
USENIX Association

Proceedings of the
10th USENIX Security

Symposium

Washington, D.C., USA
August 13–17, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Architecting the Lumeta Firewall Analyzer

Avishai Wool
Lumeta Corporation,

220 Davidson Ave, Somerset NJ 08873
E-mail: yash@acm.org.

Abstract

Practically every corporation that is connected to the In-
ternet has at least one firewall, and often many more.
However, the protection that these firewalls provide
is only as good as the policy they are configured to
implement. Therefore, testing, auditing, or reverse-
engineering existing firewall configurations should be
important components of every corporation’s network
security practice. Unfortunately, this is easier said than
done. Firewall configuration files are written in no-
toriously hard to read languages, using vendor-specific
GUIs. A tool that is sorely missing in the arsenal of fire-
wall administrators and auditors is one that will allow
them to analyze the policy on a firewall.

The first passive, analytical, firewall analysis system
was the Fang prototype system [MWZ00]. This was
the starting point for the new Lumeta Firewall Analyzer
(LFA) system. LFA improves upon Fang in many ways.
The most significant improvements are that human in-
teraction is limited to providing the firewall configura-
tion, and that LFA automatically issues the “interesting”
queries and displays the outputs of all of them, in a way
that highlights the risks without cluttering the high-level
view. This solves a major usability problem we found
with Fang, namely, that users do not know which queries
to issue.

The input to the LFA consists of the firewall’s routing
table, and the firewall’s configuration files. The LFA
parses these various low-level, vendor-specific, files, and
simulates the firewall’s behavior against all the packets
it could possibly receive. The simulation is done com-
pletely offline, without sending any packets. The admin-
istrator gets a comprehensive report showing which types
of traffic the firewall allows to enter from the Internet into
the customer’s intranet and which types of traffic are al-
lowed out of the intranet. The LFA’s report is presented
as a set of explicit web pages, which are rich with links

and cross references to further detail (allowing for easy
drill-down). This paper describes the design and archi-
tecture of the LFA.

1 Introduction

1.1 Background

Firewalls are the cornerstones of corporate intranet secu-
rity. Once a firewall is acquired, a security/systems ad-
ministrator has to configure and manage it to realize an
appropriate security policy for the particular needs of the
company. This is a crucial task; quoting [RGR97]: “The
single most important factor of your firewall’s security is
how you configure it”.

Even understanding the deployed firewall policy can be
a daunting task. Administrators today have no easy way
of answering questions such as “can I telnet from here
to there?”, or “from which machines can our DMZ be
reached, and with which services?”, or “what will be the
effect of adding this rule to the firewall?”. These are ba-
sic questions that administrators need to answer regularly
in order to perform their jobs, and sometimes more im-
portantly, in order to explain the policy and its conse-
quences to their management. There are several reasons
why this task is difficult, for instance:

(i) Firewall configuration languages tend to be arcane,
very low level, and highly vendor specific.

(ii) Vendor-supplied GUIs require their users to click
through several windows in order to fully understand
even a single rule: at a minimum, the user needs to check
the IP addresses of the source and destination fields, and
the protocols and ports underlying the service field.

(iii) Firewall rule-bases are sensitive to rule order. Sev-
eral rules may match a particular packet, and usually the
first matching rule is applied – so changing the rule order,



or inserting a correct rule in the wrong place, may lead
to unexpected behavior and possible security breaches.

(iv) Alternating PASS and DROP rules create rule-bases
that have complex interactions between different rules.
What policy such a rule-base is enforcing is hard for hu-
mans to comprehend when there are more than a handful
of rules.

A tool that is sorely missing in the arsenal of firewall ad-
ministrators and auditors is one that will allow them to
analyze, test, debug, or reverse-engineer the policy on a
firewall. Such a tool needs to be exhaustive in its cover-
age, be high level, and be convenient to use. This paper
describes the evolution and architecture of the Lumeta
Firewall Analyzer (LFA), a second generation system
that addresses the analysis needs of firewall administra-
tors, security consultants, and auditors.

1.2 The Fang System

The first passive, analytical, firewall analysis system was
the Fang prototype system [MWZ00]. Fang read all
the vendor-specific configuration files, and built an in-
ternal representation of the implied policy. It provided a
graphical user interface (GUI) for posing queries of the
form “does the policy allow service S from A to B?”.
Fang would then simulate the firewall’s policy against
the query, and display the results back onto the user’s
screen.

Before Fang could be used, it needed to have an instanti-
ated model of the firewall connectivity, which contained
details like how many interfaces the firewall has, which
subnets are connected to each interface, and where the
Internet is situated with respect to the firewall. Therefore,
before querying the firewall policy, a Fang user needed
to write a firewall connectivity description file. The lan-
guage used to describe the firewall connectivity was de-
rived from the Firmato MDL language [BMNW99].

