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Abstract

SSH is designedto provide a securechannelbetween
two hosts. Despitethe encryptionand authentication
mechanismst uses,SSH hastwo weaknessFirst, the
transmittedpaclets are paddedonly to an eight-byte
boundary(if a block cipheris in use),which revealsthe
approximatesize of the original data. Second,n inter
active mode everyindividual keystroke thata usertypes
is sentto theremotemachinein aseparatéP pacletim-
mediatelyafterthekey is pressedwhich leakstheinter-
keystroke timing information of users’typing. In this
paperwe shav how theseseeminglyminor weaknesses
resultin serioussecurityrisks.

First we shav that even very simple statistical tech-
niguessufiice to reveal sensitve informationsuchasthe
lengthof users’passverdsor evenrootpassverds. More
importantly we further shaw that by using more ad-
vancedstatisticaltechniquen timing informationcol-
lectedfrom the network, the eavesdroppecanlearnsig-
nificantinformationaboutwhat userstype in SSH ses-
sions. In particular we perform a statisticalstudy of
users’typing patternsand showv that thesepatternsre-
vealinformationaboutthe keys typed. By developinga
HiddenMarkov Model andour key sequencerediction
algorithm,we canpredictkey sequenceffom theinter-
keystrolke timings. We further develop an attacler sys-
tem,Herbivore, whichtriesto learnusers’passverdsby
monitoring SSH sessionsBY collectingtiming informa-
tion on the network, Herbivore canspeedup exhaustve
searcHor passverdsby afactorof 50. We alsopropose
somecountermeasures.

In generalour resultsapply not only to SSH, but also
to ageneraklassof protocolsfor encryptinginteractive
traffic. We show that timing leaksopena new set of
security risks, and hencecaution must be taken when
designingthis type of protocol.

*Thisresearclwassupportedn partby the DefenseAdvancedRe-
searchProjectsAgeng underDARPA contractN6601-99-28913%un-
der supervisionof the Spaceand Naval Warfare SystemsCenterSan
Diego) and by the National SciencefoundationundergrantsFD99-
79852andCCR-0093337.

1 Intr oduction

Justa few yearsago, peoplecommonlyusedastonish-
ingly insecurenetworking applicationssuchast el -
net, rl ogin, or ftp, which simply passall confi-
dentialinformation, including users’passwrds, in the
clearover the network. This situationwas aggraated
throughbroadcast-baseketworks thatwere commonly
used(e.g., Ethernet)which allowed a malicioususerto
eavesdropon the network andto collect all communi-
catedinformation[CB94, GS94.

Fortunately mary usersandsystemadministratorave
becomeaware of this issue and have taken counter
measures.To curb earesdropperssecurityresearchers
designedthe SecureShell (SSH), which offers an en-
crypted channelbetweenthe two hostsand strongau-
thenticatiorof boththeremotehostandtheuser[Y1 696,
SSLOJ, YKST00H. Today SSHis quite popular andit
haslargelyreplaced el net andr| ogi n.

Many usersbelieve thatthey are secureagainst eases-
droppersif they use SSH. Unfortunately in this paper
we showv that despitestate-of-the-arencryptiontech-
niguesandadwancedpassverd authenticatiorprotocols
[YKST00d, SSH connectionscanstill leak significant
information about sensitve data such as users’ pass-
words. This problemis particularly seriousbecauset
meansusersmay have a false confidenceof security
whenthey useSSH.

In particularweidentify thattwo seeminglyminorweak-
nesseof SSH leadto serioussecurityrisks. First, the
transmittedpaclets are paddedonly to an eight-byte
boundary(if a block cipheris in use). Thereforean
eavesdroppecaneasilylearnthe approximatdengthof
the original data. Second,in interactve mode, every
individual keystroke that a usertypesis sentto the re-
mote machinein a separatdP paclet immediatelyaf-
ter the key is pressedexceptfor somemetakeys such
Shift orCtrl). Weshaw in the paperthatthis prop-
ertycanenableheeavesdroppeto learntheexactlength
of users’passverds.More importantly aswe have veri-
fied,thetimeit takestheoperatingsystento sendoutthe
paclet afterthe key pressis in generalnegligible com-
paring to the inter-keystroke timing. Hencean eaves-



droppercanlearnthe preciseinter-keystroke timings of
users'typing from the arrival timesof paclets.

Experienceshaws that users’typing follows stablepat-
ternd. Mary researcherbave proposedo usethe du-
ration of key strokesandlatenciesbetweenkey strokes
asabiometricfor userauthenticatiojGLPS8Q UW85,
LW88, LWU89, JG9Q BSH9Q MR97, RLCM9S,
MRW99]. A more challengingquestionwhich hasnot
yet beenaddressedn the literatureis whetherwe can
usetiming informationaboutkey strokesto infer thekey
sequencebeingtyped.If we can,canwe estimatequan-
titatively how mary bits of informationarerevealedby
the timing information? Experienceseemsto indicate
that the timing information of keystrokes revealssome
information aboutthe key sequencebeingtyped. For
example, we might have all experiencedhattheelapsed
time betweentyping the two letters“er” canbe much
smallerthan betweentyping “qz”. This obsenrationis
particularly relevant to security Sinceaswe show the
attacler cangetprecisenter-keystroke timingsof users’
typing in a SSH sessiorby recordingthe paclet arrival
times, if the attacler caninfer whatuserstype from the
inter-keystroke timings, thenhe could learnwhat users
typein a SSH sessiorfrom the pacletarrival times.

In this paperwe study users’keyboard dynamicsand
shaw thatthetiming informationof keystrokesdoeseak
information aboutthe key sequencesyped. Through
moredetailedanalysiswve shav thatthetiming informa-
tion leaksabout1 bit of informationaboutthe content
per keystroke pair. Becausethe entrogy of passverds
is only 4-8 bits per characterthis 1 bit per keystroke

pairinformationcanrevealsignificantinformationabout
the contenttyped. In orderto useinter-keystroke tim-

ings to infer keystroke sequenceswe build a Hidden
Markov Modelanddevelopan-Viterbi algorithmfor the
keystroke sequencénference.To evaluatethe effective-

nessof the attack,we further build an attacler system,
Herbivore,whichmonitorsthe network andcollectstim-

ing information aboutkeystrokes of users’passverds.
Herbivore thenusesour key sequenceredictionalgo-
rithm for passverd prediction. Our experimentsshov

that,for passwerdsthatarechoseruniformly atrandom
with lengthof 7 to 8 characterd-erbivorecanreducehe
costof passwerd crackingby a factorof 50 andhence
speedup exhaustve searchdramatically We also pro-

posesomecountermeasurds mitigatethe problem.

