to
activate security software. The CGI specification uses a
simple scheme for such calls; the CGI program must ter-
minate once it has processed the data and returned it to
the web server. The server in turn passes the data gen-
erated by the CGI program on to the client and “forgets”
everything about the transaction. Under normal circum-
stances this should not be a problem – unless a CGI pro-
gram needs to maintain state between two calls.

If one wants to use PLASMA to secure web communica-
tions on the server side, this means that, for example, the



server sends the request for the first authentication token
to PLASMA via a CGI call. After serving this request, the
CGI program terminates, therefore PLASMA terminates as
well. All data that would have to be stored to maintain a
secure link between client and server are then lost (this in-
cludes public keys and certificates as well as session keys
etc.).
Therefore PLASMA must run permanently on the server
side and it must not terminate once the CGI application
terminates when returning data to the web server. The
PLASMA system is therefore turned into a daemon pro-
cess; this allows it to maintain state information for sev-
eral communications links across several CGI calls within
PLASMA 9. Similar considerations apply to the client side;
since the proxy also maintains only transient processes for
each request, the state information for a secure communi-
cations link must be maintained in a PLASMA application
as well.

The CGI programs As has been mentioned before,
World Wide Web servers are able to adress external pro-
grams via the CGI. The call of a CGI program is usu-
ally initiated by activating a hyperlink that was found in a
HTML document previously transferred to the client side.
Since the activities of the CGI programs are well defined
within the web scenario for each state of the protocol be-
tween sender and receiver, separate CGI programs were
defined for each state.
Both CGI calls during the authentication phase are per-
forming identical tasks with regard to PLASMA, they do,
however, send different web pages as a response to the
client.
The CGI program called during document transfer gets
the requested document and decides whether or not the
client has access to the requested document by means of
the embedded clientDName10. Lastly, there is a separate
CGI program which gets called if a request for terminat-
ing thesessionwith the client is detected.
All CGI programs are searching for the PLASMA identifi-
cation string and passing as the proxy on client side these
data onto PLASMA.

The proxy From the security perspective the proxy is
merely a filter deciding whether or not data must be
passed through PLASMA in this architecture; it searches
for a PLASMA identification tag in each data packet it re-
ceives. Data containing the PLASMA identification tag are

passed on to PLASMA, otherwise the proxy passes the data
on to the browser or the server, respectively, without in-
teracting with PLASMA.
In order to maintain the full functionality of a “normal”
proxy while embedding the necessary functionality, a
CERN HTTPD 3.0 was used as a base for embedding
the PLASMA modifications. Porting these modifications
to other proxy architectures should be fairly easy since
these are well embedded. The drawback inherent in this
approach is the necessity to follow standard operating pro-
cedures, i.e. each browser request must be followed by a
response from the server.
Since the browser knows nothing of the security en-
hancement of the communications channel, all transac-
tions must be performed between the proxy and the server.
Each request for PLASMA services must contain such a
string which allows the proxy to intercept it and send it
to the PLASMA application; the same goes for incoming
data from the server; therefore the identification string is
inserted by the CGI program.

The PLASMA applications on client and server side
The PLASMA applications are the agents tasked with ac-
cepting transferred data from the proxy on the client side
and from CGI programs on the server side. It passes these
data on to PLASMA and returns the output to the proxy or
to the CGI programs for secure transfer across the public
network. The PLASMA application gets passed only such
data packets which actually have to be modified crypto-
graphically by PLASMA in either the “to” or “from” di-
rection.
It is the responsibility of the PLASMA application to ana-
lyze received data packets and to pass these PLASMA to-
kens on to the security platform using the correct interface
functions of the application independent interface [8].
Since PLASMA is required to operate permanently as
a background process, socket connections between the
proxy and the PLASMA application on the client side
as well as between the CGI programs and the PLASMA

server application are necessary.

4.2 The dynamic model

The following section details the interactions between the
separate components required for secure web communica-
tions. The dynamic model is subdivided into three phases:
the authentication phase, the secure transmission phase
and the connection teardown phase.

9PLASMA on both sides is capable of securing several simultaneous communications, so a web server is able to serve several clients simultane-
ously and similarly a client is capable of starting several simultaneous requests to different servers using secure connections.

10DNames are unique identifiers of the participating parties which are defined in the X.500 standards suite (cf. [15]).



