
The following paper was originally published in the
Proceedings of the 7th USENIX Security Symposium

San Antonio, Texas, January 26-29, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Software Generation of Practically Strong Random Numbers

Peter Gutmann
University of Auckland

Software Generation of Practically Strong Random Numbers

Peter Gutmann

Department of Computer Science
University of Auckland

pgut001@cs.auckland.ac.nz

Abstract

Although much thought usually goes into the design of encryption algorithms and protocols, less
consideration is often given to equally important issues such as the selection of cryptographically
strong random numbers, so that an attacker may find it easier to break the random number generator
than the security system it is used with. This paper provides a comprehensive guide to designing and
implementing a practically strong random data accumulator and generator which requires no
specialised hardware or access to privileged system services. The performance of the generator on a
variety of systems is analysed, and measures which can make recovery of the accumulator/generator
state information more difficult for an attacker are presented. The result is an easy-to-use random
number generator which should be suitable even for demanding cryptographic applications.

1. Introduction

The best means of obtaining unpredictable random
numbers is by measuring physical phenomena such as
radioactive decay, thermal noise in semiconductors,
sound samples taken in a noisy environment, and even
digitised images of a lava lamp. However few
computers (or users) have access to the kind of
specialised hardware required for these sources, and
must rely on other means of obtaining random data.

Existing approaches which don’t rely on special
hardware have ranged from precise timing
measurements of the effects of air turbulence on the
movement of hard drive heads [1], timing of keystrokes
as the user enters a password [2][3], timing of memory
accesses under artificially-induced thrashing conditions
[4], and measurement of timing skew between two
system timers (generally a hardware and a software
timer, with the skew being affected by the 3-degree
background radiation of interrupts and other system
activity)[5]. In addition a number of documents exist
which provide general advice on using and choosing
random number sources [6][7][8][9].

Due to size constraints, a discussion of the nature of
randomness, especially cryptographically strong
randomness, is beyond the scope of this paper. A good
general overview of what constitutes randomness, what
sort of sources are useful (and not useful), and how to
process the data from them, is given in RFC 1750 [10].
Further discussion on the nature of randomness,
pseudorandom number generators (PRNG’s), and

cryptographic randomness is available from a number
of sources [11][12][13]. For the purposes of this paper
the term “practically strong randomness” has been
chosen to represent randomness which isn’t
cryptographically strong by the usual definitions but
which is as close to it as is practically possible.

Unfortunately the advice presented by various authors
is all too often ignored, resulting in insecure random
number generators which produce encryption keys
which are much, much easier to attack than the
underlying cryptosystems they are used with. A
particularly popular source of bad random numbers is
the current time and process ID. This type of flawed
generator first gained widespread publicity in late
1995, when it was found that the encryption in
Netscape browsers could be broken in around a minute
due to the limited range of values provided by this
source, leading to some spectacular headlines in the
popular press [14]. Because the values used to
generate session keys could be established without too
much difficulty, even non-crippled browsers with 128-
bit session keys carried (at best) only 47 bits of entropy
in their session keys [15]. Shortly afterwards it was
found that Kerberos V4 suffered from a similar
weakness (in fact it was even worse than Netscape
since it used random() instead of MD5 as its mixing
function) [16]. At about the same time, it was
announced that the MIT-MAGIC-COOKIE-1 key
generation, which created a 56-bit value, effectively
only had 256 seed values due to its use of rand()
(this had been discovered in January of that year but
the announcement was delayed to allow vendors to fix

the problem) [17].

In a attempt to remedy this situation, this paper
provides a comprehensive guide to designing and
implementing a practically strong random data
accumulator and generator which requires no
specialised hardware or access to privileged system
services. The result is an easy-to-use random number
generator which (currently) runs under BeOS, DOS,
the Macintosh, OS/2, Windows 3.x, Windows’95,
Windows NT, and Unix, and which should be suitable
even for demanding applications.

2. Requirements and Limitations of the
Generator

There are several special requirements and limitations
which affect the design of a practically strong random
number generator. The main requirement (and also
limitation) imposed upon the generator is that it can’t
rely on only one source, or on a small number of
sources, for its random data. For example even if it
were possible to assume that a system has some sort of
sound input device, the signal obtained from it is often
not random at all, but heavily influenced by crosstalk
with other system components or predictable in nature
(one test with a cheap 8-bit sound card in a PC
produced only a single changing bit which toggled in a
fairly predictable manner).

In addition several of the sources mentioned so far are
very hardware-specific or operating-system specific.
The keystroke-timing code used in PGP relies on direct
access to hardware timers (under DOS) or the use of
obscure ioctl’s to allow uncooked access to Unix
keyboard input, which may be unavailable in some
environments, or function in unexpected ways (for
example under Windows many features of the PC
hardware are virtualised, and therefore provide much
less entropy than they appear to; under Unix the user is
often not located at the system console, making
keystrokes subject to the timing constraints of the
telnet or rlogin session, as well as being
susceptible to network packet sniffing). Network
sniffing can also reveal other details of random seed
data, for example an opponent could observe the DNS
queries used to resolve names when netstat is run
without the -n flag, lowering its utility as a potential
source of randomness.

Other traps abound. In the absence of a facility for
timing keystrokes, mouse activity is often used as a
source of randomness. However some Windows mouse

drivers have a “snap to” capability which positions the
mouse pointer over the default button in a dialog box
or window. Networked applications may transmit the
client’s mouse events to a server, revealing information
about mouse movements and clicks. Some operating
systems will collapse multiple mouse events into a
single meta-event to cut down on network traffic or
handling overhead, reducing the input from wiggle-
the-mouse randomness gathering to a single mouse
move event. In addition if the process is running on an
unattended server, there may be no keyboard or mouse
activity at all.

In order to avoid this dependency on a particular piece
of hardware or operating system, the generator should
rely on as many inputs as possible. This is expanded
on in “Polling for randomness” below.

The generator should also have several other
properties:

• It should be resistant to analysis of its input data.
An attacker who recovers or is aware of a portion of
the input to the generator should be unable to use
this information to recover the generator’s state.

• As an extension of the above, it should also be
resistant to manipulation of the input data, so that
an attacker able to feed chosen input to the
generator should be unable to influence its state in
any predictable manner. An example of a
generator which lacked this property was the one
used in early versions of the BSAFE library, which
could end up containing a very low amount of
entropy if fed many small data blocks such as user
keystroke information [18].

• It should be resistant to analysis of its output data.
If an attacker recovers a portion of the generator’s
state, they should be unable to recover any other
state information from this (ideally, the generator
should never leak any of its state to the outside
world). For example recovering generator output
such as a session key or PKCS #1 padding for RSA
keys should not allow any more of the generator
state to be recovered.

