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Abstract

Wepresentanew systemfor automaticallydetectingfor-
mat string securityvulnerabilitiesin C programsusing
a constraint-basedtype-inferenceengine. We describe
new techniquesfor presentingtheresultsof suchananal-
ysis to theuserin a form thatmakesbugseasierto find
andto fix. Thesystemhasbeenimplementedandtested
onseveralreal-world softwarepackages.Our testsshow
that thesystemis very effective, detectingseveral bugs
previously unknown to theauthorsandexhibiting a low
rateof falsepositivesin almostall cases.Many of our
techniquesareapplicableto additionalclassesof secu-
rity vulnerabilities,aswell asothertype-andconstraint-
basedsystems.

1 Intr oduction

Securingsystemsthatinteractwith maliciouspartiescan
beatremendouschallenge.Indeed,systemswritten in C
areespeciallydifficult to secure,given C’s tendency to
sacrificesafetyfor efficiency. Oneof themoresubtlepit-
falls facingimplementorsis the so-calledformat string
vulnerability. Sincethe discovery of this failure mode
in the past year, security experts have identified for-
matstringvulnerabilitiesin dozensof widely-deployed
security-criticalsystems[2, 4, 5, 8, 9, 10, 11, 22, 23, 24,
25, 27,30, 35, 43], andattackershave begunexploiting
thesesecurityholeson a large scale[10, 27], gaining
root accesson vulnerablesystems.It seemslikely that
many legacy applicationsstill containundiscoveredfor-
matstringvulnerabilities.

Formatstringbugsarisefrom designmisfeaturesin the
C standardlibrary combinedwith a problematicimple-
mentationof variable-argumentfunctions. Considera
typical usageof formatstrings:

printf("%s", buf); (correct)
�
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Thefirst argumentto printf() is a formatstringthat
specifiesthe numberandtypesof the otherarguments.
No checkingis done,eitherat run-timeor compile-time,
to verify thatprintf() wasindeedcalledwith thecor-
rectnumberandtypesof arguments.Thusthefollowing
innocuous-lookingsimplificationof the above call can
bedangerous:

printf(buf); (maybeincorrect!)

If buf contains a format specifier (e.g., “%s”),
printf() will naively attemptto readnonexistentar-
gumentsoff thestack,mostlikely causingthe program
to crash. The C standardlibrary containsa number
of other, similar primitives that put the programmerat
risk for formatstringbugs. Otherexamplesincludethe
message-loggingsyslog() function,aswell asset-
proctitle() , which setsthe X window nameasso-
ciatedwith thecurrentprocess.

A perhapsunexpectedconsequenceof format string
bugs is that they canbe devastatingto security. When
a knowledgeableadversaryhascontrol of the valueof
theformatstrings involved in a formatstringbug, they
canuses to write to arbitrarymemorylocations.For ex-
ample, including the “%n” specifierin a format string
causesprintf -like functions to store the numberof
charactersprintedsofar into a locationpointedto by the
associatedargument.Whencombinedwith othertricks,
this often leadsto a completecompromiseof security.
Techniquesfor exploiting formatstringbugshave been
describedelsewhere[30]; for thepurposesof this paper,
thedetailsareunimportant.

Themaincontribution of this paperis to describea sys-
tem for automaticallydetectingformat string bugs at
compile-time.Our systemappliesstatic,type-theoretic
analysistechniquesfrom the programminglanguages
literatureto thetaskof detectingpotentialsecurityholes.
We have implementedour systemasa tool built on top
of anextensibletypequalifier framework [19]. We have
testedour tool on a numberof real-world softwaresys-
tems,in the processindependentlyre-discovering sev-
eralformatstringbugsthatwereunknown to theauthors
at thetime.



while (fgets(buf, sizeof buf, f))
�

lreply(200, buf);
...

�
void lreply(int n, char *fmt, ...)

�
...
vsnprintf(buf, sizeof buf, fmt, ap);
...

�
Figure 1: A format string vulnerability found in
wuftpd 2.6.0,paraphrasedfor brevity.

Beforedescribingthe ideasbehindour tool in morede-
tail, we discusssomeof thealternativesto staticanaly-
sis;morearediscussedin Section6.

Onenaturalalternative to staticanalysisis testing. The
main weaknessof testingis coverage—itis extremely
difficult to constructa test suite that exercisesall pos-
sible pathsthrougha program. Unfortunately, a secu-
rity auditor is most interestedin exactly the pathsthat
arenever followed in ordinaryoperation.For example,
a major sourceof format string bugscomesfrom error
reportingcode(e.g.,calls to syslog() ). Suchcodeis
triggeredonly onrare,exceptionalpaths,andit is easyto
overlooksuchpaths—andhence,suchbugs—withrun-
timetesting.With staticanalysis,ontheotherhand,vul-
nerabilitiescanbeproactively identifiedandfixedbefore
thecodeis ever run.

Anotheralternative to automatedstaticanalysisis man-
ual codereview. Unfortunately, humansare not espe-
cially goodat finding formatstring bugsby inspection.
Figure1showsarepresentativeexample,excerptedfrom
a recentversionof wuftpd [2, 43]. The codein Fig-
ure 1 readsa line of text from the network andpasses
it to lreply() , whereit will laterbeusedasa format
string specifierto vsnprintf() . The correctsyntax
would have beenlreply(200, "%s", buf) , but
the programmeromittedthe "%s" . As before,this in-
troducesaserioussecurityvulnerability.