We emphasiz¢hattheattacksdescribedn thispaperare
ageneralssuefor ary protocolthatencryptsinteractive
traffic. For concretenessye study primarily SSH, but
thesassuesaffectnotonly SSH 1 andSSH 2, but also

1in this paperwe only consideruserswho are familiar with key-
boardtyping andusetouchtyping.

ary otherprotocolfor encryptingtypeddata.

The outline of this paperis asfollows. In Section2

we discussin more details about the vulnerabilities
of SSH and various simple techniquesan attacler can
useto learn sensitve information such as the length
of users’passwerds andthe inter-keystroke timings of

users’passverds typed. In Section3 we presentour

statisticalstudyon users’typing patternsandshawv that
inter-keystroke timingsrevealaboutl bit of information
perkeystroke pair. In Section4 we describenow we can
infer key sequenceasinga HiddenMarkov Model and
a n-Viterbi algorithm. In Section5 we describethe de-
sign, developmentandevaluationof anattacler system,
Herbivore,whichlearnsusers’passverdsby monitoring
SSH sessions.We proposecountermeasure® prevent
theseattacksin Section7, andconcludein Section8.

2 Eavesdropping SSH

TheSecureShellSSH[SSL0], YKST00H is usedto en-
cryptthecommunicatiorink betweeralocalhostanda
remotemachine Despitetheuseof strongcryptographic
algorithms,SSH still leaksinformationin two ways:

e First,thetransmittedpacletsarepaddecbnly to an
eight-byteboundary(if a block cipheris in use),
which leaksthe approximatesize of the original
data.

e Second, in interactve mode, every individual
keystrole that a usertypesis sentto the remote
machinein a separatdP paclet immediatelyafter
thekey is pressedexceptfor somemetakeys such
Shift orCrl). Becausghetimeit takestheop-
eratingsystemto sendout the paclet after the key
presssin generahagligible comparingo theinter
keystroke timing (as we have verified), this also
enablesan eavesdroppeto learnthe preciseinter
keystroke timings of users’typing from the arrival
timesof paclets.

The first weaknesgposessomeobvious security risks.
For example, when one logs into a remotesite R in
SSH, all the charactersof the initial login passverd
are batchedup, paddedto an eight-byteboundaryif a
block cipheris in use,encrypted andtransmittedto R.
Due to the way paddingis done,an earesdroppercan
learn one bit of information on the initial login pass-
word, namely whetherit is at least7 characterdong
or not. The secondveaknesganleadto somepotential
anorymity risks since,asmary researcherbave found
previously, inter-keystroke timings canreveal the iden-
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Figurel: Thetraffic signatureassociatedvith runningSU in a SSH session.The numbersn thefigure arethe size

(in bytes)of the correspondingaclet payloads.

tity of theuser[GLPS8Q UW85, LW88, LWU89, JG9Q
BSH9Q MR97, RLCM98, MRW99).

In this sectionwe shaw thatsereralsimpleandpractical
attacksexploiting thesetwo weaknessesln particular

anattacler canidentify whichtransmittecgpacletscorre-
spondto keystrolkesof sensitve datasuchaspassverds
in a SSH session. Using this information, the attacler
caneasilyfind out the exactlengthof users’passverds
andeventheprecisanterkeystroke timingsof thetyped
passwerds. Learningthe exact length of users’pass-
words allows eavesdropperdo target userswith short
passwrds. Learningthe inter-keystroke timing infor-

mationof the typedpassverdsallows eavesdropperso

infer the contentof the passverds aswe will show in

Section3 and4.

Traffic Signature Attack We canoften exploit prop-
erties of applicationsto identify which paclets corre-
spondto the typing of a password. Considey for in-
stance the SU command.Assumethe userhasalready
establisheda SSH connectionfrom local hostA to re-
mote host B. When the usertypesthe commandSU
in the established5SH connectionA « B, we obtaina
peculiartraffic signatureas shovn in Figure 1. If the
SSH sessionusesSSH 1. x2 anda block cipher such
asDESfor the encryption[NBS77, NIS99, asis com-
mon, then the local host A sendsthree 20-byte pack-
ets: “s”, “u”, “Return”. TheremotehostB echoeghe
“s” and“u” in two 20-bytepacletsandsendsa 28-byte
paclet for the “Passvord: ” prompt. ThenA sends20-
byte paclets, onefor eachof the passvord characters,
without receving ary echodatapaclets. B thensends
somefinal pacletscontainingtheroot promptif SUsuc-
ceedsptherwisesomefailuremessageslhusby check-
ing the traffic againstthis “su” signature the attacler
canidentify whenthe userissueshe SU commandand

2Theattackalsoworkswhenssh 2. x is in use.Only the paclet
sizesareslightly different.

hencelearn which paclets correspondo the passverd
keystrokes. Note that similar techniquesanbe usedto
identify when userstype passverds to authenticateo
otherapplicationssuchas PGP[Zim95] in a SSH ses-
sion.

Multi-User Attack Evenmorepowerful attacksexist
when the attacler also has an accounton the remote
machinewherethe useris logging into through SSH.

For example, the processstatuscommandps can list

all the processesunningon a system. This allows the
attacler to obsene eachcommandhatary useris run-
ning. Again, if theuseris runningary commandhatre-
quiresapassvordinput(suchassu or pgp) theattacler
canidentify the pacletscorrespondindo the passverd
keystroles.

NestedSSH Attack  Assumethe userhasalreadyes-
tablisheda SSH sessionbetweenthe local host A and
remotehostB. Thentheuserwantsto openanothelSSH

sessiorfrom B to anotheremotehostC asshavnin Fig-

ure2. In this casetheusers passverd for C is transmit-
ted, onekeystroke at a time, acrossthe SSH-encrypted
link A « B from the userto B, even thoughthe SSH

client on machineB patientlywaitsfor all characterof

the passwerd beforeit sendsthemall in one paclet to

hostC for authenticatior{asdesignedn the SSH proto-

col [YKS*004). It is easyto identify suchanestedSSH

connectionusing techniquesdevelopedby Zhangand
Paxson[ZP00h ZP004. Hencein this casethe eaves-
droppercaneasilyidentify the pacletscorrespondingo

the users passwverd on link A < B, andfrom this learn
the lengthandthe inter-keystroke timings of the users’
passverd on hostC.
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Figure2: ThenestedSSH attack.

3 Statistical Analysis of Inter-keystroke
Timings

As a first study towardsinferring key sequence$rom

timing information,we developtechniquedor statistical
analysisof the inter-keystroke timings. In this section,
we first describenow we collecttraining dataandshaw

somesimple timing characteristicof characterpairs.
We thenshav how we modeltheinter-keystroke timing

of a givencharactepair asa Gaussiardistribution. We

thendescribehow to estimatequantitatvely the amount
of informationaboutthecharactepairthatonecanlearn
usingtheinter-keystroke timing information.Denotethe
setof charactepairsof interestasQ, andlet |Q| denote
the cardinalityof the setQ.