• The generator should also take steps to protect its
internal state to ensure that it can’t be recovered
through techniques such as scanning the system
swap file for a large block of random data. This is
discussed in more detail in “Protecting the
randomness pool” below.

• The implementation of the generator should make
explicit any actions such as mixing the pool or

extracting data in order to allow the conformance of
the code to the generator design to be easily
checked. This is particularly problematic in the
code used to implement the PGP 2.x random
number pool, which (for example) relies on the fact
that a pool index value is initially set to point past
the end of the pool so that on the first attempt to
read data from it the available byte count will
evaluate to zero bytes, resulting in no data being
copied out and the code dropping through to the
pool mixing function. This type of coding makes
the correct functioning of the random pool
management code difficult to ascertain.

In general, all possible steps should be taken to ensure
that the generator state information never leaks to the
outside world. Any leakage of internal state which
would allow an attacker to predict further generator
output should be regarded as a catastrophic failure of
the generator. A paper which complements this one
and analyses potential generator weaknesses and
methods of attack is due to appear in the near future
[19].

Given the wide range of environments in which the
generator would typically be employed, it is not
possible within the confines of this paper to present a
detailed breakdown of the nature of, and capabilities
of, an attacker. Because of this limitation we take all
possible prudent precautions which might foil an
attacker, but leave it to end users to decide whether this
provides sufficient security for their particular
application.

3. The Randomness Pool and Mixing
Function

The generator described here consists of two parts, a
randomness pool and associated mixing function (the
generator itself), and a polling mechanism to gather
randomness from the system and add it to the pool (the
randomness accumulator). These two parts represent
two very distinct components of the overall generator,
with the accumulator being used to continually inject
random data into the generator, and the generator
being used to “stretch” this random data via some form
of PRNG. However the PRNG functionality is only
needed in some cases. Consider a typical case in
which the generator is required to produce a single
quantum of random data, for example to encrypt a
piece of outgoing email or to establish an SSL shared
secret. Even if the transformation function being used
in the generator is a completely reversible one such as

a (hypothetical) perfect compressor, there is no loss of
security because everything nonrandom and predictable
is discarded and only the unpredictable material
remains as the generator output. Only when large
amounts of data are drawn from the system does the
“accumulator” functionality give way to the
“generator” functionality, at which point a
transformation with certain special cryptographic
qualities is required (although, in the absence of a
perfect compressor, it doesn’t hurt to have these
present anyway).

Because of the special properties required when the
generator functionality is dominant, the pool and
mixing function have to be carefully designed to meet
the requirements given in the previous section. Before
discussing the mixing function used by the generator, it
might be useful to examine the types of functions
which are used by other generators.

One of the simplest comes from Schneier [8], and
consists of a hash function such as MD5 combined
with a counter value to create a pseudorandom byte
stream generator running in counter mode with a 16-
byte output:

Figure 1: Schneier's Generator

This generator uses the full message digest function
rather than just the compression function as most other
generators do. It therefore relies on the strength of the
underlying hash function for security, and may be
susceptible to some form of related-key attack since
only one or two bits of input are changed for every
block of output produced.

PGP 2.x uses a slightly different method which
involves “encrypting” the contents of the pool with the
MD5 compression function used as a CFB-mode
stream cipher in a so-called “message digest cipher”
configuration [20]. The key consists of the previous
state of the pool, with the data from the start of the

pool being used as the 64-byte input to the compression
function. The pool itself is 384 bytes long, although
other programs such as CryptDisk and Curve Encrypt
for the Macintosh, which also use the PGP random
pool management code, extend this to 512 bytes.

The data being encrypted is the 16-byte initialisation
vector (IV) which is XOR’d with the data at the
current pool position (in fact there is no need to use
CFB mode, the generator could just as easily use CBC
as there is no need for the “encryption” to be
reversible). This process carries 128 bits of state (the
IV) from one block to another:

Figure 2: The PGP Mixing Function

The initial IV is taken from the end of the pool, and
mixing proceeds until the entire pool has been
processed. Newer versions of PGP perform a second
pass over the pool for extra security. Once the pool
contents have been mixed, the first 64 bytes are
extracted to form the key for the next round of mixing,
and the remainder of the pool is available for use by
PGP. The pool management code allows random data
to be read directly out of the pool with no post-
processing, and relies for its security on the fact that
the previous pool contents, which are being used as the
“key” for the MD5 cipher, cannot be recovered. This
direct access to the pool is rather dangerous since the
slightest coding error could lead to a catastrophic
failure in which the pool data is leaked to outsiders.
As has been mentioned previously, the correct
functioning of the PGP 2.x random number
management code is not immediately obvious, making
it difficult to spot problems of this nature.

PGP also preserves some randomness state between
invocations of the program by storing a nonce on disk
which is en/decrypted with a user-supplied key and
injected into the randomness pool. This is a variation
of method used by the ANSI X9.17 generator which
utilises a user-supplied key and a timestamp (as

opposed to PGP’s preserved state).

PGP 5.x uses a slightly different update/mixing
function which adds an extra layer of complexity to the
basic PGP 2.x system. In the following pseudocode the
arrays are assumed to be arrays of bytes. Where a ‘32’
suffix is added to the name, it indicates that the array is
treated as an array of 32-bit words with index values
appropriately scaled. In addition the index values wrap
back to the start of the arrays when they reach the end:

pool[640], poolPos = 0;
key[64], keyPos = 0;

addByte(byte)
 {
 /* Update the key */
 key[keyPos++] ^= byte;
 if(another 32-bit word accumulated)
 key32[keyPos] ^= pool32[poolPos];

 /* Update the pool */
 if(about 16 bits added to key)
 {
 /* Encrypt and perform IV-style block

chaining */
 hash(pool[poolPos], key);
 pool[next 16 bytes] ^=

pool[current 16 bytes];
 }
 }

This retains the basic model used in PGP 2.x (with a
key external to the pool being used to mix the pool
itself), but changes the encryption mode from CFB to
CBC, and adds feedback between the pool and the
MD5 key data. The major innovation in this generator
is that the added data is mixed in at a much earlier
stage than in the PGP 2.x generator, being added
directly to the key (where it immediately affects any
further MD5-based mixing) rather than to the pool.
The feedback of data from the pool to the key ensures
that any sensitive material (such as a user passphrase)
which is added isn’t left lying in the key buffer in
plaintext form.

Once enough new data has been added to the key, the
resulting key is used to “encrypt” the pool using MD5,
ensuring that the pool data which was fed back to mask
the newly-added keying material is destroyed. In this
way the entire pool is encrypted with a key which
changes slightly for each block rather than a constant
key, and the encryption takes place incrementally
instead of the using monolithic update technique
preferred by other generators.

