i

The following paper was originally published in the
Proceedings of the 7th USENIX Security Symposium
San Antonio, Texas, January 26-29, 1998

Software Generation of Practically Strong Random Numbers

Peter Gutmann
University of Auckland

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Software Generation of Practically Strong Random Numbers

Peter Gutmann

Department of Computer Science
University of Auckland

pgut001@cs.auckl

and.ac.nz

Abstract

Although much thought usuallgoesinto the design of encryption algorithnasid protocols, less
consideration is often given to equallmportantissues such athe selection of cryptographically

strong random numbers, #uat an attackemayfind it easier to break the random number generator
than the security system it is used with. This paper provides a comprehensive guide to designing and
implementing a practically strong random data accumulatat generatomwhich requires no
specialised hardware access to privileged system servicdhe performance of the generator on a
variety of systems is analyseahd measures which can makecovery ofthe accumulator/generator

state information more difficult for an attackae

presented. The result is @asy-to-useandom

number generator which should be suitable even for demanding cryptographic applications.

1. Introduction

The best means of obtaining unpredictable random
numbers is by measuring physical phenomena such
radioactive decaythermal noise in semiconductors,
sound samples taken innaisy environment, an@éven
digitised images of a lava lamp. However few
computers (or users) havaccess tothe kind of
specialised hardware requirddr these sources, and
must rely on other means of obtaining random data.

Existing approaches which donttely on special
hardware have ranged fromprecise timing

measurements of theffects ofair turbulence on the
movement of hard drive heads [1], timingkefystrokes
as the user enterspassword [2][3]timing of memory

cryptographic randomness is available from a number
of sources [11][12][13]. Fathe purposes ofhis paper
the term “practically strong randomneskas been
ghosen to represent randomness which isn’t
cryptographically strong by the usual definitions but
which is as close to it as is practically possible.

Unfortunatelythe advice presented by various authors
is all too oftenignored, resulting in insecure random
number generators which produce encrypticeys
which are much, much easier to attathkan the
underlying cryptosystems theyare used with. A
particularly popular source of badndom numbers is
the current time angrocess ID. This type of flawed
generator first gained widespregulblicity in late
1995, when itwas found that the encryption in
Netscape browsers could be brokeraiound a minute

accesses under artificially-induced thrashing conditiong e 1o the limitedrange ofvalues provided byhis

[4], and measurement of timingkew between two
systemtimers (generally a hardwam@nd asoftware
timer, with theskew being affected bythe 3-degree
background radiation of interrupend othersystem
activity)[5]. In addition a number of documents exist
which provide general advice arsing andchoosing
random number sources [6][7][8][9].

Due to size constraints, a discussiontteé nature of
randomness, especially cryptographically strong
randomness, iseyondthe scope othis paper. Agood
generaloverview ofwhat constitutes randomness, what
sort of sourcesre useful (and notuseful),and how to

source, leading t@ome spectaculdneadlines in the
popular press [14]. Becausethe values used to
generate sessidteyscould be established without too
muchdifficulty, even non-crippled browsersgith 128-
bit sessiorkeyscarried (atest) only 47 bits of entropy
in their sessionkeys [15]. Shortly afterwards it was
found that Kerberos V4 suffered from aimilar
weakness(in fact it was even wors¢han Netscape
since it usedandom() instead of MD5 as its mixing
function) [16]. At aboutthe same time, it was
announced that the MIT-MAGIC-COOKIE-1 key
generation, which created a 56-bit valeffectively
only had 256 seed values due ftits use ofrand()

process the data from them, is given in RFC 1750 [10kyis hadbeen discovered in January tbiat year but

Further discussion on thenature of randomness,
pseudorandom number generators (PRNG’s), an

Jwe announcementas delayed to allow vendors to fix

the problem) [17].

In a attempt toremedy this situation, this paper

drivers have a “snap to” capability which positions the
mousepointer over the default button in a dialog box
or window. Networked applications masansmit the

provides a comprehensive guide to designing andlient’'s mouse events to a server, revealing information

implementing a practically strong
accumulator and generator which requires no
specialised hardware access to privilegedystem
services. The result is areasy-to-useandom number
generator which (currentlyuns underBeOS, DOS,
the Macintosh, OS/2Windows 3.x, Windows'95,

random dataabout mouse movemensnd clicks.

Someoperating
systems will collapsemultiple mouse eventinto a
single meta-event to cut down on network traffic or
handling overhead, reducing the inpétom wiggle-
the-mouse randomneggathering to a singlenouse
move event. In addition if the processusning on an

WindowsNT, and Unix, andvhich should be suitable
even for demanding applications.

unattended server, themeay be no keyboard or mouse
activity at all.

In order to avoidhis dependency on particularpiece
of hardware or operatingystem,the generator should
rely on as manynputs aspossible. This is expanded
on in “Polling for randomness” below.

2. Requirements and Limitations of the
Generator

There areseveral special requiremerdaad limitations

which affectthe design of a practically strong random
number generator. The main requirement (afs
limitation) imposed uporthe generator is that it can
rely on only one source, or on small number of .

The generator should also havseveral other

t Properties:

It should be resistant to analysis of its input data.

sources, for itgsandom data. For exampeen if it
were possible to assurtieat asystemhassome sort of
sound inputevice,the signal obtained from it ften
not random at allput heavily influenced by crosstalk
with othersystem components or predictablengture

(one test with a cheap 8-bit sound card in a PC

produced only @&ingle changing bit whictoggled in a
fairly predictable manner).

In addition several athe sources mentioned dar are

very hardware-specific or operating-system specific.
The keystroke-timing code used in PGP relies on direct

access tdardware timers (under DOS) tre use of

obscure ioctl's to allow uncooked access to Unix

keyboardinput, which may be unavailable irsome
environments, or function in unexpectedays (for
example undeWindows many features dfhe PC
hardware are virtualise@nd therefore provide much

less entropy than they appear to; under Unix the user is

often not located atthe system consolemaking
keystrokes subject tahe timing constraints of the
telnet or rlogin session, as well as being
susceptible to network packet sniffing).Network
sniffing canalso reveal other details of randsaed
data,for example an opponent coubtdbservethe DNS
gueries used to resolreames whemetstat s run
without the-n flag, lowering its utility as a potential
source of randomness.

Other traps abound. In thebsence of a facility for

timing keystrokes, mouse activity is often used as a

source of randomnes$lowever some Windows mouse

An attacker who recovers or is aware of a portion of
the input to the generator should be unable to use

this information to recover the generator’s state.

As an extension of thabove, itshould also be
resistant to manipulation of the input data, so that
an attacker able tdeed choseninput to the
generator should be unable to influence its state in
any predictablemanner. An example of a
generator which lackethis property wasthe one
used in early versions tiie BSAFE library, which
could end up containing aery low amount of
entropy if fed manysmall datablockssuch as user
keystroke information [18].

e It should be resistant to analysis of its output data.
If an attacker recovers a portion thie generator’s
state, they should be unable to recover any other
state information fronthis (ideally, the generator
should never leak any of its state to thetside
world). For example recovering generator output
such as a sessidey orPKCS #1 paddindor RSA
keys should notallow any more ofthe generator
state to be recovered.