In real code, the omission of a format string is of-
ten locatedfar away from the placewherethe require-
ment for a trustedformat string specifierbecomesap-
parent. In the caseof our wuftpd example, the of-
fending call to lreply() was not even in the same
file as the eventualuseof vsnprintf() . Figure 1
alsoshowswhy naivestaticanalysis—e.g.,searchingfor
all occurrencesof printf(s) andreplacingthemwith
printf("%s", s) —doesnotwork in practice.Very
oftenformatstringbugsoccurwithin wrapperfunctions

to printf() , and thesenon-localizedbugs require
moresophisticatedanalysistechniques.

A third alternative would be to re-implementtheappli-
cationin a safelanguage(suchasJava). However, such
an approachis likely to be too costly for most legacy
applications.

1.1 Type Systemsfor Finding Format String
Bugs

Formatstring vulnerabilitiesoccurwhenuntrustworthy
data(i.e.,datathatcouldpotentiallybecontrolledby an
attacker) is usedasa formatstringargument.Therefore,
in our analysiswe treatall programinputsthatcouldbe
controlledby the adversaryas “tainted,” and we track
thepropagationof tainteddatathrougheachof thepro-
gram’s operations. Any variableassigneda value de-
rived from tainteddatawill itself bemarkedastainted,
andsoon. If thereis any executionpathin whichtainted
datawill be interpretedasa formatstringby someC li-
braryfunction,we raiseanerror.

Our approachis thusconceptuallysimilar to Perl’s suc-
cessfultaint mode[32, 42], but with an importantdif-
ference. Ratherthan using run-time taint propagation
(which is moreeasily implementedfor interpretedlan-
guages,suchasPerl, thanfor compiledlanguageslike
C), we applya statictaint analysissothatwe candetect
bugsbeforetheprogramis ever run.

Wemodeltaintingby extendingtheexistingC typesys-
temwith extra typequalifiers. ThestandardC typesys-
temalreadycontainsqualifierssuchasconst ; we add
a new qualifier, tainted , to tag datathat originated
from anuntrustworthy source.We label thetypesof all
untrustedinputsastainted,e.g.,

tainted int getchar();
int main(int argc,

tainted char *argv[]);

Thefirst annotationspecifiesthat the returnvaluefrom
getchar() shouldbeconsideredtainted.Thesecond
specifiesthat the command-lineargumentsto the pro-
gramshouldbetreatedasa taintedvalue.

We constructtyping rulesso that taint informationwill
bepropagatedappropriately. Givena smallsetof initial
tainting annotations,we infer a typing for all program
variablesindicatingwhethereachvariablemight beas-
signeda valuederivedfrom a taintedsource.If any ex-
pressionwith a tainted typeis usedasaformatstring,
wewarntheuserof thepotentialsecurityhole.Thisuse
of typeinferencefor automateddetectionof securityvul-
nerabilitiesin legacy applicationsis, to our knowledge,
novel, and we conjecturethat it may find applications



elsewhereaswell.

We would like to emphasizethat,althoughin this paper
we presenttype qualifiersin the context of finding for-
matstringbugsin C programs,in factour implementa-
tion is expresslydesignedto beextensibleto otherkinds
of typequalifiers,andindeedtheideaof a typequalifier
systemcanbeappliedto moststandardtypesystems.

A key advantageto usingtypequalifiersis that they ex-
tendtheexistingtypesystemin abackwards-compatible
way. Our tool comeswith default type annotationsfor
thestandardC library functions,whichallowsusto ana-
lyze legacy codefor format string vulnerabilitieswith
little annotationeffort from the codereviewer and no
modificationto applicationsourcecode. At the same
time, typequalifiersprovide a way for developersto ex-
pressmoredetailedassertionsabouttrust relationships
in theprogram,andthereforeprogrammerswhoarewill-
ing to spendtime adding application-specificannota-
tionscanreaptheextra benefitsof this additionalinfor-
mation. In otherwords,typequalifiershave thebenefi-
cial propertythat thevalueoneobtainsfrom the tool is
proportionalto theeffort invested.

Type systemshave several advantagesover other pro-
gramanalysistechniques:

1. Types are a familiar way to annotateprograms.
We wantto make it convenientfor programmersto
addinformationto their programsabouttaintedin-
putsandmust-not-be-taintedvariables.Type-based
methodsmeetthis goal, becauseprogrammersare
accustomedto expressinginvariantsusingtypes.

2. Typesarea familiar way to expressthe outputof
our analysis. To be useful, when errors are re-
ported,our tool needsto explainwhy theerroneous
codewasrejected.Giving a typing on therelevant
programvariablesis away to expressthisoutputin
a form thatprogrammerscanreadilyunderstand.

3. Typetheoryis well understood.Therearemany ef-
ficient algorithmsknown in the programminglan-
guagescommunityfor inferring andmanipulating
types.

4. Typesprovideasoundbasisfor formalverification.
Oncewe have foundandeliminatedbugsfrom our
code,it is usefultohavetoolsto verify thatthereare
noformatstringbugsleft. Becauseit is well-known
how to build a soundtype system(i.e., onewhere
all programsthattypecheckwill beguaranteedfree
of formatstringbugs),typesprovide a singlefoun-
dationthat canbe appliedboth to bug-findingand
to softwareverification.