Another generator inspired by the PGP 2.x one is the
Unix /dev/random driver [21], of which a variant also
exists for DOS. The driver works by accumulating
information such as keyboard and mouse timings and

data, and hardware interrupt and block device timing
information, which is supplied to it by the kernel.
Since the sampling occurs during interrupt processing,
it is essential that the mixing of the sample data into
the pool be as efficient as possible. For this reason the
driver uses a CRC-like mixing function in place of the
traditional hash function to mix the data into the pool,
with hashing only being done when data is extracted
from the pool.

On extracting data the driver hashes successive 64-byte
blocks of the pool using the compression function of
MD5 or SHA-1, mixes the resulting 16 or 20-byte hash
back into the pool, hashes the first 64 bytes of pool one
more time to obscure the data which was fed back to
the pool, and returns the final 16 or 20-byte hash to the
caller. If more data is required, this process is iterated
until the pool read request is satisfied. The driver
makes two devices available, /dev/random which
estimates the amount of entropy in the pool and only
returns that many bits, and /dev/urandom which
uses the PRNG described above to return as many bytes
as the caller requests.

The function we use improves on the basic mixing
function by incorporating far more state than the 128
bits used by the PGP code. The mixing function is
again based on a one-way hash function (in which role
MD5 or SHA-1 are normally employed) and works by
treating a block of memory (typically a few hundred
bytes) as a circular buffer and using the hash function
to process the data in the buffer. Instead of using the
full hash function to perform the mixing, we only
utilise the central 16+64→16 byte or 20+64→20 byte
transformation which constitutes the hash function’s
compression function and which is somewhat faster
than using the full hash.

Assuming the use of MD5, which has a 64-byte input
and 16-byte output, we would hash the 16+64 bytes at
locations n-16…n+63 and then write the resulting 16-
byte hash to locations n…n+15 (the chaining which is
performed explicitly by PGP is performed implicitly
here by including the previously processed 16 bytes in
the input to the hash function). We then move forward
16 bytes and repeat the process, wrapping the input
around to the start of the buffer when the end of the
buffer is reached. The overlapping of the data input to
each hash means that each 16-byte block which is
processed is influenced by all the surrounding bytes:

Figure 3: Mixing the Randomness Pool

This process carries 640 bits of state information with
it, and means that every byte in the buffer is directly
influenced by the 64 bytes surrounding it and indirectly
influenced by every other byte in the buffer (although it
can take several iterations of mixing before this
indirect influence is felt, depending on the size of the
buffer). This is preferable to alternative schemes
which involve encrypting the data with a block cipher
using block chaining, since most block ciphers carry
only 64 bits of state along with them.

The pool management code keeps track of the current
write position in the pool. When a new data byte
arrives, it is added to the byte at the current write
position in the pool, the write position is advanced by
one, and, when the end of the pool is reached, the
entire pool is remixed using the mixing function
described above. Since the amount of data which is
gathered by the randomness-polling described in the
next section is quite considerable, we don’t need to
perform the input masking which is used in the PGP
5.x generator because a single randomness poll will
result in many iterations of pool mixing as all the
polled data is added. The pool mixing code does
however provide a mechanism to manually force a pool
remix in case this is required.

Data removed from the pool is not read out in the byte-
by-byte manner in which it is added. Instead, an entire
key is extracted in a single block, which leads to a
security problem: If an attacker can recover one of the
keys, comprising m bytes of an n-byte pool, the amount
of entropy left in the pool is only n-m bytes, which
violates the design requirement that an attacker be
unable to recover any of the generator’s state by
observing its output. This is particularly problematic
in cases such as some discrete-log based PKC’s in
which the pool provides data for first public and then
private key values, because an attacker will have access
to the output used to generate the public parameters
and can then use this output to try to derive the private
value(s).

One solution to this problem is to use a generator such
as the ANSI X9.17 generator [22] to protect the
contents of the pool (in fact some newer versions of
PGP do just that, and attach an X9.17-like generator
which uses IDEA instead of triple DES to the internal
random number pool for use in generating random data
for certain applications). In this way the key is derived
from the pool contents via a one-way function.

The solution we use is slightly different. What we do
is first mix the pool to create the key, then invert every
bit in the pool and mix it again to create the new pool,
although it may be desirable to tune the operation used
to transform the input to the hash function depending
on the hash function being used. For example SHA
performs a complex XOR-based “key schedule” on the
input data, which could potentially lead to problems if
the transformation consists of XOR-ing each input
word with 0xFFFFFFFF. In this case it might be
preferable to use some other form of operation such as
a rotate and XOR, or the CRC-type function used by
the /dev/random driver. If the pool were being
used as the key for a DES-based mixing function, it
would be necessary to adjust for weak keys; other
mixing methods might require the use of similar
precautions.

This method should be secure provided that the hash
function we use meets its design goal of preimage
resistance and is a random function (that is, no
polynomial-time algorithm exists to distinguish the
output of the function from random strings). The
resulting generator is remarkably similar to the triple-
DES based ANSI X9.17 generator, which functions as
follows:

Figure 4: ANSI X9.17 Generator

In the X9.17 generator the encryption step labelled
Enc1 ensures that the timestamp is spread over 64 bits
and avoids the threat of a chosen-timestamp attack (for
example setting it to all-zero or all-one bits), the Enc2
step acts as a one-way function for the generated
encryption key, and the Enc3 step acts as a one-way
function for the seed value/internal state. The
generator presented here replaces the keyed triple-DES

operations with an unkeyed one-way hash function
which has the same effect:

Figure 5: Equivalence to the X9.17 Generator

H1 mixes the input and prevents chosen-input attacks,
H2 acts as a one-way function for the encryption key,
and H’3 acts as a one-way function for the internal
state. This generator is therefore functionally similar
to the X9.17 one, but contains significantly more
internal state and does not require the use of a rather
slow and unexportable triple DES implementation and
the secure storage of an encryption key.

4. Polling for Randomness

Now that we have the basic pool management code, we
need to fill the pool with random data. To do this we
use two methods, a fast randomness poll which
executes very quickly and gathers as much random (or
apparently random) information as quickly as possible,
and a slow poll which can take a lot longer than the
fast poll but which performs a more in-depth search for
sources of random data. The data sources we use for
the generator are chosen to be reasonably safe from
external manipulation, since an attacker who tries to
modify them to provide predictable input to the
generator will either require superuser privileges
(which would allow them to bypass any security
anyway) or would crash the system when they change
operating system data structures.

The sources used by the fast poll are fairly consistent
across systems and typically involve obtaining
constantly-changing information covering mouse,
keyboard, and window states, system timers, thread,
process, memory, disk, and network usage details, and
assorted other paraphernalia maintained and updated
by most operating systems. A fast poll completes very
quickly, and gathers a reasonable amount of random
information. Scattering these polls throughout the
application which will eventually use the random data
(in the form of keys or other security-related objects) is
a good move, or alternatively they can be embedded
inside other functions in a security module so that even

careless programmers will (unknowingly) perform fast
polls at some point. No-one will ever notice that their
RSA signature check takes a few extra microseconds
due to the embedded fast poll, and although the
presence of the more thorough slow polls may make it
slightly superfluous, performing a number of
effectively-free fast polls can never hurt.

