Centralized System Monitoring With Swatch

Stephen E. Hansen and E. Todd Atkins

Electrical Engineering Computer Facility
Stanford University
hansen@Sierra.Stanford EDU
atkins@EE-CF.Stanford EDU

Abstract

With the exception of login failures, few systems log the kinds of informa-
tion that might indicate a security related probe or attack. Even when this informa-
tion is logged, it is often hidden away in places that are either not monitored
regularly or are susceptible to deletion or modification by a successful intruder. To
address the problem, our approach begins with the modification of certain system
programs to enhance their logging capabilities. A system administrator must often
monitor several, perhaps dozens, of systems. Our approach calls for the logging
facilities on each of these systems to be configured in such a way as to send a copy
of the security and other critical system information to a secure, central logging
host system. As one might expect, this central log can see as much as a megabyte
of data a day. To keep a system administrator from being overwhelmed by a large
quantity of data we have developed an easily configurable log file filter/monitor,
called swatch. Swatch monitors log files and acts to filter out unwanted data and
take one or more user specified actions (ring bell, send mail, execute a script, etc.)
based upon pattemns in the log.

1.0 The Problem

It is an unfortunate fact that most Unix® systems, as delivered, do little to ease the job of the
security conscious system administrator. Even twenty after its introduction years it is still common
to find Unix systems shipped with default configurations that allow easy access to an intruder or
that have insecure permissions on critical files. A good system administrator will spend the time
and effort needed to find and fix these problems as part of the installation process. But the job of
system security doesn’t stop there, since security, like every other part of a system administrator’s
job, is really a never ending task.

What every good system administrator tries to do is keep an eye on the health of each of the
systems in his or her care. The health of a system should be reflected in the log messages generated
by the kernel and the various daemons and utilities. These messages should also include informa-
tion relevant to system security. With most systems we have seen, the system’s log information is
not generally made available to the system administrator in a way that is either secure or conve-
nient. The Unix syslog facility, regardless of the original intent, has traditionally been used as
more of a debugging aid than as a tool for system management. The assumption seems to be that
system log files are only to be consulted after the fact, to help determine what happened rather than
what is happening or what is about to happen.

USENIX Association UNIX Security Symposium

105

U
d
i

All modern Unix systems do some logging. This usually consists of memory, disk, or tape
errors, jammed ethernet notices, and the like. With the exception of login failures, few systems log
the kinds of information that might indicate a security related probe or attack. Even when this
information is logged, it is often hidden away in places that are either not monitored regularly or
are susceptible to deletion or modification by a successful intruder.

2.0 Improved Security Logging

For purposes of monitoring systems security, standard Unix logging features prove to be
inadequate and/or inconvenient. To address this problem, our approach begins with the modifica-
tion of certain system utilities to enhance the reporting done, particularly with regard to possible
security related activities. Table 1 lists some of the utilities modified and the changes made to their
logging capabilities.

TABLE 1. List of logging enhancements made to several system programs

Program Logging Enhancements

fingerd: Reports the originating host and the finger target(s) to syslog.

frd: Reports originating host to syslog. Reports file transfers to a local log
file along with the local user name and, if the user is “anonymous”, the
password.

ruserok: Used by rshd and login when called by rlogind. Disallows and reports to
syslog any attempts to use a /etc/hosts.equiv or ~/.rhosts file that con-
tains a ‘+.

rshd: Reports the access status, local user, remote user and host, and the com-
mand issued to a local log file.

login: Number of tries reduced to three. Reports to syslog on INCOMPLETE

LOGIN ATTEMPT", ‘REPEATED LOGIN ATTEMPT’, and ‘ROOT
LOGIN REFUSED’. Includes the account names attempted and the
originating host.

At our site we were fortunate enough to have access to the vendor’s source code for all our
utilities. While this is not possible for everyone, each of the utilities listed in Table 1 are available
from various network archive sites. In a few cases it might be preferable to use the public version
instead so as to improve portability. Another source of security related information is from the tcp
wrapper code written by Weitse Venema[1]. Besides providing access control for those network
services run out of inetd, it generates information via syslog about the connections it mediates.

One important utility not listed in Table 1 is sendmail. Even without modification sendmail
can be configured to generate a plethora of status information. Unfortunately, sendmail isn’t very
discriminating in what it reports, assigning every status message the same priority. Modifying
sendmail to assign appropriate priority levels to its status messages is on our to-do list.