« The generator should also takips to protect its
internal state to ensurhat it can’t berecovered
through techniques such as scanning slgstem
swap file for alargeblock ofrandom data. This is
discussed in more detail in “Protecting the
randomness pool” below.

The implementation of the generator should make
explicit any actions such amixing the pool or

extracting data in order to allow the conformance ofa (hypothetical) perfect compresstirere is ndoss of
the code tothe generator design to beasily security because everything nonrandom and predictable
checked. This is particularlyproblematic in the is discardedand only the unpredictable material
code used toimplement the PGP 2.x random remains as the generator outpuOnly when large
number pool, which (for example) relies he fact amounts of data are drawrom the system does the
that apool index value is initially set to point past “accumulator” functionality give way to the
the end of thepool sothat on thefirst attempt to “generator” functionality, at which point a
read data from it the availableyte count will transformation with certain special cryptographic
evaluate to zerdytes,resulting in no datdeing qualities is required (although, in thebsence of a
copied outand thecode dropping through to the perfect compressor, it doesnturt to have these
pool mixing function. Thistype of coding makes present anyway).
the correct functioning of the randonpool
management code difficult to ascertain. Because ofthe special properties required when the
generator functionality is dominant, thgool and
In general, alpossible steps should keken to ensure mixing function have to bearefully designed to meet
that the generatastate information never leaks to the the requirements given in thpeevious section.Before
outside world. Any leakage adhternal state which discussing the mixing function used by the generator, it
would allow anattacker to predict further generator might be useful to examinethe types of functions
output should be regarded as a catastrophic failure efhich are used by other generators.
the generator. A paper which complemettiis one
and analyses potential generatoweaknesses and One of the simplestomes fromSchneier [8], and
methods of attack is due to appear in tlearfuture consists of ahashfunction such as MD5 combined
[19]. with a counter value to create a pseudorandiyte
stream generataunning incounter mode with a 16-
Given thewide range of environments in which the byte output:
generator would typically be employed, it is not
possiblewithin the confines ofthis paper to present a
detailed breakdown ahe natureof, and capabilities | Randomness pool | Ctr |
of, anattacker. Because ofhis limitation we take all
possible prudent precautions which mighbil an
attacker, but leave it to end users to decide whether this Full MD5 message
provides sufficient security fortheir particular digest
application.

3. The Randomness Pooland Mixing

Function S

< 16 —»
The generatodescribedhere consists dfwo parts, a _ _
randomnespool and associatednixing function (the Figure 1: Schneier's Generator

generator itselfjand a polling mechanism to gather Thjs generatousesthe full message digest function
randomness from theystemand add it to theool (the y4ther tharjust thecompression function as most other
randomness accumulator). Thes® parts represent generators do. It therefore relies on the strength of the
two very distinct components of the overall generator,unde”ying hash function for security,and may be
with the accumulator beingsed to continually inject susceptible to some form of related-kagtack since

random data into the generator, and g&nerator n\y one ortwo bits of input are changedor every
being used to “stretch” this random data s@mne form pock of output produced.

of PRNG. Howeveithe PRNG functionality isonly

needed in some cases. Consider a typical case
which the generator is required fwoduce a single
guantum of random datdor example to encrypt a
piece of outgoingemail or to establish aBSL shared giraqm cipher in a so-called “message digest cipher”

secret. Even if the transformation fumtion beirsgd configuration [20]. Thekey consists ofthe previous
in the generator is eompletely reversible one such as giate of thepool, with the data from thestart of the

PGP 2.x uses a slightly different method which
involves “encryptingthe contents of thpool with the
MD5 compression function used as @GFB-mode

pool being used as the 64-byte input todbmpression opposed to PGP’s preserved state).

function. Thepool itself is 384 byteslong, although

other programs such as CryptDiakd Curve Encrypt PGP 5.x uses a slightly different update/mixing

for the Macintosh, which alsase the PGP random function which adds an extra layeraimplexity to the

pool management code, extend this to 512 bytes. basic PGP 2.x system. thefollowing pseudocode the
arrays arassumed to be arraysioftes. Where a ‘32’

The data beingncrypted isthe 16-byteinitialisation suffix is added to the name, it indicates that the array is

vector (IV) which is XOR'dwith the data at the treated as an array of 32-hitbrds withindex values

currentpool position(in fact there is no need to use appropriately scaled. In addition the index values wrap

CFB modethe generatocould just as easily use CBC back to the start of the arrays when they reach the end:

as there is no needor the “encryption” to be 46407, poolPos = 0:

reversible). This process carries 128 bits of state (the key[64], keyPos = 0;

IVV) from one block to another:

addByte(byte)
/* Update the key */
key[keyPos++] = byte;
> — ! |
<« 16 - 64 if(another 32-bit word accumulated)
[v [Previouspool state | key32[keyPos] ~= pool32[poolPos [;

/* Update the pool */

if(about 16 bits added to key)
MD5

digest

MD5 data

{
: /* Encrypt and perform IV-style block
Successive ycphaining %/ y

hash(pool[poolPos], key);
hashes pool[next 16 bytes] A=
XOR) pool[current 16 bytes];

| | }
< 16 —»

This retains théasic model used in PGEx (with a
Figure 2: The PGP Mixing Function key external to thepool being used tanix the pool
itself), but changes the encryptiomode from CFB to

The_ initial 1V is taker_1fr0m the gnd of thepool, and CBC, and adds feedback betweetthe pool and the
mixing proceeds until the entire pool has been

: D5 keydata. The major innovation in this generator
processed. Newer versions of PGP perform a secon y J 9

pass ovetthe pool for extra security. Oncéhe pool iS that theadded data is mixed in at a much earlier
contents have been mixedhe first 64 bytes are stagethan in the PGP 2.x generator, being added

extracted to form thkey for the next round of mixing, directly to the key (where it immediately affects any

d th ind f i ilable f b further MD5-basedmixing) ratherthan to thepool.
gnGPt ?'r:ergsllrr]naer:ao etr:?n(z:oldseaa\tllﬁjlvisraen dogn:JS(tleatay The feedback ofdata from thepool tothe key ensures
o bé re:g directly gout ofhe pool with no post- thatany sensitive material (such as a user passphrase)
)) .) which is added isn'feft lying in the key buffer in
processingand relies for its security othe fact that .
. . . plaintext form.
the previous pool contentsyhich are beingised as the
“key” for the MD5 cipher, cannot becovered. This
direct access tthe pool is ratherdangerous since the
slightest coding errorcould lead to a catastrophic
failure in which thepool data is leaked to outsiders.
As has been mentioned previouslythe correct
functioning of the PGP 2.x random number
managementode isnot immediatelyobvious,making
it difficult to spot problems of this nature.