The core of Fang’s query engine was a combination of
a graph algorithm and a rule-base simulator. It took as
input a user query consisting of source and destination
host-groups (arbitrary sets of IP addresses, up to a wild-
card “all possible IP addresses”), and a service group
(up to a wildcard “all possible services”). It would then
simulate the behavior of the firewall’s rule-base on all
the packets described by the query, and compute which
portions of the original query would manage to reach
from source to destination: Perhaps only a subset of the
queried services are allowed, and only between subsets
of the specified source and destination host-groups.

1.3 Contributions

To test Fang’s usability and the value it provided, we col-
lected feedback from beta testers. This feedback raised
issues we needed to address. The new LFA architecture
introduces several new features that address these issues:

� The user does not need to write the firewall con-
nectivity file any more. LFA has a new front-end
module that takes a formatted routing table and au-
tomatically creates the firewall connectivity file.

� Using a GUI as an input mechanism turned out to be
difficult for users. Instead, LFA is now a batch pro-
cess, that simulates the firewall policy against prac-
tically every possible packet.

� A crucial part of the batch processing is the auto-
matic selection of queries. Our choice of queries
needs to ensure comprehensive coverage, to high-
light any risks, and to make sense to users without
overwhelming them with minutiae.

� The LFA output is now formatted as a collection of
web pages (HTML). This format gives us the ability
to present the output at many levels of abstraction
and from multiple viewpoints, allowing easy drill-
down to details without cluttering the high level
view.

� We needed to support more firewall vendors. For
this purpose, LFA now uses an intermediate fire-
wall configuration language, to which we convert
the various vendors’ configurations.

Organization: In Section 2 we describe the components
of the LFA architecture and the design decisions that led
us to this architecture. In Section 3 we discuss some re-
lated work. In Section 4 we provide an annotated exam-
ple of how the LFA works. We conclude in Section 5.

2 The LFA Architecture

The main contribution of the Fang prototype was its core
query engine. The combination of its internal firewall
connectivity model, data structures, and efficient algo-
rithms, demonstrated that it is feasible to analytically
simulate a firewall’s policy offline. However, from the
beta-testers’ feedback we got, it became apparent that
the software architecture needed to be revisited in order



to take the core technology from a prototype into a prod-
uct. In the next sections we describe the problems that
we identified in the Fang prototype, and their solutions
within the LFA.

2.1 Describing the Firewall Connectivity

As we mentioned above, before using Fang the user
needed to write a firewall connectivity description file,
using the Firmato MDL language [BMNW99]. For ev-
ery network interface card (NIC) on the firewall, the fire-
wall connectivity description file contains a list of IP ad-
dress ranges that are located behind that NIC. These lists
are required to be disjoint: each IP address is allowed
to appear only once. This requirement is fundamental
to the simulation process: For every possible packet,
Fang needs to know which firewall interfaces the packet
would cross on its path from source to destination—and
thereby, which firewall rule-bases would be applied to it.

The need to write a firewall connectivity file caused two
problems. First, the user had to learn the syntax and se-
mantics of the MDL language, which takes time and ef-
fort. Second, and more important, the information that is
needed to describe the firewall connectivity is not readily
available to firewall administrators in a suitable format.
This information is typically only encoded in the fire-
wall’s routing table. However, routing table entries are
usually not disjoint: It is common to have many overlap-
ping routing table entries that cover the same IP address.
The semantics of a routing table determine which route
entry is used for a given IP address: it is the most specific
one, i.e., the entry for the smallest subnet that contains
the given IP address is the one that determines the route
to that IP address. The task of accessing the routing ta-
ble, and manually converting it into lists of disjoint IP
address ranges, turned out to be difficult and error prone.

To solve both problems, the Lumeta Firewall Ana-
lyzer introduced a a new front-end module, called
route2hos, that mechanically converts a routing table
into a Firmato MDL firewall connectivity file. All that is
required of the user is to provide the firewall’s routing ta-
ble (in the form of the output of the netstat command
on Unix systems).

The route2hos module uses an engine that imple-
ments the routing table semantics. In other words, for
a given IP address, it is able to determine over which
NIC a packet with this address as its destination would
be routed. By judiciously using this engine against the
subnets listed in the routing table, route2hos is able

to create the disjoint lists of IP address ranges that the
Fang query engine requires. The output of route2hos
is the firewall connectivity description file, in the MDL
language.

As part of the processing done by route2hos, it pro-
duces definitions for two special host groups, called In-
side and Outside. The Outside host group consists of all
the IP addresses that get routed via the default interface,
according to the firewall’s routing table. This host group
typically includes the Internet, and any of the corpora-
tion’s subnets that are external to the firewall. The Inside
host group is everything else. These two host groups are
later used in the query processing (see below).