3.0 Centralized Logging with syslog

When we have added to the logging capabilities of the various utilities, we have, for the most
part, made use of the syslog1 library functions. Besides providing a consistent and relatively stan-

106

UNIX Security Symposium USENIX Association

dard logging interface, syslog directs logging messages to different files or hosts based upon the
source of the message and its level of importance.

The way our facility is set up, each server system keeps its own copy of most of the syslog
messages in the file /var/log/syslog. Syslog files are rotated on a daily basis, compressed, and kept
online for about a week. Log messages that might reflect a system’s health or potential security
problems are also forwarded to a central log host, the logmaster. In practice this means that almost
everything except sendmail status messages are sent to the logmaster. Leaving the sendmail status
messages on the servers cuts down on the network traffic due to syslog without significantly
affecting our ability to monitor. On our systems the sendmail messages can account for as much as
90% of a host’s log messages, although 50% is more common. Appendix A shows the syslog
configuration file (Jetc/syslog.conf) for a host being monitored. The last three lines in the file are
responsible for sending data to the logmaster.

Copying the syslog information to a central site is done for several reasons. First, it provides
security and redundancy. If the log files on the originating host are destroyed or modified, either
accidently or by malicious intent, those on the hopefully more secure central site will be left intact.
Second, it simplifies the monitoring of all the log information. By collecting information from a
number of systems in a single ordered file, problems may be found that would be missed if viewed
in isolation. For example, a single failed log in attempt on one system might be attributed to a typ-
ing error. The same failed log in attempt occurring on several systems in sequence could indicate
an intruder trying to break in. Collecting information from several different system utilities as well
as from more than one system can provide information indicating a pattern of attack. Several fin-
gers followed by a failed login or rsh command is a common pattern revealed by this type of mon-
itoring. Logging the target of the finger requests has been extremely useful in exposing undue
interest or, in the case of multihopped fingers, attempts to hide a cracker’s staging area.

4.0 Winnowing the Chaff — An Introduction to Swatch

Our facility manages about a dozen file and CPU servers which have over 50 client machines.
The server systems receive an enormous amount of log information through the syslog daemon.
Even after filtering out the sendmail information messages the logmaster sees about a megabyte of
syslog messages per day. As one can imagine, sorting through that much information on a daily
basis can be very time consuming. We also found that some important log entries tend to get lost
among all of the less important entries when one examines the log files.

One solution to this problem would be to search for certain types of information, which can
be done by using the egrep program with some complex command line arguments. Even with this
solution one still has the problem of having to constantly monitor the output so that the urgent
information is seen when it comes in. Some of this information needs to be acted on soon after it is
received. For example, if the kemel on a file server machine dies then somebody needs to be
alerted so the machine can be brought back up as quickly as possible. For us the most desirable
solution was to have a more complex program weed through the log and do a few simple tasks
when certain types of information were found. We decided to call this program swatch, which
stands for Simple WATCHer.

1. For those systems with older 4.2BSD style syslogs that do not support non-local logging, a 4.3BSD version is also
available in the BSD sources on several of the net archives (i.e. ftp.uu.net or gatekeeper.dec.com).

USENIX Association UNIX Security Symposium

4.1 Swatch Design Goals

There were four goals that were set when designing swatch.

1. Configure the program in such a way that it would only take a few minutes to teach any systems
administrator how to use it.

2. Have a simple set of actions that could be performed after receiving certain types of informa-
tion.

3. Allow the users to define their own actions if they like, and allow them to use parts of the input
as arguments to the action.

4. Once swatch is running it should be reconfigurable on demand or after a specified interval with-
out having to stop and restart the program by hand.

4.2 Using Swatch

Swatch may be run three different ways: make a single pass through a file; look at messages
that are being appended to a file as that file is being updated; and examine the standard output of a
program. A complete description of swatch’s command line options can be found in Appendix B.

Swatch’s most powerful function is in examining information as it is being appended to a log file.
We use swatch to look at messages as they are being added to the syslog file, alerting us immedi-
ately to serious system problems as they occur. Using a tail(1) of /var/log/syslog is the default
action for swatch but another file can be “tailed” by using the -t command line option as in

swatch -t /var/log/authlog

Receiving timely notification of certain types of probes or attacks often enables us to find out
which users are logged on to the originating system. Finding out such information can help iden-
tify hackers or compromised accounts.