Once enough newata hadeen added tthe key, the
resultingkey isused to “encryptthe pool using MD5,
ensuring that the pool data which was fed back to mask
the newly-added keyingnaterial isdestroyed. Irthis

way the entirepool is encryptedwith a key which
changes slightly for eadblock rather than aonstant
key, and the encryption takes place incrementally
instead of the using monolithic update technique

referred by other generators.
PGP also preserves somandomness statbetween P Y 9

invocations of the program by storing a nonce on dis
which is en/decrypted with a user-supplikey and
injected into the randomnepsol. This is a variation
of method used byhe ANSI X9.17 generator which
utilises a user-suppliekey and a timestamp (as

lAnother generator inspired by tfR&GP2.x one is the
Unix /dev/irandom driver [21], of which a variardlso
exists for DOS. The driverworks by accumulating
information such ageyboardand mousetimings and

data, and hardware interrupt ahbbck devicetiming «——————— 16+64 ——»
information, which is supplied to it by the kernel Randomness pool

\

Since the samplingccursduring interruptprocessing,

it is essentiathat the mixing of thesample data into MD5 | MD5 data Successive
\

the pool be as efficient as possible. Fois reason the digest

driver uses a CRC-likeixing function inplace of the

traditional hasHunction to mix the data into thgool,

with hashingonly being done whedata is extracted |

from the pool. + 16 —»
Figure 3: Mixing the Randomness Pool

On extracting data the driver hastsescessive 64-byte 1js process carries 640 bits of state information with

blocks ofthe pool _using thecompression function of it, and means thagvery byte inthe buffer is directly
MD5 or SHA-1, mixes the resulting 16 20-bytehash jyqyenced by the 64 bytes surroundingriindirectly
backinto thepool, hashethe first 64bytes of pool one jnfyenced by every other byte ihe buffer (although it
more time toobscurethe data whictwas fed back 10 3 take several iterations ofmixing before this
the pool, and returns the final 1620-bytehash to the jngirect influence is felt, depending on the size of the
caller. If more data is required, ttpsocess is iterated buffer). This is preferable to alternative schemes

until the pool rgad request is satisfied. The .driverwhich involve encryptinghe data with lock cipher
makestwo devicesavailable, /dev/random which using block chaining, since most blockciphers carry

estimates the amount eftropy inthe pool andonly gy 64 bits of state along with them.
returns thatmany bits,and /dev/urandom which

uses the PRNG described above to return as imgB$ The pool managementode keepsrack of the current
as the caller requests. write position in thepool. When anew data byte
arrives, it is added to thbyte atthe currentwrite
The function weuse improves orthe basic mixing position in thepool, the write position is advanced by
function by incorporating far more statean the 128 gne, and, when the end of theool is reached, the
bits used bythe PGP code. The mixing function is entire pool is remixedusing the mixing function
againbased on a one-wdyashfunction (in which role gescribed above. Sinthe amount of data which is
MD5 or SHA-1are normallyemployed)andworks by gathered by the randomness-pollidgscribed in the
treating ablock of memory (typically dew hundred pext section is quite considerable, we don’t need to
bytes) as aircular buffer and using the hastunction perform the input masking which issed inthe PGP
to processhe data in théuffer. Instead ofising the 5. generatoecause aingle randomness poll will
full _hash function to perform the mixing, wenly resylt in many iterations ofool mixing as all the
utilise the central 16+6416 byte or20+64-20 byte polled data is added. Theool mixing code does

transformation which constitutes theashfunction’s however provide a mechanism to manually forpoel
compression functiorand which is somewhat faster remix in case this is required.

than using the full hash.

hashes

Data removed from theool isnot read out in theyte-
Assuming theuse of MD5, whichhas a64-byteinput py-byte manner in which it is added. Instead, an entire
and 16-byteoutput, we woulchash thel6+64bytes at ey is extracted in a single block, which leads to a
locationsn-16...n+63 and therwrite the resulting 16- security problem: If an attackeanrecover one of the
byte hash tolocationsn...n+15 (the Chaining which is keys’ Comprisingn bytes of am_byte pooLthe amount
performed explicitly by PGP is performed implicitly of entropy left inthe pool is only n-m bytes, which
here by including th@reviously processed 16 bytes in yiolates the design requiremerthat an attacker be
the input to the hash function). \Wheenmove forward unable to recover any ofhe generator's state by
16 bytesand repeat theprocess, wrappinghe input observing its output.This is particularlyproblematic
around to the start of thieuffer when the end of the in cases such as some discrete_k)g based PKC’s in
buffer isreached. The overlapping of the data input tayhich thepool providesdatafor first public and then
eachhash means thaach 16-byte blockwhich is private key values, because an attacker will leoess
processed is influenced by all the surrounding bytes: to the outputused to generatthe public parameters

and can themsethis output tary to derivethe private

value(s).

One solution tdhis problem is to use a generator suchoperations with arunkeyed one-wayhash function
as the ANSI X9.17 generator [22] to protect the which has the same effect:

contents of thepool (in fact some newer versions of

PGP do justhat, and attach aX9.17-like generator

which uses IDEA instead ofiple DES to thdnternal >

random number pool for use in generating random dat&eed

for certain applications). In thisay the key isderived -

from the pool contents via a one-way function. Pool H, - Key
The solution weuse is slightly different.What we do

is first mix thepool to create¢he key, then invertevery Hs

bit in thepool and mix it again tareate thenew pool, -

although itmay be desirable ttune the operationsed
to transform the input to the ha&imction depending
on the hasHunction being used. For example SHA H; mixes the inputind prevents chosen-input attacks,
performs a complex XOR-basékky schedule” on the H, acts as ane-wayfunction for the encryptiorkey,
input data, whictcould potentially lead to problems if and Hj acts as eone-wayfunction for the internal
the transformationconsists of XOR-ing eactnput state. This generator therefore functionally similar
word with OXFFFFFFFF. Irthis case itmight be to the X9.17 one, but contains significantijore
preferable to use sonwher form of operation such as internal stateand doesnot require theuse of arather
a rotateand XOR, or the CRC-type function used by slowandunexportable triple DES implementation and
the /devirandom driver. If the pool were being the secure storage of an encryption key.
used aghe key for a DES-basednixing function, it
would be necessary to adjust for welkdys; other
mixing methods might require theuse of similar
precautions. Now that we havéhe basic pooimanagementode, we
need to fill thepool with random data. To do this we
This method should bsecure providedhat the hash use two methods, a fast randomness poll which
function we use meets its design goal of preimagexecutes very quicklgnd gathers as much random (or
resistanceand is a randomfunction (that is, no apparently random) information gsickly as possible,
polynomial-time algorithm exists to distinguish the and aslow poll which can take a lot longehan the
output of the function from random strings). Thefast poll but which performs a more in-depth search for
resulting generator is remarkably similar to the triple-sources ofandom data. The datmurces we use for
DES based ANSI X9.1@enerator, which functions as the generator arehosen to be reasonably safe from
follows: external manipulation, since an attackdro tries to
modify them to provide predictableinput to the
generator will either require superuser privileges

Figure 5: Equivalence to the X9.17 Generator

4. Polling for Randomness

- > (which would allow them to bypass any security
Time—__Ency | D+ Encs anyway) or wouldcrash thesystemwhen they change

operating system data structures.