2.2 What to Query?

The Fang prototype had a graphical user interface which
allowed the user to enter queries of their choice. How-
ever, during beta testing we discovered that users do not
know which queries they need to try. They were not sure
which services are risky, nor which host groups needed
to be checked. Furthermore, on a reasonably configured
firewall, most queries return uninteresting results, e.g.:
“is telnet allowed into my network?”; “No”; etc. This
causes users to lose interest and leads to a partial simu-
lation of the policy. Most importantly, the queries that
are likely to find the problems in the rule-base are often
precisely those queries that the user does not know to try.

To solve these problems, the Lumeta Firewall Analyzer
takes the burden of choosing the queries off the user’s
shoulders. It does this by querying everything. In fact,
we completely eliminated the GUI as an input mech-
anism in the LFA, and replaced it by a batch process,
which repeatedly calls Fang’s query engine.

Clearly, it is impossible to simulate all the packet com-
binations one by one. Enumerating all the possible com-
binations of source and destination IP addresses (32 bits
each), protocol (8 bits), and source and destination port
numbers (16 bits each), gives rise to an enumeration
space of 2104.

There are two facts that allow LFA to circumvent this
combinatorial explosion: (i) the Fang query engine pro-
cesses aggregated queries very efficiently, and (ii) after
the route2hos processing the LFA knows which IP
addresses are external to the firewall (this is the Outside
host group). Combining these two facts, LFA can issue
the query “list the types of traffic that can enter from the
Outside to the Inside using any service”. We denote such



a query by

Outside! Inside : �:

The result is a list of (src, dest, srv) tuples de-
scribing the allowed incoming traffic, in which the IP ad-
dresses of src are contained in the Outside host group,
the IP addresses of dest are contained in Inside, and
the service is srv. Similarly, LFA can make the outgo-
ing query “Inside ! Outside : �”, switching the roles
of Inside and Outside.

After experimenting with the approach we just outlined,
we discovered that users had difficulty in interpreting its
results. For instance, suppose the firewall has a rather
typical rule of the form “from anywhere, to my-server,
allow any service”. The query “Outside ! Inside : �”
would produce the response “Outside ! my-server :

�”. This response does not convey to the user that “�”
(any service) includes quite a few high-risk services that
should probably not be allowed—if this fact was obvi-
ous to the user, he would not have written such a rule in
the first place! Users found the results much easier to in-
terpret if instead of presenting a blanket response saying
“any service” is allowed, we presented them with a long
list of individual services that are allowed.

Therefore, the LFA in fact does not make the query
“Outside ! Inside : �”. Instead it issues a set of fo-
cused queries: “Outside ! Inside : dns”; “Outside !

Inside : netbios”; etc., and similarly for outgoing traf-
fic. The list of services that are queried in this way is
made of two parts: a list of well known services, plus a
list containing every specific service that appears in some
rule on the firewall. We have found that querying in-
dividual services this way makes the query results, and
the risks they entail, much more explicit. The user has
two possible cues indicating risk: (1) If a rule is wide
open, there will be a very long list of individual services
appearing in the query results (more services == more
risk); (2) The user will see services he may either recog-
nize as dangerous, or not recognize at all (making them
worrisome).

Note, however, that by querying individual services this
way, LFA may miss some services. A service that is not
on the LFA’s list of “known services”, and does not ap-
pear explicitly on any rule, will not be queried.

To ensure this does not happen, LFA performs two ad-
ditional sets of queries. In these queries, the queried
service is the “all service” wildcard “*”. However, fol-
lowing the same philosophy from before, we attempt to
make the queries specific, in a different way. For incom-
ing traffic, LFA makes queries of the form “Outside !

internal-host-group : �”, where “internal-host-group”
goes over every internal host group.1 LFA then goes over
the internal host groups again, making outbound queries
of the form “internal-host-group! Outside : �”.

The results of all these queries are organized into four
reports, called “Analysis by service: Incoming”, “Analy-
sis by service: Outgoing”, “Analysis by host group: In-
coming”, and “Analysis by host group: Outgoing”. This
organization offers the user the opportunity to look at the
firewall configuration from different viewpoints, while
providing a comprehensive coverage of the traffic the
firewall may encounter.

2.3 Supporting Multiple Vendors

The core query engine uses a model of the firewall rule-
base, which is generic and vendor-independent. How-
ever, in order to instantiate this model, the Lumeta
Firewall Analyzer (LFA) needs to be able to parse the
vendor-specific configuration files, and if necessary, to
convert the vendor’s firewall semantics into their equiv-
alent in the LFA model. The Fang prototype provided
native support (within the C code implementing the core
query engine) only for the Lucent Managed Firewall
[LMF99] configuration file syntax.