There are two general variants of the slower
randomness-polling mechanism, with individual
operating system-specific implementations falling into
one of the two groups. The first variant is used with
operating systems which provide a rather limited
amount of useful information, which tends to coincide
with less sophisticated systems which have little or no
memory protection and have difficulty performing the
polling as a background task or thread. These systems
include Win16 (Windows 3.x), the Macintosh, and (to
some extent) OS/2, in which the slow randomness poll
involves walking through global and system data
structures recording information such as handles,
virtual addresses, data item sizes, and the large amount
of other information typically found in these data
structures.

Of the three examples, Win16 provides the most
information since it makes all system and process data
structures visible to the user through the ToolHelp
library, which means we can walk down the list of
global heap entries, system modules and tasks, and
other data structures. Since even a moderately loaded
system can contain over 500 heap objects and 50
modules, we need to limit the duration of the poll to a
second or two, which is enough to get information on
several hundred objects without halting the calling
program for an unacceptable amount of time (and
under Win16 the poll will indeed lock up the machine
until it completes).

Similarly on the Macintosh we can walk through the
list of graphics devices, processes, drivers, and
filesystem queues to obtain our information. Since
there are typically only a few dozen of these, there is
no need to worry about time limits. Under OS/2 there
is almost no information available, so even though the
operating system provides the capability to do so, there
is little to be gained by performing the poll in the
background. Unfortunately this lack of random data
also provides us with less information than that
provided by Win16.

The second variant of the slow polling process is used
with operating systems which protect their system and
global data structures from general access, but which

provide a large amount of other information in the
form of system, network, and general usage statistics,
and which also allow background polling which means
we can take as long as we like (within reasonable
limits) to obtain the information we require. These
systems include Win32 (Windows 95 and Windows
NT) and Unix/BeOS.

The Win32 polling process has two special cases, a
Win’95 version which uses the ToolHelp32 functions
which don’t exist under current versions of NT, and an
NT version which uses the NetAPI32 functions and
performance data information which doesn’t exist
under Win’95. In order for the same code to run under
both systems, we need to dynamically link in the
appropriate routines at runtime using
GetModuleHandle() or LoadLibrary() or the
program won’t load under one or both of the
environments.

Once we have the necessary functions linked in, we
can obtain the data we require from the system. Under
Win’95 the ToolHelp32 functions provide more or less
the same functionality as the Win16 ones (with a few
extras added for Win32), which means we can walk
through the local heap, all processes and threads in the
system, and all loaded modules. A typical poll on a
moderately-loaded machine nets 5–15kB of data (not
all of which is random or useful, of course).

Under NT the process is slightly different because it
currently lacks ToolHelp functionality. Instead, NT
keeps track of network statistics using the NetAPI32
library, and system performance statistics by mapping
them into keys in the Windows registry. The network
information is obtained by checking whether the
machine is a workstation or server and then reading
network statistics from the appropriate network
service. This typically yields around 200 bytes of
information covering all kinds of network traffic
statistics.

The system information is obtained by reading the
system performance data, which is maintained
internally by NT and copied to locations in the registry
when a special registry key is opened. This creates a
snapshot of the system performance at the time the key
was opened, and covers a large amount of system
information such as process and thread statistics,
memory information, disk access and paging statistics,
and a large amount of other similar information:

RegQueryValueEx(HKEY_PERFORMANCE_DATA,
"Global", NULL, NULL, buffer, &length);

addToPool(buffer, length);

A typical poll on a moderately-loaded machine nets
around 30–40kB of data (again, not all of this is
random or useful).

The Unix randomness polling is the most complicated
of all. Unix systems don’t maintain any easily-
accessible collections of system information or
statistics, and even sources which are accessible with
some difficulty (for example kernel data structures) are
accessible only to the superuser. However there is a
way to access this information which works for any
user on the system. Unfortunately it isn’t very simple.

Unix systems provide a large collection of utilities
which can be used to obtain statistics and information
on the system. By taking the output from each of these
utilities and adding them to the randomness pool, we
can obtain the same effect as using ToolHelp under
Win’95 or reading performance information from the
registry under NT. The general idea is to identify each
of these randomness sources (for example netstat -in)
and somehow obtain their output data. A suitable
source should have the following three properties:

1. The output should (obviously) be reasonably
random.

2. The output should be produced in a reasonable time
frame and in a format which makes it suitable for
our purposes (an example of an unsuitable source is
top, which displays its output interactively). There
are often program arguments which can be used to
expedite the arrival of data in a timely manner, for
example we can tell netstat not to try to resolve
host names but instead to produce its output with IP
addresses to identify machines.

3. The source should produce a reasonable quantity of
output (an example of a source which can produce
far too much output is pstat -f, which weighed in
with 600kB of output on a large Oracle server. The
only useful effect this had was to change the output
of vmstat, another useful randomness source).

Now that we know where to get the information, we
need to figure out how to get it into the randomness
pool. This is done by opening a pipe to the requested
source and reading from it until the source has finished
producing output. To obtain input from multiple
sources, we walk through the list of sources calling
popen() for each one, add the descriptors to an
fd_set , make the input from each source non-
blocking, and then use select() to wait for output to
become available on one of the descriptors (this adds
further randomness because the fragments of output

from the different sources are mixed up in a somewhat
arbitrary order which depends on the order and manner
in which the sources produce output). Once the source
has finished producing output, we close the pipe:

for(all potential data sources)
 {
 if(access(source.path, X_OK))
 {
 /* Source exists, open a pipe to it */
 source.pipe = popen(source);
 fcntl(source.pipeFD, F_SETFL, O_NONBLOCK

);
 FD_SET(source.pipeFD, &fds);

 skip all alternative forms of this source
(eg /bin/pstat vs /etc/pstat);

 }
 }

while(sources are present and
 buffer != full)
 {
 /* Wait for data to become available */
 if(select(..., &fds, ...) == -1)
 break;

 foreach source
 {
 if(FD_ISSET(source.pipeFD, &fds))
 {
 count = fread(buffer, source.pipe);
 if(count)
 add buffer to pool;
 else
 pclose(source);
 }
 }
 }

Because many of the sources produce output which is
formatted for human readability, the code to read the
output includes a simple run-length compressor which
reduces formatting data such as repeated spaces to the
count of the number of repeated characters, conserving
space in the data buffer.