»D> Ency | > Key The sources used hbihe fast pollare fairly consistent
> across systemsand typically involve obtaining
constantly-changing information coveringnouse,
keyboard,and window statessystemtimers, thread,
process, memory, disknd network usage details, and
In the X9.17 generator the encryption stiapelled assorted otheparaphernalia maintained amnghdated
Enc, ensureghat thetimestamp is spreaodver 64 bits by most operatingystems. A fast poll completesry
andavoidsthe threat of a chosen-timestamp attéiok quickly, and gathers aeasonable amount of random
example setting it to all-zero or all-one bits), the Enc information. Scattering these polls throughout the
step acts as a@ne-way function for the generated application which will eventually usthe random data
encryption key,and the Eng step acts as ane-way (in theform of keys orother security-relatedbjects) is
function for the seed value/internal state. The a good move, or alternatively thean beembedded
generator presented here replaceskthyedtriple-DES inside other functions in a security moduletisateven

Seed value

Figure 4: ANSI X9.17 Generator

careless programmers will (unknowingly) perfofast
polls at somepoint. No-one will ever noticeghat their
RSA signature check takes faw extra microseconds
due to theembedded fast polland although the
presence of the more thorouglow polls maymake it
slightly superfluous, performing a number
effectively-free fast polls can never hurt.

There are two general variants of theslower
randomness-polling mechanism, with
operatingsystem-specifigmplementations falling into
one of thetwo groups. The first variant issed with
operating systems which provide arather limited

provide a large amount of other information in the
form of system, networkand generalisage statistics,
andwhich also allow background polling which means
we can take as long as we like (withieasonable
limits) to obtain the information we requireThese

of systemsinclude Win32 (Windows 9%and Windows

NT) and Unix/BeOS.

The Win32 pollingprocesshas two special cases, a

individual Win'95 version which usethe ToolHelp32 functions

which don't exist under current versions of Nihd an
NT version which useshe NetAPI32 functions and
performance data information which doesrmkist

amount ofuseful information, which tends to coincide under Win'95. In order for the sancede torun under

with less sophisticateslystemswvhich have little or no
memory protectiorand have difficulty performing the
polling as a background task or thread. Thastems
include Winl16 (Windows.x), the Macintoshand (to
some extent) OS/2, iwhich theslow randomness poll
involves walking through global and system data

both systems, we need to dynamicaligk in the
appropriate routines at runtime using
GetModuleHandle() or LoadLibrary() or the
program won’'t loadunder one or both of the
environments.

structures recording information such as handlesDnce we have theecessary functionsnked in, we

virtual addresses, data item sizas¢d the large amount
of other informationtypically found in thesedata
structures.

Of the three examples, Winlfrovides the most
information since it makeall systemand processdata
structures visible tahe user through th&oolHelp
library, which means we cawalk down the list of
global heap entriessystem modulesand tasks, and
other data structures. Sinegen a moderately loaded
system can containover 500 heapobjects and 50
modules, we need timit the duration of the poll to a
second or two, which is enough to gefiormation on
several hundred objects without halting the calling
program for an unacceptable amount of tin{fand
under Win16 the poll will indeetbck upthe machine
until it completes).

Similarly on the Macintosh we camalk through the
list of graphics devices, processes, drivers,
filesystem queues to obtaiour information. Since

there aretypically only afew dozen of these, there is
no need to worry abotime limits. Under OS/2 there
is almost no information available, so eweough the

operatingsystem providethe capability to do so, there

can obtain the data we requirem thesystem. Under
Win'95 the ToolHelp32 functions provide more or less
the same functionality as the Winbées (with a few
extras added for Win32), which means oan walk
through thdocal heapall processeand threads in the
system,and allloaded modules. A typical poll on a
moderately-loaded machine nets 5-15kBdafa (not
all of which is random or useful, of course).

Under NT theprocess is slightly different because it
currently lacksToolHelp functionality. Instead, NT
keepstrack of network statistics using thidetAPI32
library, and system performancstatistics by mapping
them intokeys inthe Windows registry. The network
information is obtained by checking whether the
machine is a workstation or servand then reading
network statistics from the appropriataetwork
service. This typically yields around 200bytes of
information coveringall kinds of network traffic

andstatistics.

The systeminformation is obtained by reading the
system performancedata, which is maintained
internally by NT andtopied to locations ithe registry
when a special registiyey is opened. This creates a

is little to be gained by performing the poll in the snapshot of theystem performance #te time the key

background. Unfortunatelthis lack of random data
also provides us with less informatiothan that
provided by Win16.

The second variant of theow polling process isised
with operatingsystemswhich protecttheir system and
global data structures from generatcess, but which

was openedand covers alarge amount ofsystem
information such as procesand thread statistics,
memoryinformation, diskaccessand pagingstatistics,
and a large amount of other similar information:
RegQueryValueEx(HKEY_PERFORMANCE_DATA,

"Global", NULL, NULL, buffer, &length);
addToPool(buffer, length);

A typical poll on a moderately-loaded machine netsrom the differensourcesare mixed up in @omewhat

around 30—40kB ofdata (again, not all of this is
random or useful).

The Unix randomness polling is the masimplicated
of all. Unix systemsdon’'t maintain any easily-
accessible collections of systenmformation or
statistics,and even sources whichre accessible with
some difficulty (for exampl&ernel data structures) are
accessible only tohe superuser.Howeverthere is a
way to accessthis information whichworks for any
user on the system. Unfortunately it isn’t very simple.

Unix systems provide darge collection of utilities
which can beused to obtain statistiGnd information
on the system. By taking the outgtdm each of these
utilities and adding them to theandomness pool, we
can obtain the sameffect asusing ToolHelp under
Win'95 or reading performance information from the
registry under NT. The general idea igdentify each
of these randomness sources (for examelstat -in)
and somehow obtairtheir output data. Asuitable
source should have the following three properties:

1. The output should(obviously) be

random.

reasonably

frameand in aformat which makes it suitable for

our purposegan example of an unsuitable source is

top, which displays its output interactively). There
areoften program arguments which can bsged to
expeditethe arrival of data in #imely manner, for
example we can teletstat not to try toresolve
host names but instead to produce its output with |
addresses to identify machines.

output(an example of a source whidan produce
far too much output ispstat -f, which weighed in

. The output should be produced in a reasonable time

arbitrary order which depends on the order and manner
in which thesources produce output). Ortbe source
has finished producing output, we close the pipe:

for(all potential data sources)
if(access(source.path, X_OK))
/* Source exists, open a pipe to it */
source.pipe = popen(source);
fentl(source.pipeFD, F_SETFL, O_NONBLOCK
);
FD_SET(source.pipeFD, &fds);

skip all alternative forms of this source
(eg /bin/pstat vs /etc/pstat);

}
}
while(sources are present and
buffer = full)

{
/* Wait for data to become available */
if(select(..., &fds, ...) ==-1)

break;

foreach source
{
if(FD_ISSET(source.pipeFD, &fds))

count = fread(buffer, source.pipe);
if(count)

add buffer to pool;
else

pclose(source);

}

Because many dhe sources produce output which is
formatted forhumanreadability, thecode toread the
output includes a simple run-lengtbmpressor which

|5educes formattinglata such as repeatsgaces to the

count of the number of repeated characters, conserving
space in the data buffer.

Thesource should produce a reasonable quantity of

Since this information issupposed to be used for
security-related applications, we should take a few

with 600kB of output on a large Oracle server. Thesecurity precautions when we do our polling. Firstly,

only useful effecthis hadwas tochange theutput
of vmstat, another useful randomness source).