When we started adding support for other vendors (no-
tably Check Point’s and Cisco’s products), we decided
not to include additional parsers for these vendors’ lan-
guages within the core. Instead, we opted for an architec-
ture centered around an intermediate language. We chose
to write a separate front-end conversion utility for each
supported vendor. We chose to write these utilities using
the Perl programming language. The front-ends would
take the vendor’s files and translate them into the LFA’s
intermediate language. We had three options for an inter-
mediate language. We could base it on an access-control-
list language, or on one of Check Point’s languages, or on
the Lucent Managed Firewall (LMF) language.

Access-control-list languages such as Cisco’s IOS
[IOS00] and PIX [PIX97] configuration languages, or
the Linux ipchains (cf. [Rus00]) script language,
do not support named host groups, and a rule’s source
and destination are restricted to be CIDR-block subnets.
Therefore, an access-control-list language was deemed
too low-level for our purposes; converting other firewall
configuration languages to it would lose information and

1A host group is considered to be internal if it has a non-empty
intersection with in the Inside host group.



greatly increase the configuration size.2

Check Point [Che97] uses two separate languages in the
configuration of their FW-1 product: the INSPECT lan-
guage, and the language within the *.W/*.C policy
files. The INSPECT language does support IP ranges
but does not support naming, so it was deemed too low
level. The .W language does support naming, groups,
and ranges, however, it has the opposite problem: it is
too expressive. It contains many irrelevant details, such
as the colors in which to render the icons on screen, and
has a syntax that is much harder to parse or to synthesize.

The language we chose to base our intermediate lan-
guage on was the LMF configuration language. The
basic LMF language is relatively easy to parse and to
synthesize, yet contains higher-level constructs such as
service groups and host groups, named user-defined ser-
vices, named host groups, and arbitrary ranges of IP ad-
dresses.

Since we only use the language internally, within the
LFA, there was no reason to maintain strict compatibil-
ity with the real LMF language. Therefore we only used
some of the LMF language components and ignored oth-
ers. Furthermore, we did need to extend the LMF lan-
guage to incorporate features which LMF itself does not
support, such as negated host groups.3

2.4 Presentation of Results

In addition to letting the user specify her query, the Fang
GUI also displayed the query output to the user. The GUI
had a basic mode showing the names of the sources, des-
tinations, and services in the resulting (src, dest,
srv) tuple. The user had the ability to expand each tu-
ple to show the IP addresses and port numbers (all the
components expanded simultaneously). However, beta
testers felt that these two display modes were too limit-
ing.

When we discarded the GUI, we needed an alternative
mechanism to view the query results. Our choice was to
use an HTML-based display. We updated the core query
engine so it will dump all its findings into several format-
ted plain-text output files. Then we created a collection
of Perl back-end utilities that convert the output files into
a set of web pages.

2A single IP address range may need multiple CIDR block subnets
to cover it, the worst case being the range 0.0.0.1–255.255.255.254,
which requires 62 separate CIDR blocks.

3A negated host group is shorthand for the IP addresses that are not
contained in the host group.

The back-ends create four support web pages:

Original rules. This page shows the rule-base in a for-
mat that is as close as possible to the format used by
the vendor’s management tools.

Expanded rules. This page shows the rule-base after
conversion into the LFA intermediate language.

Services. This page shows a table of all the service def-
initions (protocols and port numbers), with the con-
tainment relationships4 between services. A service
has a hyperlink to every service group containing it,
and to every service it contains.

Host groups. This page shows a table of the definitions
(IP addresses) of all the host groups encountered
in the firewall rule-base, with the containment re-
lationships between host groups represented by hy-
perlinks.

In addition to the support pages, the back-ends create
web pages for the four query reports we mentioned in
Section 2.2: Analysis by service (Incoming and Outgo-
ing), and Analysis by host group (Incoming and Outgo-
ing). Each query result tuple is linked to the appropri-
ate entries in the Host groups and Services pages, with
a direct link to the Expanded rules page pointing to the
rule allowing the traffic through. A typical LFA report
contains hundreds of such hyperlinks (depending on the
complexity of the rule-base).

Besides the extensive navigation capability offered by
the various links, we added a JavaScript-based naviga-
tion bar, and JavaScript scrolling functions that highlight
the table entries in the Rules, Services, and Host Groups
tables.

An advantage of such a web-based display is that it does
not impose a reading order on the user, and allows easy
access to any level of detail the user desires to view. The
query result pages just show the names, and the user can
choose whether to drill down on each component.

Section 4 contains excerpts from some of the produced
web pages.

2.5 Naming Things

An important part of the Lumeta Firewall Analysis in-
volves assigning names to services and host groups.