3.1 Data Collection

The two keystrokesof a pair of charactergka,k,) gen-
eratedfour events:the pressof k,, thereleaseof k,, the
pressof k,, andthe releaseof k,. However, because
only key pressegnot key releasesjrigger paclet trans-
mission,aneavesdroppecanonly learntiming informa-
tion aboutthe key-pressevents. Sincethe mainfocusof
our study is in the scenariowherean adwersarylearns
timing informationon keystrokeshby simply monitoring
the network, we focus only on key-pressevents. The
time differencebetweertwo key pressess calledthela-
tencybetweerthe two keystrokes. We alsousetheterm
inter-keystioke timingto referto thelateng betweertwo
keystroles.

In orderto characterizénow muchinformationis leaked
by inter-keystroke timings,we have performedanumber
of empiricalteststo measurdhe typing patternsof real
users. Becausepasswrds are probablythe most sen-
sitive datathat a userwill ever type, we focusonly on
informationrevealedaboutpassverds(ratherthanother
formsof interactve traffic).

Ourfocuson passverdscreatesnary challengesPass-
wordsareenteredvery differentlyfrom othertext: pass-
wordsaretypedfrequentlyenoughthat,for mary users,
the keystroke patternis memorizedand often typedal-
most without consciousthought. Furthermore,well-
chosenpasswrds shouldbe randomand have little or
no structure(for instance they shouldnot be basedon
dictionary words). As a consequencenaive measure-
mentsof keystroke timingswill not berepresentate of
how userstype passverds unlessgreatcareis takenin
thedesignof the experimentaimethodology

Our experimentalmethodologyis carefully designedo
addresshesdssuesDueto securityandprivagy consid-
erationswe chosenotto gatherdataon real passverds;
therefore,we have chosena datacollection procedure
intendedto mimic how userstype real passvords. A
conserative methodis to pick a randompasswerd for
the user(whereeachcharacterof the passverd is cho-
senuniformly atrandomfrom a setof 10 letterkeys and
5 numberkeys, independenthyof all othercharactersn
the passward), have the userpracticetyping this pass-
word mary timeswithout collectingary measurements,
andthenmeasurénter-keystroke timing informationon
this passwerd oncetheuserhashada chanceo practice
it atlength.

However, we found that, when the goal is to try to
identify potentially relevant timing properties(rather
thanverify conjecturecroperties)this conserative ap-
proachis inefficient. In particular userstypically type
passwerdsin groupsof 3—4 characterswith fairly long
pauseshetweeneachgroup. This distortsthe digraph
statisticsfor the pair of characterghat spansthe group
boundaryand artificially inflates the varianceof our
measurements.As a result we would needto collect
a greatdeal of datafor mary random passverds be-
fore this effect would averageout. In addition, it takes
quiteawhile for userso becomedamiliar with longran-
dompasswrds. This makestheconserative approacta
ratherblunttool for understandininter-keystroke statis-
tics.

Fortunately thereis a lesscostly way to gatherinter
keystroke timing statistics: we gathertraining dataon
eachpair of charactergka, k) astypedin isolation. We
pick acharactepairandasktheuserto typethispair 30—
40 times, returningto the homerow eachtime between
repetitions.For eachuser we repeatthis for mary pos-
siblepairs(142pairs,in our experimentsiandwe gather
dataon inter-keystrole timings for eachsuchpair. We
collectedthelateng of eachcharactepairmeasurement
and computedthe meanvalue and the standarddevia-
tion. In our experiencethis givesbetterresults.
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Figure3: Thedistribution of inter-keystroke timingsfor two samplecharactepairs.

As an example, Figure 3 shaws the lateng histogram
of two samplecharactemairs. The left model corre-
spondsto the lateny betweenthe pair (v, 0), andthe
right modelcorrespondso (v, b). We canseethatthe
lateny between(v, o) is clearly shorterthan the la-
teng between(v, b), andthe latengy distributions of
thesewo samplecharactepairsarealmostentirelynon-
overlapping.

The optimizeddatacollectionapproactgivesusamore
efficient way to study fine-grained details of inter
keystrole statisticswithout requiringcollectinganenor
mousamountof data.We useddatacollectedn thisway
to quickly identify plausibleconjecturesgdevelop poten-
tial attacks,andto train our attackmodels. As far as
we areaware, collectingdataon keystroke pairsin iso-
lation doesnot seento biasthedatain any obviousway.
Nonethelesswe also validateall our resultsusing the
conserative measuremernnethod(seeSections).

3.2 Simple Timing Characteristics

Next, we divide the test charactermairsinto five cate-
gories,basedon whetherthey aretypedusingthe same
hand,the samefinger, andwhetherthey involve a num-
berkey:

e Two letter keys typed with alternatinghands,i.e.,

onewith left handandonewith right hand,;

e Two charactersontainingone letter key and one
numberkey typedwith alternatinghands;

e Two letterkeys, bothtypedwith the samehandbut
with two differentfingers;

e Two letter keys typed with the samefinger of the
samehand,;

e Two charactersontainingone letter key and one
numberkey, bothtypedwith the samehand.

Figure4 shows the histogramof lateng distribution of
charactepairsfor eachcategory. We split thewholela-
teng/ rangeinto six binsasshawn in the x-axis. Within
eachcatgory, we put eachcharactempair into the cor
respondingbin if its meanlateng valueis within the
rangeof the bin. Eachbarin the histogramof a cate-
goryrepresenttheratio of thenumberof charactepairs
in the associatedbin over the total numberof character
pairsin the category® We canseethatall the character
pairsthat aretypedusingtwo differenthandstake less
than150millisecondswhile pairstypedusingthe same
handandparticularlythe samefinger take substantially
longer Charactepairsthatalternatebetweeroneletter
key and one numberkey, but aretypedusingthe same

3Hencethe sumof all barswithin onecatagoryis 1.
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Figure4: Inter-keystroke timingsfor charactepairsin five differentcateyories.Notethatsomebarsat somepositions

disappeabecausé¢hecorrespondingpeightis zero.

hand,take the longesttime to type. This is simply be-
causetwo handsoffer a certainamountof parallelism,
while charactepairstypedwith onehandrequirea cer
tain degreeof sequentiamovementsand hencetendto
takelonger Thisis especiallyobviousin the caseof one
letterandonenumberpairstypedusingonehand. They
in generalrequiremore handmovementand hencethe
longesttime *

So, if the attacler obseresa charactepair typedwith
lateny morethan 150 milliseconds,he canguesswith
high probability of successghatthe charactepairis not
typed using two different handsand hencecan infer
aboutl bit of informationaboutthe contentof the char
acterpair. Becausehe 142 charactempairsareformed
from randomly selectedletter keys and numberkeys,
they seemlikely to form a representate sampleof the
whole keyboard. Hencethis simple classificationex-
tendsto the whole keyboard,and alreadyindicatesthat
theinter-keystroke timing leakssubstantiainformation
aboutwhatis typed.