Prelude Files

Qualifier Lattice

Preprocessed SourceParser

Constraint Database Emacs GUI

Constraint Generation/Solving

Figure2: The architectureof the cqual system. The
C sourcecode and the configurationfiles are parsed,
producingan annotatedAbstract Syntax Tree (AST).
cqual traversesthe AST to generatea system(or
database)of typeconstraints,which aresolvedon-line.
Warningsare producedwhenever an inconsistentcon-
straint is generated.The analysisresultsarepresented
to the programmerin an emacs-basedGUI, which in-
teractively queriestheconstraintsolver to help theuser
determinethecauseof any errormessages.

In summary, wefocusourattentionontype-basedmeth-
odsprimarily becausetypesprovide a uniform, under-
standableinterfaceto our tool.

Although our work relies heavily on theoreticaltech-
niquesfrom theprogramminglanguagescommunity, we
emphasizethatoureffortsareaimedatproviding aprac-
tical tool. Thus,we setout to build a tool that is easy
to use,efficient on commonhardware,effective at find-
ing typical formatstringbugs,andunlikely to generate
many falsealarms.

2 Background

Our tool is built on top of cqual , a C implementation
of an extensibletype qualifier framework [19]. In this
sectionwe describetheunderlyingtheoryanddesignof
cqual , which hasbroadapplicability asan extension
of theC typesystem.

2.1 SystemAr chitecture

Figure 2 shows the structureof the cqual tool. The
maininputto thetool is thepreprocessedC codetheuser
wishesto analyze.Theuseralsoprovidestwo typesof
configurationfiles to customizecqual to theparticular
checkingtask. The lattice file describesthe type quali-
fierstheuseris interestedin (Sections2.2and 2.3).The
preludefilescontainannotatedfunctiondeclarationsthat
overridethedeclarationsin thesourcebeinganalyzed.

Given preprocessedC code and configuration files,



cqual performstype inferenceon the program(Sec-
tion 2.4). Finally, theresultsof thetypeinferencephase
are presentedto the user interactively using Program
AnalysisMode(PAM) for emacs(Section3).

Theconfigurationfilesmakecqual usable“out-of-the-
box,” i.e.,withoutmakingany changesto thesourceex-
ceptpreprocessing.We wereableto analyzeall of our
benchmarkprogramswith thesamestandardpreludefile
and,in virtually all cases,nodirectchangesto theappli-
cationsourcecode.Typically, a few application-specific
entrieswereaddedto a speciallocal preludefile, to im-
prove accuracy in the presenceof wrappersaroundli-
braryfunctions(thoughtheGUI indicateswhichonesto
add). This goesa long way toward makingcqual an
easilyusabletool.

2.2 TypeQualifiers and Subtyping

To find formatstringbugs,weuseatypequalifiersystem
with two qualifiers, tainted and untainted . We
mark the typesof valuesthat can be controlledby an
untrustedadversarywith tainted . All other values
aregiventypesmarkeduntainted . This is similar to
theconceptof taintingin Perl[32, 42].

Intuitively, cqual extendsthetypesystemof C to work
over qualifiedtypes, which arethecombinationof some
numberof type qualifierswith a standardC type. We
allow typequalifiersto appearon every level of a type.
Examplesof qualifiedtypesare int , tainted int ,
untainted char � (a pointerto anuntaintedcharac-
ter),andchar � untainted (anuntaintedpointerto
acharacter).

The key ideabehindour framework is that type quali-
fiers naturally inducea subtypingrelationshipon qual-
ified types. The notion of subtypingmost commonly
appearsin object-orientedprogramming. In Java, for
example,if B is a subclassof A (which we will write�����

), thenanobjectof classB canbeusedwherever
anobjectof classA is expected.

Considerthefollowing exampleprogram:

(1) void f(tainted int);
untainted int a;
f(a);

In program(1), f , which expectstainteddata,is passed
untainteddata.In our system,this programtypechecks.
Intuitively, if a functioncanaccepttainteddata(presum-
ably by doingmorecheckson its input), thenit cancer-
tainly acceptuntainteddata.

Now consideranotherprogram:

(2) void g(untainted int);
tainted int b;
g(b);

In this case,g is declaredto take anuntainted int
asinput. Theng is calledwith a tainted int asa
parameter. Our systemshouldcomplainaboutthis pro-
gram: tainteddatais beingpassedto a functionthatex-
pectsuntainteddata.

Putting thesetwo examplestogether, we have the fol-
lowing subtypingrelation:

untainted int
�

tainted int

As in object-orientedprogramming,if 	�
��	�� (read	�

is a subtypeof 	�� ), then 	�
 can be usedwherever 	��
is expected,but not vice-versa. We write 	�
 � 	�� if
	�
���	�� and	�
��� 	�� .

2.3 The Qualifier Lattice

The cqual tool needsto know not only how integer
typeswith qualifiersrelatebut alsohow qualifiersaffect
pointer types,pointer-to-pointer types, function types,
and so on. Fortunately, standardresultson subtyping
tell ushow to extendthesubtypingon integersto other
datatypes[1, 28].