4A service group s1 contains service s2 if the s2’s protocol is one
of s1’s protocols, and s2’s port numbers are contained in the range of
s1’s port numbers.



For services and service groups, we use several sources
of naming information. First, the LFA has a fairly long
list of “well known” service definitions. So if the fire-
wall rule-base contains a rule that refers to tcp on port
443, LFA displays it as https. Second, most firewalls
have built-in named definitions which we use. Finally,
for firewalls that support user-defined services, we read
those names in.

If the name and definition we get from two sources
both match, we only show the service once. However,
sometimes there are mismatches: e.g., Check Point has
a predefined service called icmp-proto, which has
the same definition as an LFA-defined service called
ALL ICMP. In such cases we incorporate both names
into the reports. Another type of mismatch is when the
same name is used with different definitions. For in-
stance, there is an LFA-defined service called tracer-
oute, which is defined as udp with a port range of
32000–53000. Check Point has a predefined service with
the same name but defined with a port range of 33001–
65535. To avoid ambiguity, we prefix the service name
with the source of the definition.

For host groups, we rely on the naming information
that the firewall provides, which consists of user-defined
names. If the firewall does not support host group names
(as is the case, e.g., for Cisco IOS [IOS00] access-
control-lists), we use the IP addresses themselves as the
name. In addition, in all cases, LFA attempts to sup-
plement the host group names with DNS lookups where
possible. A reverse DNS lookup is performed for every
individual IP address that appears anywhere in the rule-
base. For subnets, LFA uses a heuristic to pick a repre-
sentative IP address in the subnet, and looks up that IP
address’ name.

2.6 Check Point-Specific Features

The Lumeta Firewall Analyzer (LFA) front-end
ckp2lfa, that converts Check Point FW-1 configura-
tions into the LFA intermediate language, has to deal
with several Check Point-specific features.

Global properties These are properties which are ac-
cessed through a separate tab in Check Point’s man-
agement module, and are not seen in the rules ta-
ble shown in the Check Point GUI. Some of the
properties control remote management access to the
firewall itself, dns access through the firewall, and
icmp access. Depending on their setting, these
properties in fact create implicit rules that are in-

serted into the rule-base at certain positions. The
ckp2lfa front-end converts these FW-1 proper-
ties into explicit rules, and places them in their
appropriate position in the rule base (First/Before-
Last/Last).

Object groups Check Point FW-1 allows network ob-
jects (i.e., host groups) to be defined as groups of
other objects, which themselves may be groups,
thus creating a containment hierarchy of groups. If
the hierarchy is complicated enough, FW-1 users
sometimes lose track of what IP addresses the group
actually consists of, which leads to all kinds of con-
figuration errors. The ckp2lfa front-end flattens
out the hierarchy, by computing the explicit list of
IP addresses that belong to such a group object.
This flattening does not lose information: one of
the features of the LFA query engine is that it com-
putes the host group containment relationships from
the IP addresses, regardless of whether a host group
was defined as a group or not.

Negated objects Check Point FW-1 allows the firewall
administrator to define rules which refer to IP ad-
dresses “not in” a host group, or to services “not in”
a service group. The ckp2lfa front-end converts
the implicit definition into an explicit one, by com-
puting all the IP addresses that do not belong to the
negated host group.

3 Related Work

3.1 Active Vulnerability Testing

A number of vulnerability testing tools are available in
the market today. Some are commercial, from vendors
such as Cisco [CSS00] and ISS [ISS00], others are free
such as Fyodor’s nmap [Fyo00]. These tools physically
connect to the intranet, and probe the network, thereby
testing the deployed routing and firewall policies. These
tools are active: they send packets on the network and
diagnose the packets they receive in return. As such, they
suffer from several restrictions:

(i) If the intranet is large, with many thousands of ma-
chines, testing all of them using an active vulnerabil-
ity tester is prohibitively slow. Certainly, an active test
tool cannot check against every possible combination of
source and destination IP address, port numbers and pro-
tocols. Hence, users are forced to select which machines



should be tested, and hope that the untested machines are
secure. Unfortunately, it only takes one vulnerable ma-
chine to allow a penetration.

(ii) Vulnerability testing tools can only catch one type of
firewall configuration error: allowing unauthorized pack-
ets through. They do not catch the other type of error:
inadvertently blocking authorized packets. This second
type of error is typically detected by a “deploy and wait
for complaints” strategy, which is disruptive to the net-
work users and may cut off critical business applications.

(iii) Active testing is always after-the-fact. Detecting a
problem after the new policy has been deployed is dan-
gerous (the network is vulnerable until the problem is de-
tected and a safe policy is deployed), costly (deploying
policy in a large network is a time consuming and error
prone job), and disruptive to users. Having the ability to
cold-test the policy before deploying it is a big improve-
ment.