The propertiesdescribedabore are unlikely to be ex-
haustve. For instance,earlierwork on timing attacks
on multi-user machinessuggestedhat inter-keystroke
timings may additionallyreveal which charactersn the

“Notethatherewe only considemusersthatusetouchtyping.

passverd areuppercaseTro9§g.

3.3 GaussianModeling

Fromtheplot of thelateng distribution of agivenchar
acterpair, suchastheonesshovn in Figure3, we cansee
thatthe lateny betweenthe two key strokesof a given
charactempair forms a Gaussian-lik unimodaldistribu-
tion. Hencea naturalassumption(which is confirmed
by our empiricalobsenrations)is thatthe probability of
thelateny y betweerntwo keystrokesof a charactepair
g € Q, Prly|g], forms a univariate Gaussiardistribution
A (Ug, 0q), Meaning

Prlyld] V2o, e 4,
where iy is the meanvalueof the lateny for character
pair g and gy is the standarddeviation. Given a setof
trainingdata{(q;, ;) },-i-n, Whereg; is thei-th charac-
ter pair andy;, is the correspondindatengy in the data
collection, we canderive the parameter(Lg, 0g) } oo
basedon maximumlikelihood estimation,i.e., we com-
putethe meanandthe standardieviation for eachchar
acterpair.

Figure5 shawvs the estimatedsaussiaimodelsof thela-
tenciesof the 142 charactempairs. Our empiricalresult
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shaws that mostof the latenciesof the characterpairs
lie between50 and 250 milliseconds. The averageof

thestandardieviation of the 142 charactepairsis about
30 milliseconds. The graphalso indicatesthat the la-

teng distributions of the charactepairs severely over

lap, which meansthe inferenceof charactempairsusing
justlateng informationis a challengingtask.

3.4 Information Gain Estimation

We would like to estimatequantitatvely how much
information the lateng information reveals about the
characterpairs typed. This will be an upper bound
of how muchinformation an attacler can extract from
the timing information using ary particular method.
We estimateit by computingthe information gain in-
ducedby the lateng information. If we selecta char
acter pair uniformly at random from the character
pair space,and if the attacler doesnot get ary addi-
tional information, the entrogy of the probability dis-
tribution of characterpairsto the attacler is Hy[q] =
— Y qeq Prlallog, Pr{q] = log, |Q). If the attacler learns
the lateny y,, betweenthe two keystrokes of the char
acterpair, the estimatedentropy of the probability dis-
tribution of charactempairsto the attacler is H,[qly =

Yol = — Sqe0PralYollog, Pridly,], where Prigly,] =

Priyolq)-Prq] ; .
S o PTOId-PHA and Pry,|q] is computedusing the

Gaussiardistribution obtainedin the parameteestima-
tion phasein the previous subsection.The information
gaininducedby the obsenationof lateny y, is the dif-
ferencebetweerthetwo entropiesH,[q] — H; [qly = Y]
Using the parameterestimationof the 142 character
pairsobtainedin the previous section,we cancompute
H, [aly = y,] andH,[q] — H, [aly = y,] asshavn in Fig-
ure6(a)andFigure6(b).

The estimatednformation gain, also called mutual in-
formation is I{a; y] = Hy[d] — H, [aly] = Ho[a] — J Prlyo] -
Hy[dly = yoldyo, where Priyo] = 3o PriYold] Pra].
Fromthenumericalcomputationwe obtainl[q;y] = 1.2.
This meansthe estimatedinformation gain available
from lateny informationis about1.2 bits per charac-
ter pairwhenthecharactepair hasuniformdistribution.
Hencethe attacler could potentially extract 1.2 bits of
information per charactempair by usingthe lateng in-
formationin this case. Becausethe charactempairsin
our experimentsare selecteduniformly at randomfrom
all letter and numberkeys, we expectthat they will be
representaie of the whole keyboard. Intuitively, Fig-
ure5 is a sufficiently-large randomsamplingof a much
densergraphcontainingthe lateng distributions of all
possiblecharactepairs. More detailedanalysisshovs
thatthe estimatednformationgain computedusing142
samplecharactempairsis a good estimateof the infor-



mation gain whenthe charactepair spaceincludesall
letterandnumbercharactepairs. This estimates com-
parableto the back-of-the-ewelopecalculationin Sec-
tion 3.2 basedon our classificationinto five cateyories
of keystrole pairs.

Becausdhe entropy of written Englishis solow (about
0.6-1.3bits percharactefSha5(), the 1.2-bit informa-
tion gainpercharactepairleakedthroughthelateng in-

formationseemso besignificant.> For example wecan
expect that users’ PGP passphrasewill often contain
only 1 bit of entrofy percharacterHencethelateng in-

formationmayrevealsignificantinformationaboutPGP
passphrases.

Theinformationgain cure in Figure6(b) shovs a con-
vex shape Notethatlatenciegyreaterthan175millisec-

ondsarerelatively rare;however, wheneaer we seesuch
a long time betweenkeystrokes, we learn a lot of in-

formationaboutwhat wastyped, because¢hereare not

mary possibilitiesthat would lead to sucha large la-

teng.. The characterpairs that take longer than 175
millisecondsto type aremostly pairscontainingnumber
keys or pairstypedwith onefinger. Hencethis analysis
suggestshatpassverdscontainingnumberkeysor char

acterpairsthataretypedwith onefingerareparticularly
vulnerableto suchtiming attacks.

Anotherinterestingobsenation is thatthe meanof the
standarddeviations of the charactepairsis only about
30 millisecondsasshawn in our experimentswhile the
standarddeviation of round-triptime on the Internetin

mary casess lessthan10 millisecondgBel93]. There-
fore even whenthe attacler is far from the SSH client
host, he canstill getsufficiently-precisenter-keystroke
timing information. This makesthe timing attackeven
moresevere.

4 Inferring Character SequencesFrom
Inter-Keystroke Timing Information

In this section,we describehowv we caninfer charac-
ter sequencesisingthe latengy information. In partic-
ular, we modelthe relationshipof latenciesandcharac-
ter sequenceasa HiddenMarkov Model [RN95]. We
extendthe standardViterbi algorithmto ann-Viterbi al-
gorithm that outputsthe n mostlikely candidatechar
actersequencesWe further estimatehow mary bits of
informationaboutthe real charactesequencghis algo-

SNotethatthe 1.2-bit informationgain is estimatedor the caseof
randomlyselectedpasswords wherethe sequencef characterdhave
a uniform distribution. However, this is not the casefor texts. More
careful calculationis neededo estimatethe information gain in the
caseof natualtext.

rithm extractsfrom the lateng informationandshaw it
is nearlyoptimal.