Now that weknow where to gethe information, we
need to figure out how to get iito the randomness
pool. This isdone by opening a pipe to thequested
source and reading from it until tkeurcehas finished
producing output. To obtain inpdtom multiple
sources, we walkkhrough the list ofsourcescalling
popen() for each one,add the descriptors to an
fd_set , make the inputfrom each sourcenon-
blocking, and then usselect() to wait for output to

becomeavailable on one of the descriptors (this adds

further randomnesbecausethe fragments obutput

we use popen() with hard-coded absolut@aths
instead of simplyexec() ’ing the programused to
providethe information. In addition we set our uid to
‘nobody’ to ensure we can't accidentally read any
privileged information if the pollingprocess isunning
with superuser privilegesnd togenerally reduce the
potential for damage. To protemgainstvery slow (or
blocked) source$olding up the pollingprocess, we
include a timer which kills gource if it takes totong

to provide output. The polling mechanismalso
includes a number of othesafety features to protect
against various potential problems, which hdesn
omitted from the pseudocode for clarity.

Because the paths are hard-coded, we may ndediktio preference to or in addition to the usual sources.
in different locations to find the programs we require.
We do this by maintaining a list giossible locations Finally, we provide a means to inject externally-
for the programs andwalking down it using obtained randomness into thgool in caseother
access() to checkthe availability of thesource. sourcesare available. Atypical externalsource of
Once we locat¢he program, weun it andmove on to randomnesswould be the user password which,
the nextsource. This also allows us to take into although not random, representsaue which should
account system-specifigariations of the arguments be unknown to outsiders. Other typical sources include
required bysome programs by placing theystem- keystroketimings (if thesystem allowshis), the hash
specific version ofhe command tinvokethe program of the message being encryptéanother constant but
first on theaffected system (for example IRIX uses ahopefully unknown-to-outsiders quantitypnd any
slightly nonstandard argumefur the last command, other randomness source whiohight be available.
so on SGI systems we try to exectltes in preference Because of the presencetioé mixing function, it's not
to the more usual invocation lafst). possible to uséhis facility to cause any problems with
the randomnegsool — at worst it won'edd any extra
Due to the fact that popen() is broken onsome randomness, but it's ngbssible to use it to negatively
systems(SunOS doesn’t record the pid of the child affectthe data in theool by (say)injecting a large
process, so itan reap the wrong child, resulting in quantity of constant data.
pclose() hanging when it's called on that child), we
also need to write ouswn version ofpopen() and
pclose() , which conveniently allows us to create a
custom popen() which is tuned for use by the Designing an automated process which is suited to
randomness-gathering process. estimating the amount of entropy gathered is a difficult
task. Many ofthe sourcesare time-varying(so that
Finally, we need to take into account faetthatsome successive polls will always produce differeasults),
of the sources can produce a lot of relatively some producevariable-length output (causing output
nonrandom output, th@0OkB ofpstat output being an from other sources tochange position in thgolled
extreme example. Since the output is read irtaffer ~ data), andsome take variablemounts of time to
with a fixedmaximum size (dlock of sharednemory producedata(sothat theiroutput mayappearefore or
as explained in “Extensions to the basic polling modelafter the output from faster oslower sources in
below), wewant to avoid floodingthe buffer with successive polls). Inaddition many analysis
useless output. Bgrdering thesources irthe order of techniques can bprohibitively expensive in terms of
usefulness, wean ensurghat informationfrom the the CPUtime andmemoryrequired, so we perform the
most useful sources is added preferentially. Formnalysis offlineusing data gathered from a number of
examplevmstat -s would go beforelf whichwould in randomness sampling runs rath#éran trying to
turn precedearp -a. This orderingalso meanghat analyse the data as it is collected.
late-startingsources likeuptime will produce better
output when the processor load suddenly shoots up infbhe field of data compression provides us with a
double digits due toall the other pollingprocesses number of analysitools whichcan beused to provide
being forked by th@open() . reasonable estimates of the changeritropy from one
poll to another. Théools we apply tdhis task are an
A typical poll on a moderately-loaded machine netd-Z77 dictionary compressor (which looks for portions
around 20-40kB oflata (with the usuataveat about of the current data which matgireviously-seerdata)
usefulness). and apowerful statistical compressor (which estimates
the probability of occurrence of aymbol based on
The slow poll canalso check foanduse various other previously-seen symbols) [23].
sources whichmight only be available oncertain
systems. For example some systems havéhe LZ77 compressor uses a 32kB window, which
/dev/random drivers which accumulate random means thatany blocks ofdata already encountered
eventdata from the kerneland some may be fitted Within the last32kB will be recognised as duplicates
with special hardwaréor generating cryptographically and discarded. Since none of the polls generally

strong random numbers. Thw poll cancheck for ~ produce morehan32kB of outputthis is adequate for
the presence of thessources and use them in Solving the problem of sources which produce variable-

5. Randomness Polling Results

length outputand sources which take a variable the compressor encoddbe lengths of repeated data
amount of time to produce any output — mmatter blocks. For virtuallyall normal data there ammany
where the data is located, repeatedurrences will be matches foshort to medium-lengtblocksand almost
identified and removed. no matches for longblocks, sothe compressor's
encoding is tuned to be efficient this range and it
The statistical compressor used is an order-1 arithmetiemits a series of short to mediulangth matches
coder, which tries to estimate therobability of instead of a singleerylong length of theype present
occurrence of aymbol based on previous occurrencesn the test file. This means the absolute
of that symbol and the symbol precedingit. For compressibility is lesthan it isfor the other data, but
example although thprobability of occurrence of the since our interest is the changecompressibility from
letter ‘u’ in English text is around 2%, thpgobability = one sample to another this doesn’t matter much).
of occurrence ithe previous lettewas a ‘q’ is almost
unity (the exception beingvords like ‘lraq’ and The behaviourfor the testfile indicates that the
‘Compaq’). The order-Inodel therefore provides an compressor provides a good tool festimating the
tool for identifying anyfurther redundancy which isn't change in entropy — aftehe first test sample has
removed by the LZ77 compressor. been processethe compressed size changesdnfy a
few bytes insuccessivesamples, so theompressor is
By running thecompressor over repeated samples, it igloing agood job ofidentifying data which remains
possible to obtain a reasonable estimate of haweh unchanged from one sample to the next.
new entropy is added by successive polie use of a
compressor to estimatthe amount of randomness The fast polls, whichgathervery small amounts of
present in a string leadback to the field of constantly-changing data such as high-spegstem
Kolmogorov-Chaitin complexity, which defines a counters and timers and rapidly-changingystem
random string asne whichhas no shortedescription information, aren’topen to automated analysis using
than itself, so that it is incompressible. = The the compressor, bothecause they produce different
compression process therefore provides an estimate @sults on each poll (even tifie results areelatively
the amount of nonrandomness present in the string. predictable),and becausethe small amount of data
similar principle is used in Maurers universal gatheredeaveslittle scope for effective compression.
statistical test forrandom bit generators, which Because ofthis, only the more thorougtslow polls
employs a bitwise LZ77algorithm to estimate the which gather large amounts of informatiomere
amount of randomness present in a bit string [24]. analysed. The fast poltsan beanalysed if necessary,
but vary greatly from system to systemmd require
The test resultsveretaken from a number afystems manual scrutiny of thesources usedrather than
and cover Windows3.x, Windows’95, Windows NT, automated analysis.
and Unix systemsrunning underboth light and
moderate to heavy loads. &ddition a reference data The Win16/Win32systems were tested both in the
set, which consisted of a set of text files derived from ainloaded state with no applicationsning, and in the
single file, with afew lines swappedand a few moderately/heavily loaded state witMS Word,
characters altered in each filwas used to test the Netscape, andMS Access running. It is interesting
entropy estimation process. to note that even the (supposedly unloaded)Vin32
systemshad around 20processesand 100 threads
In every case aumber of samplewere gathered and running, and adding the thre¢heavy load”
the change incompressibility relative to previous applications added (apafttom the 3processes) only
samples taken under both identicahd different 10-15 threads (depending on thsystem). This
conditions was checked. As more samplesre indicatesthat even on a supposedly unloadéfin32
processed byhe compressor, it adaptédelf to the system,there is a fair amount of backgrouadtivity
characteristics of each sammad soproduced better going on (for example bothetscape andMS Access
and better compressiofithat is, smaller and smaller cansometimes consume 100%tbe free CPUtime on
changes in compression) fosuccessive samples, a system, in effectaking over the task of the idle
settling down aftetthe second or thirdample. The process whictgrinds to a halwhile they are loaded
exception wasthe test file, where th&ompression but apparently inactive).
jumped from 55% orhe first sample to 97%or all
successive samples due to the similarityhef data (the The first set of samples wiiscussare theones which
reason it didn’t go tover99% wasbhecause othe way came from théVindows3.x andWindows’95 systems,