(iv) An active vulnerability tester sends packets, and de-
tects problems by examining the return packets it gets
or doesn’t get. Therefore, it is inherently unable to test
network’s vulnerability to spoofing attacks: If the tester
would spoof the source IP address on the packets it sends,
it would never receive any return packets, and will have
no indication whether the spoofed packets reach their
destination or not.

(v) An active tester can only test from its physical loca-
tion in the network topology. A problem that is specific
to a path through the network that does not involve the
host on which the active tool is running will go unde-
tected.

3.2 Distributed Firewalls

Recently there has been a renewed interest in firewall
research, focusing on Bellovin’s idea of a distributed
firewall [Bel99]. A working prototype has been devel-
oped under OpenBSD [IKBS00]. The basic idea is to
make every host into a firewall that filters traffic to and
from itself. This trend is growing in the commercial
world as well: personal firewalls for PCs, such as Zone
Labs [Zon00] and BlackICE [Bla00], are becoming more
common, as high-bandwidth, always-on, Internet con-
nections like DSL and Cable become more widespread.

The main advantages of a distributed firewall are that (i)
since the filtering is at the endpoint, it can be based on
more detailed information (such as the binary executable
that is sending or receiving the packets); and (ii) there is
no bandwidth bottleneck at the perimeter firewall. The

main difficulties with a distributed firewall are (i) the
need for a central policy to control the filtering, and (ii)
the need to ensure that every device in the network is pro-
tected, including infrastructure devices like routers and
printers.

It is this author’s opinion that a distributed firewall ar-
chitecture will augment, rather than replace, the perime-
ter firewall. The conventional firewall will remain as an
enterprise network’s first line of defense. The fact that
one can put a lock on every office door does not make
the guard at the building entrance unnecessary: there is
still valuable stuff in the hallways, and not everyone uses
the lock properly. When a widely deployed distributed
firewall system becomes available, it will most likely be
used as a second line of defense, behind the perimeter
firewall. The perimeter firewall will continue to protect
all the infrastructure that is not controlled by the new
architecture, to defend against denial-of-service attacks,
and to ensure central control.

4 An Example

In this section we show an annotated example which il-
lustrates the flow of data through the various components
of the LFA. This example is based upon a firewall rule-
base that was installed on a real firewall protecting a pro-
duction network of a large enterprise. Using the LFA re-
port, the firewall’s administrators were able to correct a
major security risk that was present in their firewall con-
figuration. For demonstration purposes, we recreated the
key elements of that risky configuration onto a lab ma-
chine, and ran the resulting files through the LFA. The
report excerpt shown here is from the lab machine. The
full web-based sample report is available online from
[Lum01].

In Figure 1 we see a web page showing a Check Point
FW-1 rule-base. This is the LFA’s starting point. The
only processing that was done to create this page was
to convert Check Point’s configuration files into HTML,
rendered in a format that is quite close to that of FW-1’s
management module (down to the level of user-defined
colors for various objects). The conversion utility we
used is an improved version of the fwrules50 program
[XOS+00].

At a cursory glance, the rule-base looks rather simple,
protecting two machines (called one and two). Ma-
chine one seems to be a web server, and machine two
seems to be a Usenet (nntp) news server. The policy is



Figure 1: The original rule-base, rendered in HTML.



quite lax on outbound services (rule 3 allows all types
of tcp outbound), but seems quite reasonable for in-
bound connections, allowing only http, https, ssh,
and nntp.

In Figure 2 we can see an HTML rendering, produced for
the same rule-base, of the LFA’s intermediate language,
as discussed in Section 2.3. The figure shows the results
of the Check-Point-to-LFA front-end conversion utility,
ckp2lfa, post-processed into an HTML-based report
(called the Expanded Rules report) by the back-end util-
ities.

We can see that the rule-base now has several additional
rules. These rules are derived from Check Point “prop-
erties”, which are controlled through a separate tab in
Check Point’s management module. The properties that
are selected by the administrator create implicit rules that
are inserted into the rule-base at certain positions. One
of the tasks of the ckp2lfa front-end is to convert all
these implicit rules into their explicit equivalents, and in-
sert them in their correct positions in the rule-base.

Figure 2 shows the effects of properties that govern DNS
and ICMP traffic, and of the property that controls re-
mote management access to the firewall itself. After
ckp2lfa converts the implicit rules into explicit ones,
we can see that rules 1, 3, and 10, are wide open (allow-
ing traffic from anywhere to anywhere). Unfortunately,
these rules represent the effects of Check Point FW-1’s
default settings. Based on client configuration files we
have seen, leaving these properties at their default setting
seems to be a common mistake among FW-1 administra-
tors.