4.1 Hidden Mark ov Model

In general,a Markov Model is a way of describinga
finite-statestochastigprocesswith the propertythatthe
probability of transitioningfrom the currentstateto an-
otherstatedepend®only onthe currentstate noton ary

prior stateof the proces§RN95]. In a HiddenMarkov

Model (HMM), thecurrentstateof theprocessannotie
directly obsered. Instead,someoutputsfrom the state
areobsened,andthe probabilitydistribution of possible
outputsgiven the stateis dependenbnly on the state.
UsingaHMM, onecaninfer informationaboutthe prior

paththeproceshastakenfrom thesequencef obsered
outputsof the statesandefficient algorithmsareknown

for workingwith HMM’ s. Because®f this, HMM’ shave
beenwidely usedn areasuchasspeechecognitionand
text modeling.

In our setting,we considereachcharacterpair of inter
estasa hidden(non-obserable) state,and the lateny
betweenthe two keystrokes of the charactempair asthe
outputobsenation from the charactepair state. Each
statecorrespondso a pair of characterssothatthetyp-
ing of a charactesequence, ... ,K;, is aprocesghat
goesthroughT statesg;,...,0y, whereg (1 <t <T)
representshe t-th charactempair (K,_;,K;) typed. Let
V(1 <t < T) denotethe obsered lateny of stateg.
Thenwe modelthe typing of a charactelsequencasa
HMM. This meansve make two assumptionskirst, the
probability of transitionfrom the currentstateto another
stateis only dependenbn the currentstate,not on the
prior pathof the process.If the charactesequencés a
passwverd chosenuniformly at random,this assumption
obviouslyholds.n thecaseof text, thisassumptiomoes
not hold strictly but experiencein speechrecognition
andtext modelingshows thatsomeextensiongo HMM
still work well [RN95]. Second the probability distri-
bution of the lateny obserationis only dependenbn
the currentcharactepair andnot on ary previous char
actersin the sequenceThis assumptiormight hold for
somecasesand not for othercasesvherethe typing of
previouscharacterghangeshepositionof thehandand
influencesthe typing of later charactempairs. However,
making this assumptiormakes our analysisand infer-
encealgorithmmuchsimplerandstill givesgoodresults
asshavn from the experiments.Hence we usea HMM
to modelthetyping of charactesequenceasshawn in
Figure7.

As in the previous section,we assumehe setof possi-
ble charactepairsis Q, hencethe setof possiblestates
in the HMM is Q. We assumethat the probability of
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Figure7: A representationf a traceof a HMM. Eachvertical slice represents time step. In eachtime slice, the
top nodeg, is avariablerepresenting charactepair, andthe bottomnodey; is the obsenablevariabledenotingthe

lateny betweerthetwo keystrokes.

the lateny y of a charactempair g, Priy|q] (q € Q), is a
Gaussiardistribution .4 (g, 0g), Wherethe parameters
{(Hg, 0q) }qcq are obtainedusing the maximumlik eli-
hoodestimation.

4.2 The n-Viterbi Algorithm for Character Se-
quencelnference

Givenanobserationy = (y;,Y,, ... ,¥y), asequencef
latenciesof somecharacteisequencdérom a users typ-
ing, we would like to infer the real charactersequence
thatthe userhastyped. For eachpossiblecharacteise-
quence] = (0.0, - - , 0y ), We cancomputehow likely
the charactesequencés giventhe obsenation,namely
Pr(d |y]. TheprobabilityPr(g |y] essentiallygivesarank-
ing for the candidatecharactersequencey: the higher
Prd |y] is, the morelikely  is the real characterse-
guence.We useqd * to denotethe most-likely sequence,
which is the sequencehat correspondgo the highest
valueof Pr{g|y] for all possibleq with regardto a given

TheViterbi algorithmis widely usedin solvingthemost
likely sequencef stategjivenasequencef obseration
in HMM problemgRN95]. An naive way of computing
g * would computePrd|y] for all possibled, andhence
requiresO(|Q|™) runningtime. The Viterbi algorithm
usesdynamicprogrammingor arunningtime comple-

ity O(/Q2T).

In our setting,becausehe lateng distributions of dif-
ferentcharactepairshighly overlap,theprobabilitythat
the mostlikely sequencas the right sequencewill be
very low. Hence,insteadof just computingthe most
likely sequencewe needto computethe n mostlikely
sequenceand hopethe real sequencevill bein then
mostlikely sequencewith high probabilityfor n greater
thana certainthreshold.Hencewe extendthe standard
Viterbi algorithm to n-Viterbi algorithmto output the
n most-likely sequencesvith running time compleity

O(n|Q|?T). We give a detaileddescriptionof the n-
Viterbi algorithmin AppendixA.

4.3 How to Estimate the Effectivenessf the n-
Viterbi Algorithm

We wouldlik e to estimatenow big thethresholdh hasto
be suchthatthe real characteisequencevill be among
the n most-likely sequencewith sufficiently high prob-
ability. In anexperimentif the real characteisequence
appearsn then most-likely sequencesye saytheexper
imentis a successvith regardto the thresholdn, other
wise, a failure. The probability of suchdefinedsuccess
is a function of n. It is easyto seethatthe functionis
monotonicallyincreasingwith regardto n. If for asmall
n, the succesprobabilityis alreadyhigh, this meanghe
algorithmis very effective becauset filters out mostof
the sequenceand henceone only needsto try a small
setof candidatedeforefinding the real sequence.On
the otherhand,if we needa high thresholdof n to geta
sufficiently high succesgrobability, thenthe algorithm
is lesseffective: onewould needto try mary morecan-
didatesbeforefinding thereal sequenceNotethatfrom
Section3.4 we seethat the timing information reveals
about 1.2 bits of information per characterpair. For
the caseof a randompasswerd of lengthT + 1, which
forms T consecutie charactempairs, the lateng infor-
mation could reveal approximatelyl.2T bits of infor-
mationaboutthe real passvord sequenceHencethis is
anupperboundon the effectivenesf the algorithmto
infer charactesequencessinglateng information.We
would like to estimatehow closeour algorithmis com-
paredto the upperbound.

First, we look at the simplecasewhenT = 1. Givena
lateny obsenationy of a characteipair g, we compute
the probability Priq|y],d € Q, and selectthe n most-
likely charactepairs® = {qjl, ... ,an}. We wouldlike
to computethe probability that the real charactepair q
is in the set® over all possiblevaluesof y. To simplify
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Figure 8: The probability that the n-Viterbi algorithm
outputsthe correctpassverd beforethe first n guesses,
graphedasafunctionof n.

the numericalcomputation,we approximatethe result
by assuminghatall the Gaussiardistributionshave the
samestandarddeviation . This is a good approxima-
tion of the real experiment: aswe seein the Figure 5,

mostkeypairshave a standardleviation betweer25—-35
milliseconds.