and which were obtained using the
ToolHelp/ToolHelp32 functions which provide a
record of the currerdystemstate. Since the results for
the two systems were relativelgimilar, only the
Windows’95 ones will be discussdtere. Inmost
casesthe resultswere rather disappointing, with the
input being compressible by maitean99% once a few
samples had been taken (since the datebeing
compressed wasn't pathological teddata, the
compression match-lengtlimit described above for
the test data didn't occur). The testsn on a
minimally-configured machine (orftoppy drive, hard
drive,and CDROM drive) produced only abobglf as
much output as testain on amaximally-configured
machine (on€loppy drive, two hard drives, network
card, CDROM drive, SCSlhard drive and CDROM
writer, scanner, and printerput in both cases the

a reboot creates a considerabfenge insystemstate.
This is an almost ideal situation when the daging
sampled is used for cryptographiandom number
generation, since an attacke&ho later obtainsaccess
to the machinaised to generatdhe numbers haless
chance of being able to determitiee systemstate at
the time the numbersvere generated (provided the
machine has been rebooted since then).

The next set of samples came fromindows NT
systemsand record the current network statistics and
system performancmformation. Because ofts very
nature, itprovides far more variatiothan thedata
collected onthe Windows 3.x/Windows’95 systems,
with the data coming from a dual-processordeéver

in turn providing more variationhan the datdérom a
single-processor P5 workstation. kil cases the

compressibilityhad reached a constant level by the network statistics provide a disappointing amount of

third sample(in the case ofthe minimal system it

information, with the 200-odd bytes collected

reached this level by the second sample). Furthermorepmpressing down to a mereb9tes bythe time the

results from pollsun one after the otheshowedlittle
change to polls whichwere spaced at Iminute
intervals to allow a little more time fdhe system state
to change.

The onevery surprising resultvasthe behaviour after
the machinewvas rebootedwith samples taken in the
unloaded state as soonalkdisk activity had finshed.
In theory the results should haveeen very poor
becausdghe machine should be in a pristimelatively
fixed state after each reboot, but instead

compressedatawas 2% timegarger than it hadbeen
when the machindad beenrunning for sometime.

third sample is taken. Even rebooting the machine
didn't help much. Looking at the datacollected
revealedthat the only things which changed much
were one ontwo packet counters, sihat virtually all

the entropy provided irthe samplegomes from these
sources.

The systemstatistics were morateresting. Whereas
the Windows 3.x/Windows’95 polling process samples
the absolute systerstate, the NT polling samples the

thehange insystemstate overtime, and itwould be

expectedthat this time-varying datawould be less
compressible.This was indeedhe case, with the data

This is because the plethora of drivers, devices, suppditom the serveonly compressible by abo&0% even

modules,and other paraphernali@hich the system
loadsand runs aboottime (all of whichvary in their
behaviour and performanceand in some cases are
loadedand run innondeterministic order) perturb the
characteristics sufficiently to provide a relativéligh
degree of entropy after a reboothis means that the

after multiple sampleweretaken (compared to 9%
for the non-NT machines). Unlike the non-NT
machines though, the curresytstemloading didaffect
the results, with acompletely unloadedmachine
producing compressed output which wvasund 1/10
the size ofthat produced orthe same machine with a

systemstate after a reboot is relatively unpredictable heavy load, eventhough the originaluncompressed
so that althoughmultiple samples taken during one data quantityvas almosthe same in bothases. This

session provide relatively little variation imdlata,
samples takebetween reboots do providdar degree
of variation.

This hypothesis was tested pyiming thecompressor
using samples takesver anumber ofrebootsand then
checking thecompressibility of a sampleaken after
the systemhad beenrunningfor sometime relative to
the samples taken after tmeboot. Inall cases the
compressediatawas 4 timedarger than it hadeen
when thecompressor waprimed with samples taken
during the samesession, which confirmed tHact that

is becausewith no softwarerunning, there is little to
affect the statistics kept by theystem(no disk or
network access, no screen activitgnd virtually
nothingexceptthe idleprocess active). Attempting to
further influence the statistiqgor example byhaving
several copies dietscape trying to load data in the
background) produced almost no changeer the
canonical “heavy load” behaviour.

The behaviour of the NT machines after baigigooted
was tested in ananner identical to theests which had
been applied tahe non-NT machines. Since NT

exhibits differences in behaviour between loaded antlyping intheir password or whatever elfige program
unloaded machines, thestate-after-reboot was requires, the random data is available when it is
compared to the state with applicationsining rather required.
than thecompletely unloaded state (corresponding to
the situation where the user lrabootedheir machine The background polling isun as a threadunder
and immediately starts drowser ormailer or other Win32 and as a chilgrocessunder Unix. Under Unix
program which requires random numbers). Unlike thehe polling information is communicatdzhck to the
non-NT systems, the data was slightly more parentprocessusing ablock of shared memoryunder
compressible relative tine samples takemmediately ~ Win32 the thread sharegcess téhe randomnesgsool
after thereboot (whichmeans it compressed lapout with the other threads in th@ocess which makes the
83% instead of 80%). This isogsibly because the use of explicitly sharedmemory unnecessary. The
relative change from aimitial state to theneavy-load general method used to prevent simultanemegss to
state is lesthan thechange from on&eavy-load state the pool is simply that if a background poll is in
to another heavy-load state. progress we wait for it toun to completion before
allowing theaccess.The code toextract data from the
The final set of samples came fronvariety of Unix pool then becomes:
systems ranging from a relatively lightly-loaded Solaris ¢y actpata()
machine to aheavily-loaded multiprocessor student {

Alpha. The randomness output varied grebétween i ”Obgcr‘k%‘jromuggtgoﬁl‘l"f‘r:'gﬂz and o
machines andepended nainly onthe currensystem /* Caller forgot to perform slow poll */

load and user activity but also on how many of the start a slow poll;

required randomness sourogere available (many of i tor any background poll to run to

the sourcesare BSD-derived, so systemshich lean completion;

more towards SYSV, likehe SGI machines which if(still norandom data available)

were testedhad less randomness sources available erren

than BSD-ish systems like the Alpha). }extract/mix data from the pool;