Since this information is supposed to be used for
security-related applications, we should take a few
security precautions when we do our polling. Firstly,
we use popen() with hard-coded absolute paths
instead of simply exec() ’ing the program used to
provide the information. In addition we set our uid to
‘nobody’ to ensure we can’t accidentally read any
privileged information if the polling process is running
with superuser privileges, and to generally reduce the
potential for damage. To protect against very slow (or
blocked) sources holding up the polling process, we
include a timer which kills a source if it takes too long
to provide output. The polling mechanism also
includes a number of other safety features to protect
against various potential problems, which have been
omitted from the pseudocode for clarity.

Because the paths are hard-coded, we may need to look
in different locations to find the programs we require.
We do this by maintaining a list of possible locations
for the programs and walking down it using
access() to check the availability of the source.
Once we locate the program, we run it and move on to
the next source. This also allows us to take into
account system-specific variations of the arguments
required by some programs by placing the system-
specific version of the command to invoke the program
first on the affected system (for example IRIX uses a
slightly nonstandard argument for the last command,
so on SGI systems we try to execute this in preference
to the more usual invocation of last).

Due to the fact that popen() is broken on some
systems (SunOS doesn’t record the pid of the child
process, so it can reap the wrong child, resulting in
pclose() hanging when it’s called on that child), we
also need to write our own version of popen() and
pclose() , which conveniently allows us to create a
custom popen() which is tuned for use by the
randomness-gathering process.

Finally, we need to take into account the fact that some
of the sources can produce a lot of relatively
nonrandom output, the 600kB of pstat output being an
extreme example. Since the output is read into a buffer
with a fixed maximum size (a block of shared memory
as explained in “Extensions to the basic polling model”
below), we want to avoid flooding the buffer with
useless output. By ordering the sources in the order of
usefulness, we can ensure that information from the
most useful sources is added preferentially. For
example vmstat -s would go before df which would in
turn precede arp -a. This ordering also means that
late-starting sources like uptime will produce better
output when the processor load suddenly shoots up into
double digits due to all the other polling processes
being forked by the popen() .

A typical poll on a moderately-loaded machine nets
around 20–40kB of data (with the usual caveat about
usefulness).

The slow poll can also check for and use various other
sources which might only be available on certain
systems. For example some systems have
/dev/random drivers which accumulate random
event data from the kernel, and some may be fitted
with special hardware for generating cryptographically
strong random numbers. The slow poll can check for
the presence of these sources and use them in

preference to or in addition to the usual sources.

Finally, we provide a means to inject externally-
obtained randomness into the pool in case other
sources are available. A typical external source of
randomness would be the user password which,
although not random, represents a value which should
be unknown to outsiders. Other typical sources include
keystroke timings (if the system allows this), the hash
of the message being encrypted (another constant but
hopefully unknown-to-outsiders quantity), and any
other randomness source which might be available.
Because of the presence of the mixing function, it’s not
possible to use this facility to cause any problems with
the randomness pool — at worst it won’t add any extra
randomness, but it’s not possible to use it to negatively
affect the data in the pool by (say) injecting a large
quantity of constant data.

5. Randomness Polling Results

Designing an automated process which is suited to
estimating the amount of entropy gathered is a difficult
task. Many of the sources are time-varying (so that
successive polls will always produce different results),
some produce variable-length output (causing output
from other sources to change position in the polled
data), and some take variable amounts of time to
produce data (so that their output may appear before or
after the output from faster or slower sources in
successive polls). In addition many analysis
techniques can be prohibitively expensive in terms of
the CPU time and memory required, so we perform the
analysis offline using data gathered from a number of
randomness sampling runs rather than trying to
analyse the data as it is collected.

The field of data compression provides us with a
number of analysis tools which can be used to provide
reasonable estimates of the change in entropy from one
poll to another. The tools we apply to this task are an
LZ77 dictionary compressor (which looks for portions
of the current data which match previously-seen data)
and a powerful statistical compressor (which estimates
the probability of occurrence of a symbol based on
previously-seen symbols) [23].

The LZ77 compressor uses a 32kB window, which
means that any blocks of data already encountered
within the last 32kB will be recognised as duplicates
and discarded. Since none of the polls generally
produce more than 32kB of output, this is adequate for
solving the problem of sources which produce variable-

length output and sources which take a variable
amount of time to produce any output — no matter
where the data is located, repeated occurrences will be
identified and removed.

The statistical compressor used is an order-1 arithmetic
coder, which tries to estimate the probability of
occurrence of a symbol based on previous occurrences
of that symbol and the symbol preceding it. For
example although the probability of occurrence of the
letter ‘u’ in English text is around 2%, the probability
of occurrence if the previous letter was a ‘q’ is almost
unity (the exception being words like ‘Iraq’ and
‘Compaq’). The order-1 model therefore provides an
tool for identifying any further redundancy which isn’t
removed by the LZ77 compressor.

By running the compressor over repeated samples, it is
possible to obtain a reasonable estimate of how much
new entropy is added by successive polls. The use of a
compressor to estimate the amount of randomness
present in a string leads back to the field of
Kolmogorov-Chaitin complexity, which defines a
random string as one which has no shorter description
than itself, so that it is incompressible. The
compression process therefore provides an estimate of
the amount of nonrandomness present in the string. A
similar principle is used in Maurers universal
statistical test for random bit generators, which
employs a bitwise LZ77 algorithm to estimate the
amount of randomness present in a bit string [24].

The test results were taken from a number of systems
and cover Windows 3.x, Windows’95, Windows NT,
and Unix systems running under both light and
moderate to heavy loads. In addition a reference data
set, which consisted of a set of text files derived from a
single file, with a few lines swapped and a few
characters altered in each file, was used to test the
entropy estimation process.

In every case a number of samples were gathered and
the change in compressibility relative to previous
samples taken under both identical and different
conditions was checked. As more samples were
processed by the compressor, it adapted itself to the
characteristics of each sample and so produced better
and better compression (that is, smaller and smaller
changes in compression) for successive samples,
settling down after the second or third sample. The
exception was the test file, where the compression
jumped from 55% on the first sample to 97% for all
successive samples due to the similarity of the data (the
reason it didn’t go to over 99% was because of the way

the compressor encodes the lengths of repeated data
blocks. For virtually all normal data there are many
matches for short to medium-length blocks and almost
no matches for long blocks, so the compressor’s
encoding is tuned to be efficient in this range and it
emits a series of short to medium length matches
instead of a single very long length of the type present
in the test file. This means the absolute
compressibility is less than it is for the other data, but
since our interest is the change in compressibility from
one sample to another this doesn’t matter much).

The behaviour for the test file indicates that the
compressor provides a good tool for estimating the
change in entropy — after the first test sample has
been processed, the compressed size changes by only a
few bytes in successive samples, so the compressor is
doing a good job of identifying data which remains
unchanged from one sample to the next.