Figure 8 graphsthe probability that the real character
pair appearswithin the n most-likely characterpairs
againstthe thresholdn. Thetop curve is wheno = 25,

themiddle curve is wheno = 30, andthe bottomcurve

is when o = 35. Using the middle curve, we get that
whenn = 70 the probability of successs 90%, mean-
ing that with 90% probability, the real characterpair

appearsn the 70 most-likely sequencesutput by the

n-Viterbi algorithm. Let’s denotesucha thresholdcor-

respondingo the 90% succes$robabilityasn*. Thus
log,(|Q|/n*) = 1 is the approximatenumberof bits of

information per characterpair the algorithm extracts.
Note that from the previous sectionwe seethatthe la-

teng/ informationrevealsaboutl.2 bits of information
percharactepair. Henceour n-Viterbialgorithmis near

optimal.

In the caseof uniformly randomlychoserpassverdsof
lengthT + 1, thenumberof bits of informationthealgo-
rithm canextractis approximatelyT -log,(|Q|/n*) ~ T,
whichis closeto theoptimalvalue1.2T bits.

5 Building Herbivore and Timing Attacks
on SSH

To evaluatethe effectivenessof our timing attacksto
SSH, we build an attacler programthat we call Herbi-
vore. In this section,we describethe experimentresults

SSH1 L7 AN
1 eavesdrop
A N L C
Herbivore
HMM
nViterbi

i

Candidate Passwords

Figure9: TheHerbiorearchitecture.

of usingHerbioreto learnusers’passverds.

5.1 HerbivorePreyingfor Passwords

We built anattacler engineHerbivore asshowvn in Fig-

ure 9. It monitorsthe network and collectsthe arrival

timesof paclets. Usingthetechniquedescribedn Sec-
tion 2, Herbioreinferswhich pacletscorrespondo the
users SSH passwrdswhenthe useropensan SSH ses-
sionto anotherhostwithin an established5SH connec-
tion. Herbivorethenmeasureheinter-arrival timesbe-
tween paclets containingthe passverd charactersand
usesour n-Viterbi algorithmto generatea list of candi-
datepasswrds. The candidatepassverdsaresortedin

decreasingrder of the probability Prig |y], andin our
experimentswve recordthe positionof therealpassverd

in the candidatdist. We reportthe positionof the pass-
word asa percentageso with m possiblepassverdsin

total, if therealpassveord appearst positionu in theor-

deredcandidatdist, we saytherealpassverd appearst
thetop %%. This givesa naturalway to quantify the
effectivenesf our approach.

5.2 Optimization for
guences

Long Character Se-

Thecomplity of then-Viterbi algorithmis linearin the

numbern of candidatest outputs. As the lengthof the

passverd grows, the spaceof possiblepassverdsgrows

exponentially If the n-Viterbi algorithmcanonly rule

out a constantfraction of the passwerd space n would

alsogrow exponentiallyasthe passverd length grows.

Hencethealgorithmmight beinefficientwhenthe pass-
word is long. In particular we obsened that memory
usagecangrow substantiallyfor longerpassvords.

Also, andmoreimportantly we obseredin the experi-
mentsthatusergendto typelong passverdsin segments
of 3 to 5 lettersand pausebetweenthe sggments.If we
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Figure 10: The percentagef the passverd spacetried
by Herbivore in 10 testsbeforefinding the right pass-
word.

usethetiming betweenthe segmentsfor the prediction,
it might biasour predictionssincetypically suchpauses
arenoticeablylongerthanmostotherinter-keystroke la-

tencies. Fortunately this large differencemeansthat

pauseshetweengroupsof passverd charactersan be

clearly identified before we apply the n-Viterbi algo-

rithm.

Henceto reducethe biasandto reducethe memoryre-
guirementsf the algorithm,we breakthe timing infor-
mationof the passverd into sgmentscontaining3 or 4
lateng intenals. We useeachsegmentto form aHMM

and then at the end combinethe result from different
segmentsto form the candidatgpassverd ordering.

5.3 Experimental Resultsfor Password Infer-
encefor a SingleUser

We measurehe effectivenesf our n-Viterbi algorithm
at crackingpassverdsthroughempiricalmeasurements.
In our experiment,we usetraining datacompiledfrom
isolatedkeypairsto traintheHMM. Then,we pick aran-
dom passverd for the user We have the userusethis
passwerd to authenticateo anotherSSH sessiorwithin
an establishedsSH sessionas shawvn in Figure 9, and
we apply our n-Viterbi algorithmto simulatean attack
on this passwerd. Note thatwe have the testusertype
thepassverd mary timesbeforethetestto ensurdamil-
iarity with the passverd, andwe try to deduceheusers
password usingtraining datafrom the sameuser

All passwordsareselectediniformly atrandomfrom the
charactespaceasin theexperimentin Section3, sothey
containno structure.Recwering suchpasswerdsis the
hardestaseor theattacler, soif timing analysiscanre-
cover informationin sucha scenariowe canexpectthat
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Figurell: A comparisorof two users’'typing patterns.
The “diamond” symbolsshav the meanvaluesof the
latenciesof one user with an errorbar indicating one
standarddeviation. The“x” symbolindicatesthe mean
valuesof thelatenciesf anothemuser

timing analysiswill beanevengreaterthreatin settings
wherepasswrdsarechoseresscarefully,

We performedtestsfor 10 differentpassverds, eachof

length8. Figure10shovsthepercentagef thepositions
of therealpassverdin theorderedcandidatdists output
by the n-Viterbi algorithm. For example,0.3% means
thatthereal passverd appearedtthetop 0.3% position
in the outputcandidatdist. Theseexperimentandicate
that on averagethe real password is locatedwithin the

top 2.7% of the candidataankinglist. The medianpo-

sition is about1%, so abouthalf the time the passverd

will bein thetop 1% of thelist of candidateproduced
by our n-Viterbi algorithm. Thereforejn orderto crack
thepassverd, Herbivoreonly needgo testl/50timesas
mary passwerdsasbrute-forcesearchpn average.

The 50x reductionin workfactorcomparedo exhaus-
tive searchcorrespondgo a total of 5.7 bits of infor-

mationlearnedper passwerd usingthe lateng informa-
tion. This is closeto the information gain analysisin

Sections3 and4, which predicteda gain of about1 bit

per keystroke pair: recallthatthe passwordsin this test
areof length 8, so eachpassverd contains? keystroke
pairs. We attribute the differenceto minor variationbe-
tweenthedistributionsof inter-keystroke timingsin ran-
dompassverdsandthe distribution of timingsfor char

acterpairstypedin isolation.