We supplycqual with a configurationfile placingthe
qualifiers(in this case,tainted anduntainted ) in
a lattice [14]. A lattice is a partialorderwherefor each
pair of elements� and � , the least upper bound and
greatestlower boundof � and � bothalwaysexist. Us-
ing a lattice makes the implementationslightly easier.
For finding formatstringbugs,we specifyin the lattice
configurationfile thatuntainted

�
tainted .

Given this configurationfile, cqual extendsthe sup-
pliedlatticeonqualifiersto asubtypingrelationonqual-
ified C types.Wehavealreadyseenoneof thesubtyping
rules:

� 
� � �� 
 int � � � int

This is a natural-deductionstyle inferencerule. In gen-
eral,an inferencerule saysthat if the statementsabove
the line aretrue, thenthe statementsbelow the line are
also true. This particularinferencerule is readas fol-
lows: If

� 
�� � � in the lattice (
� 
 and

� � arequal-
ifiers), then

� 
 int is a subtypeof
� � int (note

the overloadingof � ). For our example,it meansthat
untainted int � tainted int . The samekind
of rule appliesto any primitive type (char , double ,
etc.).



For pointertypes,weneedto bea little careful.Naively,
wemight expectto usethefollowing rule for pointers:

� 
� � � 	�
���	��� 
 ptr ��	�
���� � � ptr ��	 �!� (Wrong)

Herethetype
� 
 ptr ��	�
"� is apointerto type 	�
 , andthe

pointeris qualifiedwith
� 
 . Notethat 	�
 representsan

extendedC type,andthusmay itself bedecoratedwith
tainted/untaintedqualifiers. In C, the type

� 
 ptr ��	�
"�
mightbewritten

typedef T1 *ptr_to_t1;
typedef Q1 ptr_to_t1 q1_ptr_to_t1;

The rule (Wrong) saysthat if
� 
#� � � in the lattice

and 	�
 is a subtypeof 	�� , then we can concludethat� 
 ptr ��	�
�� is asubtypeof
� � ptr ��	��$� .

Unfortunately, thisturnsoutto beunsound,asillustrated
by thefollowing codefragment:

tainted char *t;
untainted char *u;

t = u; /* Allowed by (Wrong) */
*t = <tainted data>;

/* Oops! This writes tainted data
into untainted buffer *u */

Accordingto (Wrong),thefirst assignmentt = u type-
checks,becauseptr � untainted char � is a subtype
of ptr � tainted char � . Then *t becomesan alias
of *u , yet they have differenttypes. Thereforewe can
storetainted datainto *u by goingthrough*t , even
though*u is supposedto beuntainted.

This is a well-known problem,and the standardsolu-
tion, which is followedby cqual , is to usethefollow-
ing rule:

� 
�� � � %&
 � %'�� 
 ptr ��%$
���� � � ptr ��%��$�
Thekey restrictionhereis that %$
 � %'� . Intuitively, this
restrictionsaysthatany two objectsthatmaybealiased
mustbegivenexactly thesametype.1 In particular, if %$

and %�� aredecoratedwith qualifiers,thequalifiersmust
themselvesmatchexactly, too.

2.4 Type Infer ence

Sofar we have concentratedon the typechecking prob-
lem: given a programfully annotatedwith type speci-

1Javausestherule (Wrong)for arrays.In Java, if S is asubclassof
T, thenS[] is a subclassof T[], whereX[] is anarrayof X’s. Java gets
away with this by insertingrun-timechecksat every assignmentinto
anarrayto make surethetypesystemis not violated.Sincewe seeka
purelystaticsystem,Java’s approachis notavailableto us.

fiers on all expressions,confirm that the typesarecon-
sistent.Typecheckinga programis straightforward. For
example,theassignmentx = y typechecksif andonly
if thetypeof y is a subtypeof thetypeof x . Thefunc-
tion call f(x) typechecksif andonly if thetypeof x is
asubtypeof thetypeof theformalparameterof f . More
detailedrules,andaproofof soundness,canbefoundin
[19].

The typecheckingsystemdescribedso far, however, is
not useful in practice. The problemis that it requires
all typesto beannotatedwith qualifiers:for our running
example,all typeswould needto be marked as either
tainted or untainted at every level of eachtype.
Clearly this is an undesirablepropertyfor two reasons.
First, we are interestedin finding bugs in legacy code
that doesnot have any type qualifier annotations.Sec-
ond, even if we arewriting a programwith type qual-
ifiers in mind, addingand maintainingannotationson
every typein theprogramwouldbeprohibitively expen-
sive for programmers.

The solution to this problemis type inference. In this
model, the user introducesa small numberof anno-
tations at key placesin the program,and cqual in-
fers the typesof the otherexpressionsin the program.
cqual generatesfresh qualifier variables (variables
which rangeover type qualifiers)at every positionin a
type,constrainedbyany annotationsspecifiedin thepro-
gram. cqual analysestheprogramandgeneratessub-
typing constraints—i.e., inequalitiesof the form 	�
(�
	�� for qualifiedtypes	�
 and	 � .
A solution to a set of subtypingconstraintsis a map-
ping from qualifier variablesto qualifierssuchthat all
of the constraintsarevalid accordingto our subtyping
rules. Thus,in our system,we solve the constraintsby
assigningevery qualifiervariableto eithertainted or
untainted .