The fast polls, which gather very small amounts of
constantly-changing data such as high-speed system
counters and timers and rapidly-changing system
information, aren’t open to automated analysis using
the compressor, both because they produce different
results on each poll (even if the results are relatively
predictable), and because the small amount of data
gathered leaves little scope for effective compression.
Because of this, only the more thorough slow polls
which gather large amounts of information were
analysed. The fast polls can be analysed if necessary,
but vary greatly from system to system and require
manual scrutiny of the sources used rather than
automated analysis.

The Win16/Win32 systems were tested both in the
unloaded state with no applications running, and in the
moderately/heavily loaded state with MS Word,
Netscape, and MS Access running. It is interesting
to note that even the (supposedly unloaded) Win32
systems had around 20 processes and 100 threads
running, and adding the three “heavy load”
applications added (apart from the 3 processes) only
10-15 threads (depending on the system). This
indicates that even on a supposedly unloaded Win32
system, there is a fair amount of background activity
going on (for example both Netscape and MS Access
can sometimes consume 100% of the free CPU time on
a system, in effect taking over the task of the idle
process which grinds to a halt while they are loaded
but apparently inactive).

The first set of samples we discuss are the ones which
came from the Windows 3.x and Windows’95 systems,

and which were obtained using the
ToolHelp/ToolHelp32 functions which provide a
record of the current system state. Since the results for
the two systems were relatively similar, only the
Windows’95 ones will be discussed here. In most
cases the results were rather disappointing, with the
input being compressible by more than 99% once a few
samples had been taken (since the data being
compressed wasn’t pathological test data, the
compression match-length limit described above for
the test data didn’t occur). The tests run on a
minimally-configured machine (one floppy drive, hard
drive, and CDROM drive) produced only about half as
much output as tests run on a maximally-configured
machine (one floppy drive, two hard drives, network
card, CDROM drive, SCSI hard drive and CDROM
writer, scanner, and printer), but in both cases the
compressibility had reached a constant level by the
third sample (in the case of the minimal system it
reached this level by the second sample). Furthermore,
results from polls run one after the other showed little
change to polls which were spaced at 1 minute
intervals to allow a little more time for the system state
to change.

The one very surprising result was the behaviour after
the machine was rebooted, with samples taken in the
unloaded state as soon as all disk activity had finished.
In theory the results should have been very poor
because the machine should be in a pristine, relatively
fixed state after each reboot, but instead the
compressed data was 2½ times larger than it had been
when the machine had been running for some time.
This is because the plethora of drivers, devices, support
modules, and other paraphernalia which the system
loads and runs at boot time (all of which vary in their
behaviour and performance and in some cases are
loaded and run in nondeterministic order) perturb the
characteristics sufficiently to provide a relatively high
degree of entropy after a reboot. This means that the
system state after a reboot is relatively unpredictable,
so that although multiple samples taken during one
session provide relatively little variation in data,
samples taken between reboots do provide a fair degree
of variation.

This hypothesis was tested by priming the compressor
using samples taken over a number of reboots and then
checking the compressibility of a sample taken after
the system had been running for some time relative to
the samples taken after the reboot. In all cases the
compressed data was 4 times larger than it had been
when the compressor was primed with samples taken
during the same session, which confirmed the fact that

a reboot creates a considerable change in system state.
This is an almost ideal situation when the data being
sampled is used for cryptographic random number
generation, since an attacker who later obtains access
to the machine used to generate the numbers has less
chance of being able to determine the system state at
the time the numbers were generated (provided the
machine has been rebooted since then).

The next set of samples came from Windows NT
systems and record the current network statistics and
system performance information. Because of its very
nature, it provides far more variation than the data
collected on the Windows 3.x/Windows’95 systems,
with the data coming from a dual-processor P6 server
in turn providing more variation than the data from a
single-processor P5 workstation. In all cases the
network statistics provide a disappointing amount of
information, with the 200-odd bytes collected
compressing down to a mere 9 bytes by the time the
third sample is taken. Even rebooting the machine
didn’t help much. Looking at the data collected
revealed that the only things which changed much
were one or two packet counters, so that virtually all
the entropy provided in the samples comes from these
sources.

The system statistics were more interesting. Whereas
the Windows 3.x/Windows’95 polling process samples
the absolute system state, the NT polling samples the
change in system state over time, and it would be
expected that this time-varying data would be less
compressible. This was indeed the case, with the data
from the server only compressible by about 80% even
after multiple samples were taken (compared to 99+%
for the non-NT machines). Unlike the non-NT
machines though, the current system loading did affect
the results, with a completely unloaded machine
producing compressed output which was around 1/10
the size of that produced on the same machine with a
heavy load, even though the original, uncompressed
data quantity was almost the same in both cases. This
is because, with no software running, there is little to
affect the statistics kept by the system (no disk or
network access, no screen activity, and virtually
nothing except the idle process active). Attempting to
further influence the statistics (for example by having
several copies of Netscape trying to load data in the
background) produced almost no change over the
canonical “heavy load” behaviour.

The behaviour of the NT machines after being rebooted
was tested in a manner identical to the tests which had
been applied to the non-NT machines. Since NT

exhibits differences in behaviour between loaded and
unloaded machines, the state-after-reboot was
compared to the state with applications running rather
than the completely unloaded state (corresponding to
the situation where the user has rebooted their machine
and immediately starts a browser or mailer or other
program which requires random numbers). Unlike the
non-NT systems, the data was slightly more
compressible relative to the samples taken immediately
after the reboot (which means it compressed by about
83% instead of 80%). This is possibly because the
relative change from an initial state to the heavy-load
state is less than the change from one heavy-load state
to another heavy-load state.

The final set of samples came from a variety of Unix
systems ranging from a relatively lightly-loaded Solaris
machine to a heavily-loaded multiprocessor student
Alpha. The randomness output varied greatly between
machines and depended not only on the current system
load and user activity but also on how many of the
required randomness sources were available (many of
the sources are BSD-derived, so systems which lean
more towards SYSV, like the SGI machines which
were tested, had less randomness sources available
than BSD-ish systems like the Alpha).

The results were fairly mixed and difficult to
generalise. Like the NT systems, the Unix sources
mostly provide information on the change in system
state over time rather than absolute system state, so the
output is inherently less compressible than it would be
for sources which provide absolute system state
information. The use of the run-length coder to
optimise use of the shared memory buffer further
reduces compressibility, with the overall
compressibility between samples varying from 70–90%
depending on the system.

Self-preservation considerations prevented the author
from exploring the effects of rebooting the multiuser
Unix machines.

6. Extensions to the Basic Polling Model

On a number of systems we can hide the lengthy slow
poll by running it in the background while the main
program continues execution. As long as the slow poll
is started a reasonable amount of time before the
random data is needed, the slow polling will be
invisible to the user. In practice by starting the poll as
soon as the program is run, and having it run in the
background while the user is connecting to a site or

typing in their password or whatever else the program
requires, the random data is available when it is
required.