Figure 4: The interactions in the authentication phase

The authentication phase The authentication phase
commences by the client establishing a secured connec-
tion with the server within PLASMA; to achieve this the
application on client side calls the PLASMA C–API func-
tion openSession() . For this theDNameof the server
is required which is inquired in the first request. The
server’s response contains theDNameas well as a PIN
form into which the user at the client side will enter his
PIN.
Once theSession has been opened successfully, the
client calls the authentication function for the sender side
for the first time (PlasmaConnect() ). The result is a
PLASMA token of the typeX509 which is then sent to the
server.
Upon receiving this PLASMA token (X509) at the server
side, asessionis created within PLASMA and the authen-

tication towards the client is continued (first call of the au-
thentication for the receiver side (PlasmaAccept() ).

The exact flow of the protocol for authentication may be
gleaned from Figure 4. In this phase first the PIN form in-
cluding the serverDNamewill be transmitted to the client.
Next the CGI programsX509 1.cgi andX509 3.cgi
are called on the server side, which are sending different
HTML pages to the client side; the first HTML page is
only used for sending the hyperlink to the next CGI pro-
gram (X509 3.cgi ), the next page already present the
offers of the server.

In this state only PLASMA token of typeX509 are trans-
mitted – both applications have appropriate knowledge as
to which API calls need to be performed when receiving
PLASMA tokens of this type.



Figure 5: Interactions in the data transmission phase

The document transmission phase After a successful
three-way-authentication requests and replies between the
web client and server may be transmitted securely. The
server offers its documents via the
secure offers page(cf. Figure 5); on the client side the
user selects a document and activates the corresponding
CGI program upon confirmation. The call of the CGI pro-
gram is not encrypted; however, the information regarding
which document has been requested by the user must be
encrypted at the client side11.
In this phase only tokens of the typeCont are trans-
mitted; the PLASMA application is wired to call the fil-
ter functiongetDocument() for reverting the crypto-
graphic operations on this token type. In this phase plain-
text data are passed onto PLASMA for cryptographic op-

erations using theputDocument() API function.
The CGI programCont.cgi gets called on the server
side. It decrypts the information on the requested docu-
ment and encrypts the document itself prior to transmis-
sion. The HTML pages sent in this phase represent the
documents or offers of the server; the exact protocol is
shown in Figure 5.

Connection teardown All HTML pages of a server al-
lowing secured communcations using PLASMA which of-
fer documents contain a hyperlink to the CGI program
Finl.cgi – refer to Figure 6 at the bottom. Upon acti-
vation of this hyperlink thesessionat the client side is torn
down by calling the API functioncloseSession() of
PLASMA 12.

11This requires the application on the client side to detect the condition that the API functionputDocument() for cryptographic operations in
“to” direction must be called, therefore the request typeContRequest, which is also a PLASMA packet, was introduced.

12This requires the application on the client side to detect the condition that the API function for conncection shutdown must be called, therefore
the request typeFinlRequestwas introduced, also a PLASMA packet.



Figure 6: Interaction opportunities for the user in the web demo

The result of this connection teardown is a PLASMA token
of the typeFinl which now must be sent to the server.
The application on the server side also recognizes that the
sessionis to be disconnected upon receiving this token of
typeFinl and thus also callscloseSession() .

5 Summary

In conclusion the results of the integration of the PLASMA

security platform into the World Wide Web are summed
up — these results are made possible by the implementa-
tion of the idea ofhigh level securitywithin PLASMA.
The just presented architecture allows a mutual authen-
tication of web clients and servers which may also be
achieved by means of other security platforms; after a suc-
cessful authentication the server knows which client user
wants to obtain data from him and may use this identifi-
cation by means of appropriate CGI programs to grant or
deny access (access control to the requested documents).
Requests and responses may now be secured — by locat-
ing the security platform close to the application the inter-
actions of the user may be considered, i.e. the server can

offer its documents in such a way as to allow the client
to determine whether the document is to be sent confiden-
tially, non-reputiably or with integrity checks. Further-
more the server may predetermine which documents need
to be protected using specific security services; the web
page in Figure 6 exemplifies the opportunities for interac-
tion with the user; the second image from the top may be
treated confidentially and be transmitted non-reputiably;
interaction with the user is possible since the generic se-
curity services within the platform have been realized as
independent modules – these merely have to be activated
by a mouse click via the interface of PLASMA.