Using the -f option, swatch can be made to read in and process a file from beginning to end. This
single pass feature can be used to examine old syslog or other text files.

swatch -f /var/log/syslog.0

This option can be used to catch up on the contents of log files after being away from the computer
for a while (like after vacationing in Hawaii for a week). This feature is often used to filter through
several megabytes of old syslog files to look for evidence of suspected system and network related
problems as well as system probes and break-in attempts.

Having swatch examine the output from a program is also useful. For example, one might
want to sort through process accounting or other audit information that is not kept in a plain text
file and requires special processing to read.

swatch -c swatchrc.acct -p lastcomm

108 UNIX Security Symposium USENIX Association

4.3 Implementation

Swatch relies heavily on expression matching. For this reason the Perl[2] language was used
because of its Awk and C like characteristics, as well as its increasing familiarity among systems
administrators.

Swatch has three basic parts: a configuration file, a library of actions, and a controlling pro-
gram.

4.3.1 Configuration File

Each non-comment line in a swatch configuration file consists of two tab separated fields: a
pattern expression and a set of actions to be done if the expression is matched. A line’s pattern field
consists of one or more comma-separated expressions while the action field may contain one or
more comma-separated actions.

/pattern/[/patterny/,...] action[,action,...]

The patterns must be regular expressions which Perl will accept, which are very similar to
those used by the Unix egrep program. Each string to be matched is compared, in order, with the
expressions in the configuration file and if a match is found the corresponding actions are taken. A
copy of the Unix manual page for swatch’s configuration file is listed in Appendix C.

Lines beginning with the ‘#’ character are treated as comment lines and are ignored.

4.3,2 Actions

Swatch understands the following actions: echo, bell, ignore, write, mail, pipe, and exec.

» The echo action causes the line to be echoed to swatch’s controlling terminal. An optional mode
argument causes the text to be shown in normal, bold, underscore, blinking, or inverse mode.
Normal mode is the default.

* The bell action sends a bell signal (*G) to the controlling terminal. An optional argument spec-
ifies the number of bell signals to send, with one being the default.

+ The ignore action causes swatch to ignore the current line of input and proceed to the next one.
The ignore action is mainly useful early on in the configuration file to filter out specific unim-
portant information that would otherwise match a more general expression found later in the
configuration file.

» The write and mail actions can be used to send a copy of the line to a user list via the write and
mail commands.

+ The pipe and exec actions were added to provide some flexibility. The pipe action allows the
user to use matched lines as input to a particular command on the system. The exec action
allows the user to run a command on the system with the option of using selected fields from
the matched line as arguments for the command. A $N will be replaced by the Nt field in the
matched line. A $0 or a $* will be replaced by the entire line.

See Appendix C for more details on the actions and their arguments.

USENIX Association UNIX Security Symposium 109

4.3.3 Controlling Program

The controlling program is swatch, but the real work is done by a watcher process. Swatch’s
first task is to translate the configuration file into a Perl script. After creating the watcher script,
swatch forks and executes it as the watcher process. The watcher script also contains a signal han-
dler that is called after receiving a terminate signal, SIGTERM, which attempts to clean up and then
exit.

5.0 Examples

We have previously described several ways in which swatch can be used. In this section we
will illustrate the two most common ways in which swatch is used at out facility. First, we have a
swatch job running continuously looking for failed login attempts and system crashes and reboots.
The swatch configuration file we use for this purpose is shown in Figure 1. A portion of swatch’s
output generated by using this configuration file is shown in Figure 2.

Second it’s common for each system administrator to have a customized swatch configuration
file in his or her home directory, ~/.swatchre, that contains pattern/action pairs that are personally
interesting, or that pertain to his or her system responsibilities. A swatch job using this configura-
tion file is generally run in a window while the administrator is logged in. The personal swatch
configuration file of one of the authors is shown in Figure 3, while Figure 4 shows an hour’s output
generated by this script.

5.1 Example 1. Constant monitoring for high priority events.

This swatch script runs continuously looking for high priority events, such as failed login
attempts that might indicate an attempted break-in, and system panics and reboots. The first non-
comment line looks for a /bin/login syslog message of the form

Jul 3013:49:47 Sierra login: REPEATED LOGIN FAILURES ON ttyq0 FROM cert .cert .org:
root, anonymou, anonymou

The string REPEATED matches the pattern and swatch echoes the line and three bells to stdout,
mails a copy of the line to the user who is running swatch, and then executes a script to finger the
host that initiated the failed login.