The background polling is run as a thread under
Win32 and as a child process under Unix. Under Unix
the polling information is communicated back to the
parent process using a block of shared memory, under
Win32 the thread shares access to the randomness pool
with the other threads in the process which makes the
use of explicitly shared memory unnecessary. The
general method used to prevent simultaneous access to
the pool is simply that if a background poll is in
progress we wait for it to run to completion before
allowing the access. The code to extract data from the
pool then becomes:

extractData()
 {
 if(no random data available and no

background poll in progress)
 /* Caller forgot to perform slow poll */
 start a slow poll;

 wait for any background poll to run to
completion;

 if(still no random data available)
 error;

 extract/mix data from the pool;
 }

In fact under Win32 we can provide a much finer level
of control than this somewhat crude “don’t allow any
access if a poll is in progress” method. By using
semaphores we can control access to the pool so that
the fact that a background poll is active doesn’t stop us
from using the pool at the same time. This is done by
using Win32 “critical sections” (which aren’t really
critical sections at all, but a form of fast mutex which
are used to stop more than one thread from holding a
resource at any one time). By wrapping up access to
the random pool in a mutex, we can allow a
background poll to independently update the pool in
between reading data from it. The previous
pseudocode can be changed to make it thread-safe by
changing the last few lines to:

EnterCriticalSection(...);
extract/mix data from the pool;
LeaveCriticalSection(...);

The background polling thread also contains these
calls, which ensures that only one thread will try to
access the pool at a time. If another thread tries to
access the pool, it is suspended until the thread which
is currently accessing the pool has released the mutex,
which happens extremely quickly since the only
operation being performed is either a mixing operation
or a copying of data.

Now that we have a nice, thread-safe means of
performing more or less transparent updates on the
pool, we can extend the basic manually-controlled
polling model even further for extra user convenience.
The first two lines of the extractData()
pseudocode contain code to force a slow poll if the
calling application has forgotten to do this (the fact
that the application grinds to a halt for several seconds
will hopefully make this mistake obvious to the
programmer the first time they test their application).
We can make the polling process even more foolproof
by performing it automatically ourselves without
programmer intervention. As soon as the security or
randomness subsystem is started, we begin performing
a background slow poll, which means the random data
becomes available as soon as possible after the
application is started (this also requires a small
modification to the function which manually starts a
slow poll so that it won’t start a redundant background
poll if the automatic poll is already taking place).

In general an application will fall into one of two
categories, either a client-type application such as a
mail reader or browser which a user will start up,
perform one or more transactions or operations with,
and then close down again, and a server-type
application which will run over an extended period of
time. In order to take both of these cases into account,
we perform one poll every minute for the first 5
minutes to quickly obtain random data for active
client-type applications, and then drop back to one poll
every 10 minutes for longer-running server-type
applications (this is also useful for client applications
which are left to run in the background, mail readers
being a good example).

7. Protecting the Randomness Pool

The randomness pool presents an extremely valuable
resource, since any attacker who gains access to it can
use it to predict any private keys, encryption session
keys, and other valuable data generated on the system.
Using the design philosophy of “Put all your eggs in
one basket and watch that basket very carefully”, we go
to some lengths to protect the contents of the
randomness pool from outsiders. Some of the more
obvious ways to get at the pool are to recover it from
the page file if it gets swapped to disk, and to walk
down the chain of allocated memory blocks looking for
one which matches the characteristics of the pool. Less
obvious ways are to use sophisticated methods to
recover the contents of the memory which contained
the pool after power is removed from the system.

The first problem to address is that of the pool being
paged to disk. Fortunately several operating systems
provide facilities to lock pages into memory, although
there are often restrictions on what can be achieved.
For example many Unix versions provide the
mlock() call, Win32 has VirtualLock() (which,
however, is implemented as { return TRUE; }
under Windows 95), and the Macintosh has
HoldMemory() . A discussion of various issues
related to locking memory pages (and the difficulty of
erasing data once it has been paged to disk) is given in
Gutmann [25].

If no facility for locking pages exists, the contents can
still be kept out of the common swap file through the
use of memory-mapped files. A newly-created
memory-mapped file can be used as a private swap file
which can be erased when the memory is freed
(although there are some limitations on how well the
data can be erased — again, see Gutmann [25]).
Further precautions can be taken to make the private
swap file more secure, for example the file should be
opened for exclusive use and/or have the strictest
possible access permissions, and file buffering should
be disabled if possible to avoid the buffers being
swapped (under Win32 this can be done by using the
FILE_FLAG_NO_BUFFERING flag when calling
CreateFile() ; some Unix versions have obscure
ioctl’s which achieve the same effect).

The second problem is that of another process scanning
through the allocated memory blocks looking for the
randomness pool. This is aggravated by the fact that,
if the randomness-polling is built into an encryption
subsystem, the pool will often be allocated and
initialised as soon as the security subsystem is started,
especially if automatic background polling is used.

Because of this, the memory containing the pool is
often allocated at the head of the list of allocated
blocks, making it relatively easy to locate. For
example under Win32 the VirtualQueryEx()
function can be used to query the status of memory
regions owned by other processes,
VirtualUnprotectEx() can be used to remove
any protection, and ReadProcessMemory() can be
used to recover the contents of the pool or, for an active
attack, set its contents to zero. Generating encryption
keys from a buffer filled with zeroes (or the hash of a
buffer full of zeroes) can be hazardous to security.

Although there is no magic solution to this problem,
the task of an attacker can be made considerably more

difficult by taking special precautions to obscure the
identity of the memory being used to implement the
pool. This can be done both by obscuring the
characteristics of the pool (by embedding it in a larger
allocated block of memory containing other data) and
by changing its location periodically (by allocating a
new memory block and moving the contents of the pool
to the new block). The relocation of the data in the
pool also means it is never stored in one place long
enough to be retained by the memory it is being stored
in, making it harder for an attacker to recover the pool
contents from memory after power is removed [25].

This obfuscation process is a simple extension of the
background polling process. Every time a poll is
performed, the pool is moved to a new, random-sized
memory block and the old memory block is wiped and
freed. In addition, the surrounding memory is filled
with non-random data to make a search based on
match criteria of a single small block filled with high-
entropy data more difficult to perform (that is, for a
pool of size n bytes, a block of m bytes is allocated and
the n bytes of pool data are located somewhere within
the larger block, surrounded by m-n bytes of other
data). This means that as the program runs, the pool
becomes buried in the mass of memory blocks allocated
and freed by typical GUI-based applications. This is
especially apparent when used with frameworks such
as MFC, whose large (and leaky) collection of more or
less arbitrary allocated blocks provides a perfect cover
for a small pool of randomness.