In our type inferencealgorithm,qualifier variablesare
introducedat every positionin a type. We write quali-
fier variablesin italics, andnamethemafter the corre-
spondingprogramvariables.The ) th argumentof func-
tion f hasassociatedqualifier variable f argi, and the
returnvalueof functionf hasqualifiervariablef ret.

Sincequalifiersareimplicitly introducedonall levelsof
a type by the type inferencealgorithm, to namethem
wemodify thenameof theoutermostqualifierof a type.
For example,given the declarationchar *x , cqual
generatestwo qualifiervariables:thevariablex qualifies
the referencex itself, andthe variablex p qualifiesthe
location *x . Moreover, the programmermay alsoex-
plicitly introducenamedqualifiervariablesinto thepro-



tainted char *getenv(const char *name); getenv ret p * tainted
int printf(untainted const char *fmt, ...); printf arg0 p * untainted

char *s, *t;
s = getenv("LD LIBRARY PATH"); getenv ret + s

getenv ret p * s p
t = s; s + t

s p * t p
printf(t); t + printf arg0

t p + printf arg0 p

Figure3: An exampleof constraintgeneration.Theleft columnis acodefragment;theright columngivestheinferred
constraintson thequalifiervariables.

gram;in this case,they begin with a dollar sign(“$”) in
thesourcecodeto distinguishthemlexically from other
tokens.

For example,after the declarationchar *x; we as-
sign thequalifiedtypex p char * x to x . Similarly,
a functiondeclaredwith theprototype

tainted char *getenv(char *name);

is assignedthefollowing fully qualifiedtype:

getenv ret p char * getenv ret
getenv( getenv arg0 p char * getenv arg0 name);

(wheregetenv ret p � tainted )

If we then encounter an assignment x =
getenv(...) , our type inference algorithm will
concludethat the type of getenv() ’s return value
mustbeasubtypeof thetypeof x , i.e.,

getenv ret p char * getenv ret
� x p char * x .

As a consequence,we can infer (using the subtyping
rules introducedin Section2.2 and 2.3) that we must
have thefollowing constraintson thequalifiervariables:

getenv ret p � x p � tainted , getenv ret � x-
In essence,our declarationof getenv() hasensured
thatwhatever it returnswill be labeledastainted.Note
thatthismightbeusedto model,for instance,ascenario
whereenvironmentvariablesareunderthe adversary’s
control.

We give next a moredetailedexample. Figure3 shows
a fragmentof codethat manipulatestainteddatain an
unsafeway, along with the typing constraintsgener-
ated by the type inferencealgorithm. The constraint
getenv ret p � s p encodesthe conclusionthat the re-
turn value of getenv() is treatedas tainted(as dis-
cussedabove). The prototype for printf() (typ-
ically found in the global preludefile) specifiesthat

printf() must not be called with a tainted format
string argument,by requiring that its first argumentbe
asubtypeof untainted char * .

Thecall s = getenv("LD LIBRARY PATH") gen-
eratestheconstraints

getenv ret � s
getenv ret p � s p

Notice the equality constraint, arising from our cor-
rectedrule for subtypingpointer types. The assign-
mentt = s generatesa similar constraint.Finally, the
call printf(t) generatesa subtypingconstrainton
the printf arg0 p becauseprintf ’s first argumentis
const (seeSection4.4).

Taking the transitive closureof theseconstraints,we
have achainof deductions

tainted � getenv ret p � s p � t p

� printf arg0 p � untainted ,
implying that for this exampleto typecheck,we would
needtainted � untainted . As explainedin Sec-
tion 2.2, this doesnot hold in our lattice, so this code
fragmentdoesnot typecheck,indicatinga possiblefor-
mat string bug. This demonstrateshow our type infer-
encealgorithmcanbeusedto identify unsafemanipula-
tion of formatstrings.

In our implementation,the subtyping constraintsare
solved on-line as they are generated.If the constraint
systemeverbecomesunsatisfiable,anerroris flaggedat
the first illegal expressionin the code. This allows us
to pinpoint the locationof unsafeoperationson tainted
data. The inferencethen continuesafter any errors,
though in this casethe quality of the remainingerror
messagescanvary tremendously.

We observe thatefficient algorithmsfor this type infer-
enceproblemare known. Given a fixed-sizequalifier
lattice and . constraintsof the form /��10 , 0��1/ , or



tainted char *getenv(const char *name);
int printf(untainted char *fmt, ...);

/* Point 1 */
char *f3(char *s) { return s; }

/* Point 2 */
char *f2(char *s) { return f3(s); }

/* Point 3 */
char *f1(char *s) { return f2(s); }

int main()
{

char *s, *unclean;

/* Point 0 */
unclean = getenv("PATH");

s = f1(unclean); /* Point 4 */
printf(s); /* Point 5 */

}

Figure4: An exampleof a taint flow path. The string
unclean is taintedby the call to getenv at Point 0,
andultimatelythatdatais passedto printf atPoint5.

0'
2�304� , where / is a lattice elementand 0 , 0'
 , and
05� are qualifier variables,a solution to the constraints
canbecomputedin 67��.8� time usingwell-known algo-
rithms [21]. The ideais to expresstheseconstraintsas
a directedgraphwith qualifiervariablesasverticesand
subtypingconstraintsas directededges:the constraint9 
:� 9 � inducesan edgefrom 9 
 to 9 � . The constant
qualifierstainted anduntainted arealsovertices
in thisgraph,andadirectedpathfrom tainted to un-
tainted correspondsto a possibleformat string bug.
We call this patha taint flow path. SeeFigure4 for an
example.