The next pattern looks for messages from the machine room temperature monitor. The rest of
the pattern/action lines in the configuration file look for panic, halt, or reboot messages from vari-
ous systems. If any of these patterns are matched swatck will take the same actions as for the
invalid login. However, instead of a backfinger script it will execute a script to call a pager with a
code indicating the system and message type. Figure 2 shows the echoed output from 24 hours of
running swatch with this configuration file.

110 UNIX Security Symposium USENIX Association

FIGURE 1. Swatch configuration file for continuous monitoring

#

Swatch configuration file for constant monitoring

#

Bad login attempts

/INVALID |REPEATED | INCOMPLETE/ echo,bell=3,exec="/eecf/adm/bin/badloginfinger $0”

Machine room temperature
/WizMON/ echo=inverse,bell=3

Systemcrashes and halts
/ (Gordon-Biersch|Anchor) /&&/ (panicihalt) /echo,bell, mall, exec="call pager 3667615

0911~

/(isl|coffee)/&&/ (panicihalt)/ echo,bell,mail,exec="call pager 3667615 1911”
/Sierra/&&/ (paniclhalt)/ echo,bell,mail, exec="call_pager 3667615 2911”

/ (gloworm|stjames) /&&/ (paniclhalt)/ echo,bell, mail, exec="call pager 3667615
3911”

/ (osiris|shemesh) /&&/ (paniclhalt)/ echo,bell,mail, exec="call_pager 3667615
4911~

/ (panic|halt)/ echo,bell, mail

System reboots

/ (gloworm|stjames) /&&/Sun0OS Release/ echo,bell,mail, exec="call_pager 3667615
3411”

/(osiris|shemesh)/&&/Sun0S Release/ echo,bell, mail, exec="call_pager 3667615
4411”

/ (Gordon-Biersch|Anchor) /&&/Sun0OS Release/ echo,bell, mail, exec="call pager
3667615 0411”

/Sierra/&&/Sun0S Release/ echo,bell,mail, exec="call pager 3667615
2411”

/(isllcoffee) /&&/SunOS Release/ echo,bell,mail,exec="call_pager 3667615 1411”
/Sun0S Release/ echo,bell,mail

FIGURE 2. Output from swatch running the configuration file in Figure 1 over a 24 hour period

Caught a SIGHUP -- restarting
Jul 3013:49:03 Sierra login: REPEATED LOGIN FAILURES ON ttyg0 FROM sn0l.sncc.lsu.edu:

quest, guest, guest

Jul 3013:49:47 Sierra login: REPEATED LOGIN FAILURES ON ttyqg0 FROM sn0l.sncc.lsu.edu:
root, anonymou, anonymou

Jul 3013:54:57 Sierra login: REPEATED LOGIN FAILURES ON ttype FROM McCulloughaA+70:
daniels’, aniels, danielss

Jul 3015:15:32 0osiris login: REPEATED LOGIN FAILURES ON ttyp5 FROMEpi: berg, vt100,
~G HE

Caught a SIGINT -- shutting down

5.2 Example 2. Individualized swatch configuration file

Individuals may design customized swatch configuration files that look for patterns and take
appropriate actions depending on their personal preferences. The configuration file shown in Fig-
ure 3 is run in a workstation window whenever the system administrator is logged in. The output is
generally ignored or only occasionally glanced at unless the bell alerts him or her to a message of
interest. Note that the tftpd pattern/action lines in Figure 3 ignore #fip requests from valid hosts and
alert the user to invalid requests.

USENIX Association UNIX Security Symposium

111

FIGURE 3. Personalized swatch configuration file

#
Personal Swatch configuration file
#

Alert me of bad login attempts and find out who is on that system
/INVALID|REPEATED | INCOMPLETE/ echo=underline,bell=3

Important programerrors

/LOGIN/ echo=inverse,bell=3
/passwd/ echo=bold,bell=3
/ruserok/ echo=bold,bell=3

Ignore this stuff
/sendmail/, /nntp/, /xntpintpd/, /faxspooler/ ignore

Report unusual tftp info
/tftpd.* (ncd|kfps|normal exit)/ ignore
/tftpd/ echo,bell=3

Kernel problems

/ (panic|halt [Sun0OS Release) / echo=blink,bell
/file system full/ echo=bold, bell=3
/vmunix.* (at|on)/ . ignore

/vmunix/ echo,bell

i # fingers of root, guest, ormyself, or coming froma terminal server (tip) are

interesting.