For easeof testing,our experimentsvereon passverds
with a reducedsetof possiblecharactersHowever, we
canexpecttheseresultsto carry over to passverdscho-
senfrom the full setof possiblecharacters.Assuming
thattheinformationgain availablefrom inter-keystroke
timing informationis aboutl bit percharactepair even



Training | Test TestCases

Set Set Passvordl | Password2 | Password3 | Passvord4 | Passvord5
Userl Userl 15.6% 0.7% 2.0% 1.3% 1.6%
Userl User2 62.3% 15.2% 7.0% 14.8% 0.3%
Userl User3 6.4% N/A 1.8% 3.1% 4.2%
Userl User4 1.9% 314% 1.1% 0.1% 28.8%
User2 Userl 4.9% 1.3% 1.6% 12.3% 3.1%
User2 User2 30.8% 15.0% 2.8% 3.7% 2.9%
User2 User3 4.7% N/A 5.3% 6.7% 38.4%
User2 User4 0.7% 16.8% 3.9% 0.6% 5.4%

Table 1. Successatesfor passverd inferencewith multiple users. The numbersarethe percentagef the search
spacetheattacler hasto searchbeforehefindstheright passverd.

whenwe extend to the whole keyboard, we expectto
seethis 50 timesreductionin workfactorfor passverds
of length7-8 evenwhenthe passwrdsarechoserran-
domlyfrom all letterandnumberkeys. This50x reduc-
tion can make passverd crackingmore practical. For
example,for a passward containingrandomly-selected
lower-caseletter keys andnumberkeys, without timing
information,theattacler would needto try 36%/2 candi-
datepassverdson averagebeforehefindstheright one.
Benchmarksndicatethat a 840 MHz Pentiumlll can
checkabout 250,000 candidatepasswverds per second
in a off-line dictionaryattack. Thus, exhaustve search
would take about65 PC-daygo cracka passverd com-
posedof randomly-selectedbwer-caseletter keys and
numberkeys. If the attacler usesthe timing informa-
tion, the computationcan be donein 1.3 days, which
malkesthecrack50x morepractical.

5.4 Experimental Resultsfor Password Infer-
encefor Multiple Users

One potentialweaknessn our simulationsis that real-
world attaclersmightnotbeableto getasmuchtraining
datafrom thevictim for thestatisticalanalysisaswe had
availablein our experiments. However, we amgue next
thatthis is unlikely to posean effective defenseagainst
timing attacks:thereare otherwaysthat attaclers can
obtainthetrainingdatarequiredfor the attack.

Onesimpleobsenationis thattheattacler caneasilyget
his own typing statisticsor thetyping statisticsof a co-
conspiratar Henceit is importantto evaluatehow well
the passverd inferencetechniquegperformwhenusing
one persons typing statisticsto infer passverds typed
by anothemperson.

In this experiment,we collectedthe typing statisticsof
two users,User1 andUser2. An interestingresultis
that 75% of the charactepairstake aboutthe samela-
teng to typefor bothtwo users:in otherwords,the dif-

ferencebetweenthe averagelatenciesof the two users
for suchcharactepairsis smallerthanonestandardie-
viation. Similarly, the simpletiming characteristicse-
portedin Section3.2—e.g.,keypairs typed with alter
natepairstendto have much lower inter-keystroke la-
teng/ than keypairs typed with the samehand—were
obsenredto be essentiallyuserindependent.This sug-
gestghattyping statisticshave alargecomponenthatis
commonacrossa broaduserpopulationandwhich thus
canbeexploited by attaclersevenin theabsencef ary
trainingdatafrom thevictim.

Totestthis hypothesidurther, we hadfour userginclud-

ing User1 and2, from our previous experiments)type

the samesetof five randomly-selectegassverds. Pass-
words 1 and2 have length8. Passwords3 and4 have

length7, andpassverd 5 haslength6. Herbivore then
runsthe n-Viterbi algorithm using the typing statistics
from User1 and?2 to infer passwerdstypedby the four

testusersseparatelyTablel shovs the percentag@osi-

tion of the real passverdsoccurredin the outputcandi-
daterankinglist, whichis thepercentagef thepassverd

spaceheattacler hasto searchbeforehefindstheright

passverd. User3 did nottypePassvord 2 sotheentryis

notavailable.

This experimentshavs severalinterestingresults:

e Unsurprisingly inferring a users passverd canin
generalbe donesomavhat more effectively if one
usestraining datafrom the sameuserratherthan
trainingdatafrom otherusers.

¢ The distancebetweenthe typing statisticsof two
userscanvary significantly accordingto how one
chooseghe pair of users. A userU,’s typing pat-
ternmightbemoresimilar to userU,’s thanto user
Uc's. Thusit cangive betterresultsto useU,'s
training datathanU¢'s training datato infer pass-
wordstyped by U,. In this experiment,it shavs



thatin generalusingUser1’s training datagivesa
betterresultto infer passwardstypedby User3 than
usingUser2’s trainingdata. And User2’s training
datagivesabetterinferencefor passverdstypedby
User4 thanUserl’strainingdata.

e Mostimportantly this experimentshawvs thattrain-
ing datafrom oneusercanbe successfullyapplied
toinfer passwerdstypedby anotheuser Hencethe
attackcanbe effective evenwhenthe attacler does
not have typing statisticsfrom thevictim.

5.5 Extensions

We expectthatHerbivore could alsobe usedto infer in-

formationabouttext or commandghatuserstype. The
entropy of written Englishis very low (about0.6-1.3
bits percharactefSha5() in comparisorto theamount
of informationleaked by inter-keystroke timings (about
1 bit of informationperkey pair; seeSection3). How-

ever, mountingsuchan attackwould appearto require
bettermodelsof written text [RN95]. In ary case,we

have notstudiedsucha scenaridn our experimentsand
we leave this for futurework.

6 RelatedWork

Timing analysishas previously beenusedby Kocher
to attack cryptosystemgKoc99. Trostle exploited a
similar idea, shaving how a malicioususeron a multi-
userworkstationcangaininformationaboutotherusers’
passwerdsusing CPU timings [Tro9g. We expectour
Hidden Markov Model techniqueamight find applica-
tionsin Trostle’sthreatmodelaswell.

Most recently other researcherdhave independently
pointed out the possibility of timing attackson SSH
[DS01. Someof their obserationsreveal additional
weaknessein SSH: For instance,they notedthat the
SSH 1. x protocol reveals the exact length of pass-
words, becauseciphertets containa length field sent
in the clear (SSH 2 doesnot have this problem);they
discussechow to dealwith the presenceof backspace
charactersand,they initiatedaninvestigation of theim-
pactof timing attackson othersessiordata(suchasshell
commandsypedin the SSH session).

7 Countermeasures

Although SSH providesan encryptedandauthenticated
link betweenthe local host and the remote machine,
an eavesdroppecanstill learninformationabouttyped
keystrolkesdueto two weaknessesf SSH. First, every

individual keystroke that a usertypesis sentto the re-
motemachinen anindividual IP paclet (exceptfor meta
keys suchas Shi ft andCirl); second,as soonas
commandoutputis available on the remotemachine it
is sentto the local hostin one or multiple IP paclets,
leakinginformationon the approximatesize of the out-
put. We have shawvn in this paperhow theseseemingly
minor weaknessekeadto severereal-world attacks.