3 User Interface

Thus far, we have presentedthe theoryunderlyingour
tool. For a programanalysisto beuseful,however, one
needsboth a soundtheoreticalfoundationandan intu-
itive,efficient interfacefor understandingtheresults.

In the folklore of type inference,it is well known that
themorepowerful a typeinferencesystemis, theharder
it is to understandwhy a programcontainsa typeerror.
For example,typeerrorsfrom a C compiler, which per-
formslittle inference,areeasyto localize.Thecompiler
simply reportsthe line numberwherethetypeerroroc-
curred,andthis is almostalwaysenoughto tell thepro-
grammerwhy theerroroccurred.

In our typequalifiersystem,however, typeerrorsoccur
at the point wherethe type constraintsystembecomes
unsatisfiable,andthatpoint canbedistantfrom theac-
tual sourceof the problem. Again, considerFigure 4.
In this example,the string unclean is taintedby the
call to getenv at Point 0, and ultimately that datais
passedto printf atPoint5. Giventhis inputprogram,
oursystemwill warntheuserof apotentialformatstring
bug at point 5. But programpoints1–5areall involved
in the error, and to understandandfix the error a pro-
grammermay needto examineall five programpoints.
In generaltheseprogrampointscouldbe spreadacross
multiplefiles.

Thusreportingline numberswith error messagesis no
longer enough. In this section,we describethe tech-
niqueswe useto displaytheresultsof our taintinganal-
ysis to the user. We emphasizethat without the GUI
describedin thissection,performingtheexperimentsde-
scribedin Section5 wouldhavebeenextremelydifficult.

3.1 Program AnalysisMode

Our tool cqual presentstheresultsof thetaintinganal-
ysis to the programmerusingProgram AnalysisMode
(PAM) for Emacs[20], aGUI developedatBerkeley that
is designedto addhyperlinksandcolor mark-upsto the
preprocessedtext of theprogram.

Figure5 showsascreenshotof a runof cqual onmuh,
anIRC proxyapplication.cqual initially displaysalist
of all files analyzedandany errorsthat occurred. The
usercanclick on a filenameto jump to thatfile or click
on an error messageto jump to informationaboutthat
error(seebelow).

Eachidentifier in a file is coloredaccordingto its in-
ferredqualifiers. Taintedidentifiers(thosewhosetype
containsa taintedqualifiersomewhere)arecoloredred,
untaintedidentifiersarecoloredgreen,andany identi-
fiersthatcouldbeeithertaintedor untaintedarenotcol-
ored. Intuitively, this last setof qualifierscould all be
marked untainted,but it is easieron the userto reduce
thenumberof markedup identifiers.

The usercan click on an identifier to display its fully
qualifiedtype,with eachindividualqualifiercoloredac-
cordingto its taintedness.

3.2 Added Features

Beyond the basic coloring of qualifiers, we designed
several extensionsto make it easyto find and fix po-
tential format string bugs. Many of thesefeaturesare
applicableto other kinds of qualifiers,and perhapsto



Figure5: Screenshotof a runof cqual on themuhapplication.

otherkindsof typeinferencesystemsaswell.

Taint Flow Paths. Recall from Section2.4 that the
subtypingconstraintscanbethoughtof asinducingadi-
rectedgraphamongqualifiers. A pathin theconstraint
graphfrom tainted to untainted indicatesa type
error.

For eachtypeerror, we provide a hyperlink to a display
of the particularpath from tainted to untainted
thatcausedthaterror. Sinceeachpathin theconstraint
graphtypically correspondsto aflow of datathroughthe
program,this helpsidentify theunsafesequenceof op-
erationsthat leadto a type error. However, sincethere
aretypically many suchpaths(andpossiblyevencycles)
in theconstraintgraph,displayingall of themmayover-
load the user. Therefore,to reducethe burdenon the
user, wedisplaytheshortestsuchpath,ascomputedwith
abreadth-firstsearch.In ourexperience,thisheuristicis
very importantfor usability.

Figure5 shows oneexample.Eachqualifier in thepath

is hyperlinkedto thedefinitionof theidentifierwith that
qualifier, which makes it easyto navigate the source
codeto determinethecauseof theerror.

Unannotated Functions. Our standardpreludefiles
contain annotatedversions of most standardlibrary
functions.Programs,of course,canalsousesystem-and
application-dependentlibraries.In orderto haveasound
inference,theusermustprovide annotateddeclarations
of theselibraries.

To make it easyfor the userto find andannotatethese
functions,wegeneratealist of hyperlinkstodeclarations
of functionsthathaveneitherbeendefinednorhavebeen
declaredin apreludefile.

A commonidiom in many programsis to write func-
tions that simply massagetheir inputs and then call a
library function. For example,a programmight con-
tain a function log error(fmt, ...) that calls
fprintf(stderr, fmt, ...) . As describedin
Section4.3, for soundnessandto improve theprecision



of the analysisthe usershouldaddannotationsto such
wrapperfunctionsaroundpotentially-vulnerablelibrary
calls. To aid in the annotationprocesswe provide a
hyperlinkedlist of unannotatedvariableargumentfunc-
tionsto theuser.