/fingerd.* (root| [Tt]ip|guest)/ echo,bell=3
/atkins/ echo=inverse,bell=3
/su:z/ echo=bold

echo whatever is left.
/-*/ echo

FIGURE 4. Output from swatch using the configuration file in Figure 3 over the course of an hour

Jul 3014:01:58 Sierra fingerd[1179]: sunrise.Stanford.EDU (36.93.0.20.3842) ->
“sheppard”

Jul 30 14:02:17 isl fingerd[349]: alice.Stanford.EDU (36.12.0.202.3476) -> “ju”

Jul 3014:02:21 Sierra fingerd[1194]: alice.Stanford.EDU (36.12.0.202.3477) ->
“chung”

Jul 3014:06:42 farm.Stanford.EDU fingerd[9212]: elaine8.Stanford.EDU
(36.21.0.125.2192) ->“lan”

Jul 3014:07:43 Sierra fingerd[1452]: ee.technion.ac.il (132.68.48.3.2223) -> “boaz”
Jul 3014:09:32 java.5tanford.EDU last message repeated 2 times

Jul 3014:09:57 Sierra login: REPEATED I,OGIN FATLURES ON ttype FROMMcCul loughA+70:
Jul 3014:10:07 Gordon-Biersch fingerd[15264]: EE~CF (36.2.0.107.1302) => ™%
Jul3014:10:36 Sierra fingerd[1570]: unstable.Stanford.EDU (36.59.0.12.9521) ->
“ruff”

Jul 3014:14:14 Sierra fingerd[1660]: leland.Stanford.EDU (36.21.0.69.3474) ->
“pohalski”

Jul 3014:24:34 Sierrafingerd[1853]: N2.SP.CS.CMU.EDU (128.2.250.82.3480) -> “cclee”
Jul 3014:25:07 Sierra fingerd[1857]: ee.technion.ac.il (132.68.48.3.2229) -> “boaz”
Jul 3014:26:16 isl fingerd[1384]: elaine22.Stanford.EDU (36.21.0.210.1480) ~> **
Jul3014:31:161isl fingerd[2006]: elaine22.Stanford.EDU (36.21.0.210.1482) ->
“abbas”

Jul 30 14:31:39 eindhoven.Stanford.EDU fingerd[25244]: elaine22.Stanford.EDU
(36.21.0.210.1481) -> ™™

112 UNIX Security Symposium USENIX Association

Jul 3014:34:26 isl fingerd[2200] : Sunburn.Stanford.EDU (36.8.0.178.1376) ~>
“stokesberry”

Jul 3014:34:37 1s1 fingerd[2204] : Sunburn.Stanford.EDU (36.8.0.178.1377) -> “eric”
Jul 3014:35:21 isl fingerd{2217]: Sunburn.Stanford.EDU (36.8.0.178.1380) -> “eric”
Jul 30 14:38:13 isl su: ‘suroot’ succeeded for craigon /dev/ttyq3

Jul 3014:40:05 151 su: ‘sumarcg’ succeeded for jackk on /dev/ttys0

Jul 30 14:40:07 Sierra fingerd[2323]): ee.technion.ac.1il (132.68.48.3.2236) ~> “boaz”
Jul 3014:40:13 isl su: ‘suroot’ succeeded for jackk on /dev/ttys0

Jul 3014:40:47 isl fingerd[2479]: elaine22.Stanford.EDU (36.21.0.210.1488) ->
“bednarz”

Jul 3014:41:04 isl fingerd[2492] : Sunburn.Stanford.EDU (36.8.0.178.1413) -> “baas”
Jul 30 14:41:10 coffee su: *suroot’ failed for craigon /dev/ttyp3

Jul 3014:41:14 coffee su: ‘suroot’ succeeded for craigon /dev/ttyp3

Jul 3014:41:191isl fingerd[2499]: Sunburn.Stanford.EDU (36.8.0.178.1415) -> “bevan”
Jul 3014:42:34 Sierra fingerd{2387] : macro.Stanford.EDU (36.59.0.131.1301) —>
“gdmiller”