Notethatin our traffic signatureattack,the attacler can
tell thatthe useris typing passverds becausehereare
no echopaclets. Sooneway to fix this problemis that
whenthesener detectghattheechomodeis turnedoff,
thesener canreturndummypacketsthatwill beignored
by theclientwhenit receveskeystroke pacletsfrom the
client. Thisfix canreducethe effectivenesf thetraffic
signatureattackbut couldfail in otherattackssuchasour
nestedSSHattackwheretheattacler canguessvhenthe
useris typing his passwverd by simply monitoring the
network connections. This fix doesnot prevent inter-
keystroke timing information,though.

To preventtheattackswe needto preventtheleakageof

thetiming informationof the keystrokes. Onenaive ap-

proachmightbeto modify SSHsothatuponreceving a

keystroke with lateng lessthann millisecondsrom the

previouskeystroke, theprogramwill delaythepacletby

arandomamountof up to n milliseconds.Becauseur

experimentindicateshatthe spectrunof thelateng be-

tweentwo keystrokes of continuoustyping is between
0-500millisecondswe couldsetn = 500for example,
and sucha randomdelay would randomizethe timing

informationof the keystrokes. Sucharandomdelayim-

posesanoverheadf about250millisecondsonaverage.
Unfortunatelyif theattacler canmonitorthe sameuser
login mary timesandcomputethe averageof the laten-
ciesof the passward sequenced)e canreducethe effec-

tivenessof the randomizednoise. For example,if the

attacler cangetthetiming informationof a users SSH

authenticatiorfor 50 times,the noisecontritutedby the

randomdelayis only about20—40milliseconds.Sowe

shouldnot usethis method.

A betterway to preventleakageof inter-keystroke tim-
ing informationis to sendtraffic at a constantrate of
A paclets per secondwhenthe link is active. Choos-
ing A presentsa tradeof betweenusability and over-
head:Increasingk reduceghe dummytraffic but cause
longerlateng for the user Assume,for example,that
we setA = 50 milliseconds.Sincethe lateny between
two keystrokesis usually greaterthan 50 milliseconds
and the network delay is alreadyat leastin the tens
of milliseconds,this may be a reasonabldradeof be-
tweencommunicatioroverheadandadditionaldelay In
sucha scenario,the SSH client would always senda



datapaclet every 50 milliseconds. Assuming64 byte
paclets(40 bytesfor IP and TCP headersand24 bytes
for SSH data), the communicationoverheadis 1280
bytes/secondyhich canevenfit in low-bandwidthcon-
nections,suchas modemconnections.If no real data
needsto be sent, the client will send dummy traffic
which the remotemachineignores® If the usertypes
multiple keys in a singletime period,the keystrokesare
bufferedandsenttogethetin the next schedulecaclet.
While thismethodpreventstheearesdroppefrom learn-
ing timing information about keystrokes typed at the
clientside,it doesnot preventinformationleakagerom
the size of responseacletsfrom the remotemachine.
Hencethe sener sidewould alsoneedto sendresponse
traffic ata constanpaclet ratesimilarto theclientside.

8 Conclusion

In this paper we identifiedseveral serioussecurityrisks
in SSH dueto two weaknessesf SSH: First, the trans-
mitted pacletsarepaddedonly to an eight-bytebound-
ary (if a block cipheris in use),which revealsthe ap-
proximatesize of the original data. Secondjn interac-
tive mode, every individual keystroke that a usertypes
is sentto the remotemachinein a separatdP paclet
immediatelyafter the key is pressedexceptfor some
metakeyssuchShi ft or Ct r | ), whichleakstheinter
keystrolketimingsof userstyping. We shavedthatthese
two weaknessereveal a surprisingamountof informa-
tion on passverds and othertext typed over SSH ses-
sions(aboutl bit of information per characterpair in
the caseof randomlychosernpasswverds). This suggests
that SSHis notassecureascommonlybelieved.

Thelessonsve learnedandthetechniquesve developed
in this paperapply to a generalclassof protocolsthat
aim to provide securechannelshetweermachines.We
shaw that timing information opensa new setof risks,
andwe recommendhat developerstake carewhende-
signingthesetypesof protocols.
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A The n-Viterbi Algorithm

The Viterbi algorithmis widely usedin solving HMM
problems Givenanobseration(y,,... ,yy) of aHMM,
the Viterbi algorithm inductively computesthe most
likely sequencéq,,d,, ... ,¢) thatgeneratedhe obser
vation for eacht =1,2,...,T. Let §q;) be the most
likely sequenceat time t that endswith stategq,, with

correspondingposteriorprobability V(¢;). The Viterbi
algorithmstartswith
and

S(a;) =qy V(dy) = Priay|yy].

andcomputes
V(a) = maxPriy| o] Price|6 1]V (1)

Thenwe let g,_, bethe statethat maximizesthe above
expressionanddefineS(q;) to be S(q,_,)|¢;. Thefinal
resultof the Viterbi algorithmreturnsthe mostlik ely se-
guenceof a givensequencef obsenations.

We extend the Viterbi algorithmto the n-Viterbi algo-
rithm, which returnsthe n mostlikely sequencegiven
a sequencef obsenations. Figure12 shows a diagram
of then-Viterbi algorithm. At eachtime slicet, we asso-
ciatealist with eachpossiblestatenodethatkeepsrack
of the n mostlikely sequenceshatleadto the stateat
thattime slice.

Let S'(q;) denotethe setof then mostlikely sequences
endingwith stateg; attimet, with correspondingos-
terior probabilitiesV"(q;). At timet = 1, we initialize
the n-Viterbi algorithmin the sameway asthe Viterbi
algorithm,

S'(ay) = {ay}

For timet, welet

and Vn(ql) = Prig|y,]-

V(qr) =nmax  {Prly;|q]Pric|o_4]v
[G_1€QVveV(g_y)}

wherenmaxdenoteghe setof then largestvalues. We
let S'(q;) bethesetn highest-probabilitysequencesor-
respondingo the choiceof V"(q;) above.

Exceptfor the first and the secondstep, at eachtime
slice, for eachpossiblestate, we needto go through
n-|Q| possibilitiesand computethe n mostlikely se-
guenceghatleadto that stateat thattime slice. Hence
the compleity of n-Viterbi algorithmis O(n|Q|?T).



t=1 =2 t=3 =T

Figure12: A pictorial representationf the n-Viterbi Algorithm. Eachverticalslice represents time step,andeach
noderepresenta possiblestateat a particulartime slice. Thelist associateavith eachnodestoresthe n mostlikely
sequencesndingwith thatstateup to thattime slice.