Hotspots. Althoughmany of thefeaturesof thesystem
are gearedtoward reducingfalsepositives and, where
there are real bugs, reducingthe numberof resulting
warnings,occasionallytheuserwill be facedwith hun-
dredsof warnings.

To help the userdecidewhich warningsto investigate
first,weattemptto determine“hotspots”in thecode.For
eacherror message,we computethe shortesttaint flow
pathandincrementa counterassociatedwith eachqual-
ifier on thepath.We thenpresenttheuserwith a hyper-
linkedlist of the“hottest” qualifiers,i.e., thoseinvolved
in the largestnumberof (shortest)taint flow paths.The
idea—borneoutby ourexperience—isthataddingasin-
gleannotationatanimportantpointcandramaticallyre-
ducethenumberof warnings.

Oneextensionto this idea,which we have not yet im-
plemented,is to find the hottestconstraintsratherthan
thehottestqualifiers. This mayhelppoint theuserto a
particularerroneousexpressionin the code,ratherthan
to anidentifier.

4 Finding Format String Bugs

In Section2 we describedthe basic workings of the
cqual tool. In this sectionwe discussextensionsto
make thebasictool soundin thepresenceof typecasts
andvariableargumentfunctions,and to decreasefalse
positives by using the programmer’s knowledgeabout
theprogrambeinganalyzed.

4.1 Leaf Polymorphism

Type inferenceis a powerful tool for computingquali-
fiersgivena few annotations.However, wheninferring
typesof functions,we needto introducesomenew ma-
chinery to avoid getting a large numberof falseposi-
tives.

To understandtheproblem,considerthefollowing sim-
pleexamplecode:

char id(char x) { return x; }
...
tainted char t;
untainted char u;
char a, b;

a = id(t); /* 1 */
b = id(u); /* 2 */

Becauseof call 1, we infer that x is a tainted
char , andthereforewe alsoinfer that a is tainted .
Thencall 2 typechecks(becauseuntainted char �
tainted char ), but we infer that b must also be
tainted .

While this is a soundinference,it is clearlyoverly con-
servative. Eventhoughthis simpleexamplelooksunre-
alistic, we encounterthis problemin practice,mostno-
tablywith library functionssuchasstrcpy . This leads
to a largenumberof falsepositives.

The problemarisesbecausewe are summarizingmul-
tiple stackframesfor distinct calls to id with a single
function type—x hasto eitherbeuntaintedeverywhere
or taintedeverywhere. The solution to this problemis
to introducepolymorphism, which is a form of context-
sensitivity.

A functionis saidto bepolymorphicif it hasmorethan
one type. Notice that id behaves the sameway no
matter what qualifier is on its argumentx : it always
returnsexactly x . Thus we can give id the signature; char id( ; char x) for any qualifier ; .

Operationally, whenwecall apolymorphicfunction,we
instantiateits type—wemake a copy of its type,replac-
ing all thegenericqualifiervariables; with freshquali-
fier variables.Intuitively, this correspondsexactly to in-
lining thefunction,exceptthatinsteadof makingafresh
copy of thefunction’scode,wemakeafreshcopy of the
function’s type.

We need a way to write down polymorphic type
signatures—forexample,we shouldbe ableto express
that if the strcat() function is passeda tainted
secondargument,thenits first argumentshouldalsobe
tainted , but notviceversa.Wecandothisby writing
a polymorphictype with sideconstraintson the quali-
fiers:

; char *
strcat( ; char *dst, < const char *src);

(where ;#= < )

More generally, we want to be able to specifya poly-
morphicfunction

; f( < arg0, > arg1, -"-"- ) ?
with somearbitraryinequalityconstraintson the quali-
fier variables; , < , > , etc. We definea concisenotation
for expressingtheseinequalityconstraintsby usingthe
following theorem.



Theorem 4.1 Let �A@B,���� beanyfinite partial order. Let
�DCFE�,�G�� bethelattice of subsetsof H with thesetinclu-
sionordering. Then�I@J,'�K� canbeembeddedin �DCLE�,�GK� ,
i.e., there exists a mapping MONP@RQ CLE , such thatS �UTWVYX M � S �ZG[M �IT�� and M ���B� is a finite sub-
setof H for all �]\#@ .

The theoremis formally proved in the appendix,and
maybeviewedasa concreteexampleof theDedekind-
MacNeilleCompletion[14].

This theoremenablesus to definethe partial order im-
plicitly by the namingof the qualifier variableson the
functionargumentsandreturntype.Werepresentaqual-
ifier S in thepartial order @ by M^� S � , which we denote
as a ’ ’ separatedstring of the integers in the set. If
M � S � �`_ba ,5CLc , then S is representedas d a C . Hence,
the polymorphic declarationof strcat can now be
writtenas

d a C char *
strcat( d a C char *, d a const char *)

which meansthat the qualifier on the returntype is the
sameasthequalifieron thefirst argument,andthatthey
are both supertypesof the secondargument. In other
words,since _ba ,5CLcfe _ga c , the namesof the qualifiers
encodethe implicit inequalityconstraint d a C = d a .
Hencefor any instantiationof strcat() , wehave

strcat ret p � strcat arg0 p
= strcat arg1 p -

This avoids the needto write subtypingconstraintson
thesidefor eachpolymorphicfunction.Instead,thecon-
straintsareencodedimplicitly in theannotationsthem-
selves,whichprovidesaconciseframework for express-
ing subtypingannotations.