Finally, and this is the most significant feature facilitated
by using PLASMA, the different media and different struc-
tures of the HTML documents may be differentiated cryp-
tographically. Using PLASMA it is possible to ensure that
forms, which may be containing a contract, will always
be signed – both by the server to make sure that the client
knows he is transferring his credit card number to an au-
thorized server as well as by the client side to make sure
that the client user has actually signed the “contract” in
that particular form; using PLASMA it is possible that for



example textual data is always integrity protected and im-
ages are protected against loss of confidentiality during
transmission.
Finally it ensures that an unauthorized disruption of a ses-
sion by a client or server can be detected.

6 Acknowledgements

I would like to thank everyone who has contributed to
the design of the just presented architecture for their in-
sights and useful discussions; in particular I would like to
thank Xiaodong Liu for the invaluable support in evalu-
ating peculiar problems of the WWW and for aid in the

specification of the secure WWW architecture. I would
like to thank Dr. Eckhard Koch for the opportunity to re-
alize this project. Furthermore I would like to extend par-
ticular gratitude to Xiaodong Liu again, Henning Daum,
Stephen Wolthusen and Ingo Jankowski for extremely
productive assistance in implementing these system, as
well as Dr. Christoph Busch for proofreading.
A different approach for implementing the web security
scenario using the CCI system with a Mosaic browser and
a different underlying security technology platform was
developed by Cheng Dong, Mehrdad Jalali and Jian Zhao,
also at the Fraunhofer-Institute; this system has provided
several crucial insights into the particular problems one
encounters when securing the web.

References

[1] T. Berners-Lee, A. Luotonen, H. F. Nielsen, A. Se-
cret (1994) The World–Wide–Web.Communica-
tions of the ACM, Vol.37 No. 8.

[2] H. Cheng, X. Li (1996) On the application of im-
age decomposition to image compression and en-
cryption.Chapman& Hall, Communications and
Multimedia Security II, ed. P. Horster, 116-127.

[3] B. Fernandez, R. Nair, M. Larrondo-Petrie, Y. Xu
(1996) High–Level Security Issuses in Multimedia/
Hypertext Systems.Chapman& Hall, Communi-
cations and Multimedia Security II, ed. P. Horster,
13-24.

[4] R. Fielding, J. Gettys, J. Mogul (1996) Hypertext
Transfer Protocol – HTTP/1.1.IETF draft.

[5] A. O. Freier, P. Karlton, P. C. Kocher (1996) The
SSL Protocol Version 3.0.Netscape Communica-
tions Corporation.

[6] M. Gehrke, E. Koch (1992) A Security Platform for
Future Telecommunication Applications and Ser-
vices.Proc. of the 6th Joint European Networking
Conference.

[7] A. Krannig (1996) PLASMA - Platform for Se-
cure Multimedia Applications.Chapman& Hall,
Communications and Multimedia Security II, ed.
P. Horster.

[8] A. Krannig, H. Daum (1996) PLASMA — The
Application Independent API.Fraunhofer–IGD
Darmstadt, Technical Report.

[9] Linn, J. (1993)RFC 1508 – Generic Security Ser-
vice Application Programming Interface

[10] P. Lipp, v. Hassler (1996) Security concepts for
WWW. Chapman& Hall, Communications and
Multimedia Security II, ed. P. Horster.

[11] NCSA (1996) CCI Specification.
http://www.ncsa.uiuc.edu/SDG/Software/
XMosaic/CCI/cci-spec.html.

[12] NCSA (1996) CGI The Common Gateway Inter-
face.http://hoohoo.ncsa.uiuc.edu/cgi/.

[13] H. Reif (Juni 1997) Secure Socket Layer:
Chiffrieren und Zertifizieren mit SSLeay.
IX Multiuser Multitasking Magazin.

[14] E. Rescorla, A. Schiffman (1996) The Secure Hy-
perText Transfer Protocol.IETF draft.

[15] B. Schneier (1996) Applied Cryptography, 2nd ed.
Wiley.

[16] W. Schneider (1993) SecuDe: Overview.GMD–
TKT Darmstadt.

[17] Wray, J. (1993)RFC 1509 – Generic Security Ser-
vice API : C Bindings

[18] P. Zimmermann et al. (1993) PGP.Phil Zimmer-
mann.