Another piece of information that is clear after the
ckp2lfa conversion is that the firewall is actually per-
forming Network Address Translation (NAT) on the ad-
dress on machine one: Rules 4–8 show that machine
one has both a valid (routable) IP address and a private
IP address. The firewall translates between the two ad-
dresses based on the direction of the packets.

The next step in the processing is the the route2hos
front-end, which converts the firewall’s routing table
into a Firmato MDL firewall connectivity file. Instead
of showing the firewall connectivity file itself, in Fig-
ure 3 we show a graphical representation of the fire-
wall connectivity, which is derived from the MDL fire-
wall connectivity file using the graph visualization tool
dot [GKNV93] [Dot01]. We emphasize that Figure 3 is
completely machine-generated, with no manual tweak-
ing. The figure shows the IP addresses behind each of
the firewall’s three internal interfaces. We can see that

interface if 2 is connected to an RFC 1918 private IP
address subnet, with a single routable IP address added
(this is the valid IP address of machine one, which is
NATed). The rest of the IP address space, including all
of the Internet, is behind interface if 0.

Once the Check Point configuration files have been con-
verted to the LFA intermediate language, and the routing
table has been converted into an MDL network firewall
connectivity file, the LFA proceeds to simulate the con-
figured policy. This is done by the core query engine
(Section 2.2). The output of the core engine is then ren-
dered in HTML by the back-end utilities, which also cre-
ate all the cross-links between various components of the
report.

In Figure 4 we see a portion of the “Analysis by service:
Incoming” HTML-based report, which is one of the four
reports that LFA creates. The figure shows the results
of the query “Outside ! Inside : netbios”, meaning
“Can netbios traffic cross the firewall from the Out-
side to the Inside?”.

Somewhat surprisingly, the report shows that netbios
traffic is allowed from anywhere on the Outside, to ma-
chine two. The figure shows the user-defined name
(“two”) alongside the result of a reverse dns lookup on
the IP address of that machine (recall Section 2.5). We
can see in the figure that the culprit rule which allows
netbios traffic through is rule number 9. All the un-
derlined values shown in Figure 4 are hyperlinks. Click-
ing on the “9” link brings the user to the Expanded Rules
report (recall Figure 2), with rule 9 highlighted. Look-
ing back at Figure 2, we see that rule 9 indeed refers
to machine two, however, the service listed is called
nntp services, not netbios.

Clicking on the nntp services link from the Ex-
panded Rules report (Figure 2) brings the user to
the Services report, the relevant portion of which is
shown in Figure 5. We can see that the definition of
nntp services has two components: one with tcp
on destination port 119 (this is the correct definition),
and one with tcp on source port 119. The latter defi-
nition is very risky and is the cause for netbios (and,
indeed, any other tcp service) being allowed through
the firewall. This is since the choice of source port is
completely under the control of the sender of the packet.
There is nothing to prevent an attacker from setting the
source port to 119 and the destination port to 139 (net-
bios): the firewall would let the packet through based
on its source port, and allow it to access the netbios port
on the target machine. This is actually part of a hacking



Figure 2: The expanded rule-base, after conversion to the LFA’s intermediate language.

Outside

if_0
(hme0)

checkpoint1

if_1
(qfe1)

if_2
(qfe2)

if_3
(qfe3)

internal1
135.23.45.176 - 135.23.45.179

behind_if_2
10.10.32.180 - 10.10.32.183

135.23.45.182

internal3
135.23.45.184 - 135.23.45.187

Figure 3: A diagram of the firewall’s network connectivity, derived from the firewall connectivity description file.



Figure 4: An excerpt from the “Analysis by service: Incoming” report, showing the results of the netbios query.

Figure 5: An excerpt from the Services report, with the nntp services service highlighted.

technique known as “firewalking”, and is usually done
using source port 53 (dns) which is very often open
[GS98].

Remarks:

� A manual inspection of the rule-base shown in Fig-
ure 1, even by an expert auditor, is very likely
to miss the vulnerability that the LFA demon-
strated. The service name listed in the rule
(nntp services) makes sense. Even if the au-
ditor is diligent enough to dig deeper and check the
definition of the service, she would find that the port
number (119) is in fact correct. It is just in the
wrong column, half an inch away from being per-
fect.

� Similarly, a firewall probe by an active vulnerability
test tool would probably also miss the vulnerability.
Unlike LFA, such a tool inherently cannot test ev-
ery possible combination of IP addresses and port
numbers, and it would have no special reason to test
the particular combination of source port 119 and
destination port 139.