Since the obfuscation is performed as a background
task, the cost of moving the data around is almost zero.
The only time when the randomness state is locked
(and therefore inaccessible to the program) is when the
data is being copied from the old pool to the new one:

allocate new pool;
write nonrandom data to surrounding memory;
lock randomness state (EnterCriticalSection()

under Win32);
copy data from old pool to new pool;
unlock randomness state

(LeaveCriticalSection() under Win32);
zeroise old pool;

This assumes that operations which access the
randomness pool are atomic and that no portion of the
code will try to retain a pointer to the pool between
pool accesses.

We can also use this background thread or process to
try to prevent the randomness pool from being swapped
to disk. The reason this is necessary is that the
techniques suggested previously for locking memory
aren’t completely reliable: mlock() can only be

called by the superuser, VirtualLock() doesn’t do
anything under Windows’95, and even under Windows
NT where it is actually implemented, it doesn’t do
what the documentation says. Instead of making the
memory completely non-swappable, it is only kept non-
swappable as long as at least one thread in the process
which owns the memory is active. Once all threads are
pre-empted, the memory can be swapped to disk just
like non-“locked” memory [26]. Although the precise
behaviour of VirtualLock() isn’t known, it
appears that it acts as a form of advisory lock which
tells the operating system to keep the pages resident for
as long as possible before swapping them out.

Since the correct functioning of the memory-locking
facilities provided by the system can’t be relied upon,
we need to provide an alternative method to try to
retain the pages in memory. The easiest way to do this
is to use the background thread which is being used to
relocate the pool to continually touch the pages, thus
ensuring they are kept at the top of the swappers LRU
queue. We do this by decreasing the sleep time of the
thread so that it runs more often, and keeping track of
how many times we have run so that we only relocate
the pool as often as the previous, less-frequently-active
thread did:

touch randomness pool;
if(time to move the pool)
 {
 move the pool;
 reset timer;
 }
sleep;

This is especially important when the process using the
pool is idle over extended periods of time, since pages
owned by other processes will be given preference over
those of the process owning the pool. Although the
pages can still be swapped when the system is under
heavy load, the constant touching of the pages makes it
less likely that this swapping will occur under normal
conditions.

8. Conclusion

The random number generator described in this paper
has proven to be relatively portable across different
systems (a generator similar to the one described here
has been implemented in the cryptlib encryption library
[27] which has been in use on a wide variety of systems
for around 2 years), provides a good source of
practically strong random data on most systems, and
can be set up to function independently of special
hardware or the need for user or programmer input,
which is often not available.

Acknowledgments

The author would like to thank Peter Fenwick, John
Kelsey, Colin Plumb, Robert Rothenburg Walking-
Owl, and the referees for their advice and input during
the preparation of this paper.

References

[1] “Cryptographic Randomness from Air Turbulence
in Disk Drives”, Don Davis, Ross Ihaka, and
Philip Fenstermacher, Proceedings of Crypto ‘94,
Springer-Verlag Lecture Notes in Computer
Science, No.839, 1994.

[2] “Truly Random Numbers”, Colin Plumb,
Dr.Dobbs Journal, November 1994, p.113.

[3] “PGP Source Code and Internals”, Philip
Zimmermann, MIT Press, 1995.

[4] “Random noise from disk drives”, Rich Salz,
posting to cypherpunks mailing list, message-ID
9601230431.AA06742@sulphur.osf.org
, 22 January 1996.

[5] “My favourite random-numbers-in-software
package (unix)”, Matt Blaze, posting to
cypherpunks mailing list, message-ID
199509301946.PAA15565@crypto.com ,
30 September 1995.

[6] “Using and Creating Cryptographic-Quality
Random Numbers”, John Callas,
http://www.merrymeet.com/-
jon/usingrandom.html , 3 June 1996.

[7] “Suggestions for random number generation in
software”, Tim Matthews, RSA Data Security
Engineering Report, 15 December 1995.

[8] “Applied Cryptography (Second Edition)”, Bruce
Schneier, John Wiley and Sons, 1996.

[9] “Cryptographic Random Numbers”, IEEE P1363
Working Draft, Appendix G, 6 February 1997.

[10] “Randomness Recommendations for Security”,
Donald Eastlake, Stephen Crocker, and Jeffrey
Schiller, RFC 1750, December 1994.

[11] “The Art of Computer Programming: Volume 2,
Seminumerical Algorithms”, Donald Knuth,
Addison-Wesley, 1981.

[12] “Handbook of Applied Cryptography”, Alfred
Menezes, Paul van Oorschot, and Scott Vanstone,
CRC Press, 1996.

[13] “Foundations of Cryptography — Fragments of a

Book”, Oded Goldreich, February 1995,
http://theory.lcs.mit.edu/-
~oded/frag.html .

[14] “Netscape’s Internet Software Contains Flaw That
Jeopardizes Security of Data”, Jared Sandberg,
The Wall Street Journal, 18 September 1995.

[15] “Randomness and the Netscape Browser”, Ian
Goldberg and David Wagner, Dr.Dobbs Journal,
January 1996.

[16] “Breakable session keys in Kerberos v4”, Nelson
Minar, posting to the cypherpunks mailing list,
message-ID 199602200828.BAA21074@-
nelson.santafe.edu , 20 February 1996.

[17] “X Authentication Vulnerability”, CERT Vendor-
Initiated Bulletin VB-95:08, 2 November 1995.

[18] “Proper Initialisation for the BSAFE Random
Number Generator”, Robert Baldwin, RSA
Laboratories’ Bulletin, 25 January 1996.

[19] “How to Attack a PRNG”, John Kelsey, Bruce
Schneier, David Wagner, and Chris Hall, to
appear.

[20] “SFS — Secure FileSystem”, Peter Gutmann,
http://www.cs.auckland.ac.nz/-
~pgut001/sfs.html .

[21] /dev/random driver source code (random.c),
Theodore T’so, 24 April 1996.

[22] “American National Standard for Financial
Institution Key Management (Wholesale)”,
American Bankers Association, 1985.

[23] “Practical Dictionary/Arithmetic Data
Compression Synthesis”, Peter Gutmann, MSc
thesis, University of Auckland, 1992.

[24] “A Universal Statistical Test for Random Bit
Generators”, Ueli Maurer, Proceedings of Crypto
‘90, Springer-Verlag Lecture Notes in Computer
Science, No.537, 1991, p.409.

[25] “Secure deletion of data from magnetic and solid-
state memory”, Peter Gutmann, Sixth Usenix
Security Symposium proceedings, July 22-25,
1996, San Jose, California.

[26] “Advanced Windows (third edition)”, Jeffrey
Richter, Microsoft Press, 1997.

[27] “cryptlib Free Encryption Library”, Peter
Gutmann,
http://www.cs.auckland.ac.nz/-

~pgut001/cryptlib/ .