Jul 3014:53:22 isl fingerd[3182]: rascals (36.60.0.110.2661) -> *hoffmann”

Jul 30 14:55:32 Gordon-Biersch su: ‘sufroot’ falled for atkins on /dev/ttypa

Jul 30 14:55:36 Gordon-Biersch su: ‘suroot’ succeeded for atkins on /dev/ttypa

Jul 3014:56:22 isl ftpd[3313]: connection fromultrasound.Stanford.EDU at Thu Jul 30
14:56:22 1992

Jul 30 14:57:37 osiris vmunix: /eecf: file system full

Jul 30 14:57:37 osiris vimunix: /eecf: file system full

Jul 30 14:58:12 isl su: ‘suroot’ succeeded for atkins on /dev/ttyt9

Jul 30 14:59:20 igl yppasswdd[77] : equitz: password incorrect

Jul 3015:00:27 is1 yppasswdd[77] : siu: password incorrect

Jul 3015:02:17 isl fingerd([3800): alice.Stanford.EDU (36.12.0.202.3484) -> “ju”

6.0 Other useful programs

We have written a few scripts which we have found useful when using the swarch package.

6.1 Reswatch

Reswatch was written to run out of cron periodically. It finds all instances of swatch that the
user is running and sends a SIGHUP. This is useful if swatch is getting its input from an active log
file, like syslog, that is moved and rendered inactive. Since we want to start getting our input from
the new active log file, the old file handle needs to be closed and the new one opened. This effect is
achieved when swatch aborts one script and starts a new one after receiving a SIGHUP.

6.2 Badloginfinger

Badloginfinger is used to finger the host that generated an unsuccessful login attempt. Output
from this command is placed in its own log file. This is most useful when culprits fail to log into a
system using an unauthorized account, like root, guest, or anonymous. Some administrators might
be surprised at how often this happens on their systems.

6.3 CallPager

For those who must carry a pager, this is very useful for receiving urgent information, such as
serious system failures or possible security breaches. This is a simple script which uses the Unix
tip command to call a pager through a modem and leave a code number to indicate the type of
message detected. Users can customize the codes so that they can tell exactly what type of mes-
sage was detected, and the system it came from.

USENIX Association UNIX Security Symposium

113

7.0 Conclusions

Over the past six months swatch has proven to be a valuable tool for monitoring the health of
a large collection of workstations and servers. On several occasions we have been able to detect
intruders probing our systems who would probably have been missed without centralized logging
and swatch. On two occasions it prevented system meltdown when air conditioning units failed
late at night. Its value has increased as we have gathered more experience in optimizing the swatch
configuration file entries.

In the near term, we see a need to improve the logging capabilities of additional system utili-
ties (i.e. sendmail, nip, ypserv, xdm). We plan to gather suggestion from other sites using the
package before making substantial changes to swatch itself,

8.0 Availability

Swatch source and documentation along with its companion scripts are available via anony-
mous ftp from Sierra.Stanford. EDU, [36.2.0.98], in the pub/sources directory. Listserver access is
available from listserver@ Sierra.Stanford. EDU.

9.0 References.

1. 'W. Venema. “TCP WRAPPER, A Tool for Network Monitoring, Access Control, and for
Setting Up Booby Traps”, Proc. 1992 USENIX Security Symposium, USENIX Association,
Sept. 1992,

2. L.Wall and R. Schwatz. “Programming Perl”, O’Reilly and Associates, Sebastopol, CA.
1991.

114 UNIX Security Symposium USENIX Association

Appendix A. A Syslog Configuration File.

syslogconfiguration file.

#

This file is processed by m4 sobe careful to quote (') names
that matchm4 reserved words. Also, within ifdef’s, arguments
containing commas must be quoted.

#

Note: Have to exclude user frommost lines so that user.alert
and user.emerg are not included, because old sendmails

will generate them for debugging information. If you

have no 4.2BSD based systems doing network logging, you

can remove all the special cases for “user” logging.

#

*,err;kern.debug;auth.notice;user.none /dev/console

* . err;kern.debug;mail.crit;user.none /var/adm/messages
lpr.debug /var/adm/lpd-errs

Youmay want to add operator to the following if your operator
#isatraditional Unix style operator.
*.alert;kern.err;daemon.err root

*.emerg;user.none *

for loghost machines, to have authentication messages (su, login, etc.)
logged to a file, un-comment out the following line and adjust the file name
as appropriate.