The results were fairly mixed and difficult to In factunder Win32 we caprovide a much finelevel

generalise. Likethe NT systems,the Unix sources of controlthan thissomewhat crude “don’t allow any

mostly provideinformation on the change isystem access if a poll is in progress” method. Bging

state ovetime ratherthanabsolute systerstate, so the semaphores we can contatcess tdhe pool sothat

output is inherently less compressikifi@n itwould be thefactthat abackground poll is active doesn’t stop us

for sources which provide absolutsystem state from using thepool atthe same time. This @one by

information. Theuse of the run-lengthcoder to using Win32 “critical sections” (whickaren't really

optimise use ofthe sharedmemory buffer further critical sections aall, but a form of fast mutex which

reduces compressibility, with the overall areused to stop morthanonethreadfrom holding a

compressibility between samples varying from 70-90%esource at any one time). By wrapping aqeess to

depending on the system. the random pool in a mutex, we canallow a
background poll to independently update gl in

Self-preservation considerations prevented the authdjetween reading data fromit. The previous

from exploring theeffects ofrebooting the multiuser pseudocodean be changed to make it thread-safe by

Unix machines. changing the last few lines to:

EnterCriticalSection(...);

. . . extract/mix data from the pool;
6. Extensions to the Basic Polling Model L eaveCriticalSection(..).

On a number ofystems wean hide the lengthglow The background polling threadlso contains these
poll by running it in thebackground while thenain calls, which ensurethat only onethread will try to
program continues execution. As long asglwev poll accessthe pool at atime. If another thread tries to
is started a reasonable amount of titnefore the accesghe pool, it is suspendedntil the thread which
random data is needed, thdow polling will be is currently accessing theol hasreleased the mutex,
invisible to the user. In practice byarting the poll as which happens extremehguickly since the only
soon asthe program igun, and having itun in the operation being performed is eithemixing operation
background while the user is connecting to a site oor a copying of data.

Now that we have a nice, thread-safe means ofThe firstproblem to address that of thepool being
performing more or lestransparent updates on the paged to disk. Fortunately several operatygtems

pool, we can extend thebasic manually-controlled
polling model everfurtherfor extra user convenience.
The first two lines of the extractData()
pseudocodecontain code to force a slovpoll if the
calling application hagorgotten to dothis (the fact
that theapplication grinds to &alt for several seconds
will hopefully make this mistake obvious to the
programmer the first timéhey testtheir application).
We can make the pollingrocess even motfeolproof

provide facilities to lock pagesto memory, although
there areoften restrictions on whatan beachieved.
For example many Unix versions provide the
mlock() call, Win32 hasVirtualLock() (which,
however, is implemented gsreturn TRUE; }

under Windows 95), and the Macintosh has
HoldMemory() A discussion of various issues
related to locking memory pagéasnd thedifficulty of
erasing datance ithasbeen paged to disk) is given in

by performing it automatically ourselves without Gutmann [25].

programmer intervention. Asoon asthe security or

randomnessubsystem istarted, we begin performing If no facility for locking pages existshe contents can
a backgroundglow poll, which means the random data still be kept out of theommon swap filehrough the
becomes available as soon as possible after theuse of memory-mapped files. A newly-created
application is started (this also requires a smalmemory-mapped filean beused as a private swéife
modification to the function which manually starts awhich can be erased when thmemory is freed
slow poll sothat itwon't start a redundariiackground (although there arsomelimitations onhow well the
poll if the automatic poll is already taking place). data can be erased -again, see Gutmann [25]).
Further precautions can be taken to make the private
In general an application will fall into one of two swap file more secure, for exampgtee file should be
categories, either a client-type application such as apened for exclusive usand/or have the strictest
mail reader orbrowser which a user wilstart up, possible access permissiomasyd file buffering should
perform one or more transactions or operations withpe disabled if possible to avoithe buffers being
and then close down again, and aserver-type swappedunder Win32 this can béone by using the
application which willrun over an extended period of FILE_FLAG_NO_BUFFERING flag when calling
time. In order to take both of thesasesnto account, CreateFile() : some Unix versions havebscure
we perform one pollevery minute for the first 5 joctl’'s which achieve the same effect).
minutes to quickly obtainrandom datafor active
client-type applicationsand therdrop back to one poll
every 10 minutes for longer-running server-type
applications (this is alsaseful for client applications
which areleft to run in the background, mail readers
being a good example).

The second problem is that of another process scanning
through the allocatedhemory blocks looking for the
randomness poolThis is aggravated by tHact that,

if the randomness-polling is built into ancryption
subsystem,the pool will often be allocated and
initialised assoon aghe security subsystem started,

7. Protecting the Randomness Pool especially if automatic background polling is used.
The randomnespool presents an extremely valuable Because ofthis, the memory containing thepool is
resource, since any attackeho gainsaccess to it can often allocated athe head of the list ofllocated
use it to predict any privatkeys, encryption session blocks, making it relatively easy tolocate. For

keys,and othewaluabledata generated on tlsgstem.
Using the desigmhilosophy of “Putall your eggs in

one basket and watch that basket very carefully”, we geegions
to some lengths to protect the contents of theVirtualUnprotectEx()

randomnesgool from outsiders. Some ohe more
obvious ways tayet at thepool are torecover it from
the pagefile if it gets swapped to diskand towalk
downthe chain ofillocated memory blocks looking for

example under Win32 theVirtualQueryEx()

function can beused to quenthe status oimemory
owned by other processes,
can beused to remove
any protectionand ReadProcessMemory() can be
used to recover the contents of the pool or, for an active
attack, set its contents to zero. Generating encryption
keysfrom a buffer filledwith zeroes (othe hash of a

one which matches the characteristics of the pool. Legsuffer full of zeroes) can be hazardous to security.

obvious waysare to use sophisticated methods to

recoverthe contents of thenemory which contained
the pool after power is removed from the system.

Although there is no magic solution tbis problem,
the task of an attacker can be madesiderably more