� We believe that the reason for the mistake in the

definition of nntp services is that the firewall
administrator who created it was not fully aware
of the implications of stateful inspection, and was
probably used to configuring stateless packet filters,
such as router access-control-lists. A stateful fire-
wall (like Check Point FW-1) will automatically al-
low the returning packets of an open tcp session. A
stateless access-control-list requires a separate rule
for the returning packets, in which the filtering is
done based on the source port (since the destination
port is selected dynamically). The erroneous com-
ponent of the nntp services definition looks
precisely like a stateless rule allowing the returning
packets through the firewall.

5 Conclusions

The Lumeta Firewall Analyzer (LFA) is a novel, multi-
vendor tool that simulates and analyzes the policy en-
forced by a firewall. The LFA takes the firewall’s config-
uration files and routing table, parses them, and simulates
the firewall’s behavior against all the possible packets



it could receive. The result is an explicit, cross-linked,
HTML-based report showing all the types of traffic al-
lowed in from the Internet, and all the types of traffic
allowed out.

Acknowledgments

A project such as LFA is a team effort. Many peo-
ple have contributed to the evolution of LFA, whether
in ideas, algorithms, or code. I gratefully acknowledge
the contributions of Yair Bartal, Sudip Bhattachariya,
Steve Branigan, Hal Burch, Diane Burley-McGlue, Bill
Cheswick, Terry Lieb, Tom Limoncelli, Ryan Martin,
Alain Mayer, Kobi Nissim, Karl Siil, Bruce Wilner, and
Elisha Ziskind.

References

[Bel99] S. M. Bellovin. Distributed firewalls. ;lo-
gin:, pages 39–47, November 1999.

[Bla00] BlackICE Defender. Network ICE, 2000.
http://www.networkice.com/
products/blackice_defender.
html/.

[BMNW99] Y. Bartal, A. Mayer, K. Nissim, and
A. Wool. Firmato: A novel firewall man-
agement toolkit. In Proc. 20th IEEE Symp.
on Security and Privacy, pages 17–31,
Oakland, CA, May 1999.

[Che97] Check Point FireWall-1, version 3.0.
White paper, June 1997. http://
www.checkpoint.com/products/
whitepapers/wp30.pdf.

[CSS00] Cisco secure scanner 2.0, 2000. http:
//www.cisco.com/warp/public/
cc/pd/sqsw/nesn/index.shtml.

[Dot01] Graphviz - open source graph draw-
ing software. version 1.7, 2001.
http://www.research.att.
com/sw/tools/graphviz/.

[Fyo00] Fyodor. NMAP - the network mapper,
2000. http://www.insecure.org/
nmap/.

[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North,
and K.-P. Vo. A technique for drawing di-
rected graphs. IEEE Transactions on Soft-
ware Engineering, 19(3):214–230, 1993.

[GS98] D. Goldsmith and M. Schiffman. Fire-
walking: A traceroute-like analysis of
ip packet responses to determine gate-
way access control lists. White paper,
Cambridge Technology Partners, 1998.
http://www.packetfactory.
net/firewalk/.

[IKBS00] S. Ioannidis, A. D. Keromytis, S. M.
Bellovin, and J. M. Smith. Implementing
a distributed firewall. In Proc. 7th ACM
Conf. Computer and Communications Se-
curity (CCS), Athens, Greece, November
2000.

[IOS00] Cisco IOS firewall feature set,
2000. http://www.cisco.com/
univercd/cc/td/doc/pcat/
iofwfts1.htm.

[ISS00] Internet security systems: Internet scan-
ner, 2000. http://documents.
iss.net/literature/
InternetScanner/is_ps.pdf.

[LMF99] Lucent managed firewall, version 3.0,
1999. http://www.lucent.com/
iss/html/technical.html.

[Lum01] Lumeta firewall analyzer, 2001.
http://www.lumeta.com/
solution_firewall.html.

[MWZ00] A. Mayer, A. Wool, and E. Ziskind. Fang:
A firewall analysis engine. In Proc. IEEE
Symp. on Security and Privacy, pages 177–
187, Oakland, CA, May 2000.

[PIX97] Cisco’s PIX firewall series and stateful
firewall security. White paper, 1997.
http://www.cisco.com/warp/
public/cc/pd/fw/sqfw500/
tech/nat_wp.pdf.

[RGR97] A. Rubin, D. Geer, and M. Ranum. Web Se-
curity Sourcebook. Wiley Computer Pub-
lishing, 1997.



[Rus00] R. Russell. Linux IPCHAINS-
HOWTO, v1.0.8, July 2000.
http://www.linuxdoc.org/
HOWTO/IPCHAINS-HOWTO.html.

[XOS+00] W. Xu, S. O’Neal, J. Schoonover, S. Moser,
F. Lamar, and G. Grasboeck. fwrules50,
2000. Available from http://www.
phoneboy.com/fw1/.

[Zon00] ZoneAlarm 2.1.44. Zone Labs, 2000.
http://www.zonelabs.com/.