#

auth.notice /var/log/authlog
auth.notice /var/log/syslog

daemon.info /var/log/syslog

mail.debug /var/log/syslog

kern.debug /var/log/syslog

following line for compatibility with old sendmails. theywill send

messages withno facility code, which will be turned into “user” messages

by the local syslogdaemon. only the "loghost” machine needs the following

line, to cause these old sendmail logmessages to be logged in the

#mail syslog file.

#

user.alert /var/log/syslog

#
non-loghost machines will use the following lines to cause “user”
logmessages to be logged locally.

#

user.err /dev/console
user.err /var/adm/messages
user.err /var/log/syslog
user.alert /var/log/syslog

Send most everything to the LogMaster
.emerg;.alert;*.crit;*.err;*.warning;*.notice;*.info;mail .none
@logmaster

kern.debug;mail.crit;mail.err

@logmaster

USENIX Association UNIX Security Symposium

115

Appendix B. Unix man page for swatch

SWATCH(8) MAINTENANCE COMMANDS SWATCH(8)

NAME
swatch - simple watcher

SYNOPSIS
swatch [-c config_file] [-r restart_time]
[[-f file_ to_examine | [-p program_to_pipe_from]|[-t file_to_tail]}

DESCRIPTION
Swatch is designed to monitor system activity. Swatch requires a configuration file which contains pattern(s)
to look for and action(s) to dowhen each pattern is found.

OPTIONS
- filename Use filename as the configuration file.

T restart_time Automatically restart at specified time. Restart_time can be in any of the following
formats:

+hh:mm
Restart after the specified time where Ak is hours and 7um is minutes.

hh:mm[am|pm]
Restart at the specified time.

You may specify only one of the following options:

f filename Use filename as the file to examine. Swatch will do a single pass through the
named file.

-p program_name Examine input piped in from the program_name.

-t filename Examine lines of text as they are added to filename.

If swatch is called with no options, it is the same as typing the command line
swatch -c ~/.swatchrc -t fvar/log/syslog

SEE ALSO
swatch(5), signal(3)

FILES
[var/tmp/..swatch..PID Temporary execution file

AUTHOR
E. Todd Atkins (Todd_Atkins@EE-CF.Stanford. EDU)
EE Computer Facility
Stanford University

NOTES

Upon receiving a ALRM or HUP signal swatch will re-read the configuration fileand restart. Swatch will
terminate gracefully when it receives a QUIT, TERM, or INT signal.

Sun Release 4.1 Last change: 30 July 1992 1

116

UNIX Security Symposium USENIX Association

Appendix C. Unix man page for swatch configuration files

SWATCH(5) FILE FORMATS SWATCH(S)
NAME
swatchrc - configuration file for the simple watcher swatch(8)
SYNOPSIS
~/swatchre
DESCRIPTION

This configuration file is used by the swatch(8) program to determine what types of expression patterns to
look for and what type of action(s) should be taken when a pattern is matched.

The file contains two TAB separated fields:
fpattern/[,/pattern/,...] action[,action,...]

A pattern must be a regular expression which per}(1) will accept, which is very similar to the regular
expressions which egrep(1) accepts.

The following actions are acceptable:

echo[=mode] Echo the matched line. The text mode may be normal, bold, underscore, blink,
inverse. Some modes may not work on some terminals. Normal is the default.

bell[=N] Echo the matched line, and send a bell N times (default = 1).

exec=command Execute command. The command may contain variables which are substituted

with fields from the matched line. A $N will be replaced by the Ntk field in the
line. A $0 or $* will be replaced by the entire line.

ignore Ignore the matched line.

mail[=address:address:...] Send mail to address(es) containing the matched lines as they appear (default
address is the user who is running the program).

pipe=command Pipe matched lines into command.
write[=user:user:...] Use write(1) to send matched lines to user(s).

SEE ALSO
swatch(8), perl(1)

AUTHOR
E. Todd Atkins (Todd_Atkins@EE-CF.Stanford EDU)
EE Computer Facility
Stanford University

Sun Release 4.1 Last change: 30 July 1992 1

USENIX Association UNIX Security Symposium

117