difficult by taking special precautions wbscure the called by the superuse¥jrtualLock() doesn’'t do
identity of thememory being used tomplement the anything under Windows’9&ndevenunderWindows
pool. This can bedone both by obscuring the NT where it is actually implemented, it doesn't do
characteristics of thpool (by embedding it in a larger what the documentatiosays. Instead afhaking the
allocated block of memorgontaining other data) and memory completely non-swappable, it is only kept non-
by changing its location periodicallfpy allocating a swappable as long as at least tmead in theprocess
new memory block and moving the contents ofibel ~ which owns the memory is active. Oralethreads are
to the new block). The relocation of the data in the pre-empted, thenemorycan beswapped to disk just
pool alsomeans it is never stored in one place longike non-“locked” memory [26]. Although theprecise
enough to be retained by theemory it is being stored behaviour of VirtualLock() isn’t known, it
in, making it hardefor an attacker to recovéine pool appearshat it acts as a form of advisory lock which
contents from memory after power is removed [25]. tells the operating system to keep the pages resident for
as long as possible before swapping them out.
This obfuscation process is a simple extension of the
background polling process.Every time a poll is Since the correct functioning of thmemory-locking
performed, thepool is moved to a newandom-sized facilities provided bythe systemcan't be relied upon,
memory blockand theold memory block is wiped and we need to provide an alternative method to try to
freed. In addition, the surroundingemory is filled retain thepages in memoryThe easiestvay to dothis
with non-random data to make a seafshsed on is to usethe background thread which is beinged to
match criteria of a single smdilock filled with high- relocate thepool to continually touchthe pages, thus
entropy data moredifficult to perform (that is,for a ensuringthey are kept at théop of theswappers LRU
pool of sizen bytes, a block ofn bytes isallocated and queue. We dthis by decreasing theleep time of the
the n bytes of poodata ardocated somewher@ithin thread so that it runsore often,andkeeping track of
the largerblock, surrounded byn-n bytes ofother how many times we havein so that wenly relocate
data). This means that as the program runsptieé the pool as often athe previous, less-frequently-active
becomes buried in the mass of memory blocks allocateghread did:
and freed by typical GUI—basedppIications. This is ch randomness poal:
especiallyapparent wherused with frameworks such if(time to move the pool)

as MFC,whoselarge (andeaky) collection of more or
move the pool;

less arbitrary allocatedlocks provides a perfecover reset timer:
for a small pool of randomness. }
sleep;

Since theobfuscation is performed as a backgroundThis is especially important when theocesaising the
task, the cost of moving the data around is almost zer@ool is idle over extended periodstishe, since pages
The only time when the randomness stateldsked owned byotherprocesses will be given preferermeer
(andtherefore inaccessible the program) is when the those of theprocess owninghe pool. Although the
data is being copied from the old pool to the new one: pagescan still beswapped wherhe system isunder

allocate new pool; _ heavy load, the constant touching of the pages makes it
write nonrandom data to surrounding memory; less likelythat thisswapping will occurunder normal
lock randomness state (EnterCriticalSection() conditions

under Win32); .

copy data from old pool to new pool;
unlock randomness state

(LeaveCriticalSection() under Win32); 8. Conclusion
zeroise old pool;

The random number generatdescribed irthis paper
has proven to be relatively portable across different
systems (agenerator similar to thene described here
has been implemented in the cryptlib encryption library
[27] which has been in use on a wide varietgystems

We canalso usethis background thread @rocess to for a_round 2 years), provides good source of
try to prevent the randomness pool from being swappe@racubC ally strong r?nd(z_m datg on rgm;;llsten}s, and_ |
to disk. The reason this isecessary ishat the ﬁand eset upt)hto urg ion independently ‘o _spefla
techniques suggested previously for lockimgmory z;r_ \r/]vz_are f?r et neg_larbreser orprogrammer input,
aren’t completely reliable:mlock() can only be which s often not aval '

This assumesthat operations which access the
randomnesgool are atomicand that ngortion of the
codewill try to retain a pointer to th@ool between
pool accesses.

Acknowledgments

The authorwould like to thank Peter Fenwick, John
Kelsey, Colin Plumb, Robert RothenburgValking-
Owl, and thereferees fotheir adviceand input during
the preparation of this paper.

References
[1] “Cryptographic Randomness froAir Turbulence
in Disk Drives”, Don Davis,Ross Ihaka, and
Philip Fenstermacher, ProceedingsCofpto ‘94,

Springer-Verlag LectureNotes in Computer
Science, No.839, 1994.

[2]

“Truy Random Numbers”, Colin Plumb,
Dr.Dobbs Journal, November 1994, p.113.

“PGP Source Codeand Internals”, Philip
Zimmermann, MIT Press, 1995.

[3]

[4] “Random noise from disk drives”, Rich Salz,
posting to cypherpunkmailing list, message-1D
9601230431.AA06742@sulphur.osf.org

, 22 January 1996.

[5] “My favourite random-numbers-in-software
package (unix)’, Matt Blaze, posting to
cypherpunks mailing list, message-ID

199509301946.PAA15565@crypto.com
30 September 1995.

[6] “Using and Creating Cryptographic-Quality

Random Numbers”, John Callas,
http://www.merrymeet.com/-
jon/usingrandom.html , 3 June 1996.

[7] “Suggestions forrandom number generation in
software”, Tim Matthews, RSAData Security

Engineering Report, 15 December 1995.

[8] “Applied Cryptography (Second Edition)Bruce

Schneier, John Wiley and Sons, 1996.

“Cryptographic Random Numbers”, IEEF1363
Working Draft, Appendix G, 6 February 1997.

[9]

[10] “Randomness Recommendations for Security”,

Donald Eastlake, Stephen Crockand Jeffrey
Schiller, RFC 1750, December 1994.

[11] “The Art of Computer Programming/olume 2,
Seminumerical Algorithms”, Donald Knuth,
Addison-Wesley, 1981.

[12] “Handbook of Applied Cryptography”, Alfred
Menezes, Paul van OorschahdScott Vanstone,
CRC Press, 1996.

[13] “Foundations of Cryptography — Fragments of a

Book”, Oded Goldreich,
http://theory.lcs.mit.edu/-

~oded/frag.html

February 1995,

[14] “Netscape’dnternetSoftwareContains FlawT hat
Jeopardizes Security dbata”, Jared Sandberg,
The Wall Street Journal, 18 September 1995.

[15] “Randomnessand the Netscape Browser”, lan
Goldbergand David Wagner,Dr.Dobbs Journal,
January 1996.

[16] “Breakable sessiokeys in Kerberos v4”, Nelson
Minar, posting to thecypherpunksmailing list,
message-ID 199602200828.BAA21074@-
nelson.santafe.edu , 20 February 1996.

[17] “X Authentication Vulnerability”, CERT Vendor-
Initiated Bulletin VB-95:08, 2 November 1995.

[18] “Proper Initialisation for the BSAFE Random
Number Generator”, Robert Baldwin, RSA
Laboratories’ Bulletin, 25 January 1996.

[19] “How to Attack a PRNG”, JohrKelsey, Bruce
Schneier, David Wagnerand Chris Hall, to
appear.

[20] “SFS — Secure FileSystem”, Pet&utmann,
http://www.cs.auckland.ac.nz/-

~pgut001/sfs.html

[21] /devirandom driver sourcecode (random.c),
Theodore T'so, 24 April 1996.

[22] “American National Standardfor Financial
Institution Key Management (Wholesale)”,
American Bankers Association, 1985.

[23] “Practical Dictionary/Arithmetic Data
Compression Synthesis”, Pet&utmann, MSc
thesis, University of Auckland, 1992.

[24] “A Universal Statistical Test for Random Bit
Generators”, UelMaurer, Proceedings @rypto
‘90, Springer-Verlag Lecturdlotes in Computer
Science, N0.537, 1991, p.409.

[25] “Secure deletion aofiata from magnetiand solid-
state memory”, PeteiGutmann, SixthUsenix
Security Symposium proceedings, JuB2-25,
1996, San Jose, California.

[26] “Advanced Windows (third edition)”, Jeffrey
Richter, Microsoft Press, 1997.

[27] “cryptlib Free

Gutmann,
http://www.cs.auckland.ac.nz/-

Encryption Library”, Peter

~pgut001/cryptlib/