To keep our implementationsimple, we only support
polymorphismfor library functions,i.e., functionswith
no code. To be more precise,any function may be
declaredpolymorphically, but the polymorphic proto-
type will not be typechecked against its implementa-
tion. This restrictionis not fundamental;therearewell-
known efficient algorithmsfor more generalpolymor-
phism[19, 33]. Our standardpreludefiles containap-
propriatepolymorphicdeclarationsfor mostof thestan-
dardlibrary functions.

4.2 Explicit TypeCasts

Thetreatmentof typecastsin theprogram’ssourcecode
is very importantto thecorrectoperationof our tool. In
mostcases,a pointercastis usedto implementgeneric
functions,to emulateobjectsubtyping,or to otherwise

bypassthe limitations of the C type system. Sincea
pointercastusuallypreservesthe semanticmeaningof
thedatabeingpointedto, we wantto preserve thetaint-
ednessof datathroughordinaryC typecasts.Consider
thefollowing programfragment:

void *y;
char *x = (char *) y;

If y is tainted,thenx shouldalsobetainted,eventhough
their typesdonototherwisematch.

Caststo void * areparticularlyproblematicbecause
one can castany type to a void * . For example,a
programmermight write

char **s, **t;
void *v = (void *) s;
t = (char **) v;

Here the type structureof v hastwo levels, while the
type structureof s hasthree. Hencethereis no direct
correspondencebetweenthequalifiersof thetwo types.

We solve this problemby “collapsing” qualifiersat a
type cast. If we cast a type h to a type i , then we
matchup the qualifierslevel-by-level betweenh and i
asdeeplyaspossible.For example,whencastingchar
*x to a void * , we add the constraints�j� cast
and � k � castp, wherecast is the namewe usefor
the qualifierson the void * . As soonthe structures
of types h and i diverge, we equateall the remaining
qualifiers. For example, when castinga char **x
to a void * , we add the constraints�l� cast and
� k � � k k �lm S!n h k . Putting this together, in the
above exampleif if either*s or **s is tainted,then*v
becomestainted. Whenv is castto char **t , both
*t and**t will becometainted.

We also allow the knowledgeableprogrammerto in-
dicatethat someprogramdatahasbeenvalidatedand
shouldconsequentlybeconsidereduntainteddespiteits
origins.Suchanannotationcanbeexpressedin oursys-
temby writing anexplicit castto anuntainted type.
To enablethis, we do not addany constraintsin caseof
an explicit castcontaininga qualifier. For example,in
thefollowing code

void *y;
char *x = (untainted char *) y;

the assignmentdoesnot taint x , regardlessof the in-
ferredtaintednessof y .

This featureallows thesecurity-awaredeveloperto im-
plementfunctionsthatparseaninputstringandfilter out
dangeroussubstringswithoutdepartingfrom our frame-
work. We assumethat the programmerwill add such
anannotationonly afterensuringthat thestring is vali-



datedby somerigorouscheckingprocedure.Thereis no
way to verify this assumptionautomatically. However,
oursyntaxis designedto make it easyto manuallyaudit
all suchannotations,sincethey cantypically be easily
identified by simply grep ing the sourcecodefor the
keyword untainted .

Collapsing the qualifiers at casts is conservative but
soundfor the mostcommoncastsin a program. There
aretwo waysin which our implementationis currently
unsoundwith respectto casts. First, we have found
that if we collapsequalifierson structurefields at type
casts,the analysisgeneratestoo many false positives
(too muchbecomestainted). Thus in our implementa-
tion if one aggregate is castto another, we ignore the
castanddonot collapsetypequalifiers.

Second,becausewe usea subtyping-basedsystem,the
qualifier-collapsingtrick doesnotfully modelcastsfrom
pointersto integers.Considerthefollowing code:

char *x, *y;
int a, b;

a = (int) x; (1)
b = a; (2)
y = (char *) b; (3)

For line (1), we generatetheconstraints� k � � � S .
For line (2), we generatetheconstraintS �oT . And for
line (3),wegeneratetheconstraintsT � � k � � . Notice
thatwe have � k#�p� k but we do not have � kq�p� k ,
soourdeductionsareunsound.

We leave asfuturework thesolutionto theseproblems.
We believe that the best solution will be to combine
techniquesthatattemptto recover thesemanticbehavior
of castswith conservative aliasanalysisfor ill-behaved
casts[12, 36, 37].

4.3 Variable Ar gumentFunctions

C allows functionsto have a variablenumberof argu-
ments,throughthevarargs languagefeature.However,
thereis no obviousway of specifyingconstraintson the
individual varargs: even their type is not fixed. For ex-
ample,in theexpressionsprintf(s, "%s", t) , if
t is tainted,thenwewould likeour typeinferencealgo-
rithm to forces to betaintedaswell.

We have extendedthe C grammarso that the varargs
specifier“ ... ” canbe annotatedwith a type qualifier
variable. In the sprintf() example,we would like
thefirst argumentof sprintf() to betaintedif any of

its varargsis tainted,soweusethetypedeclaration

int sprintf($ 1 2 char *,
untainted char *, $ 2 ...);

Consequently, if any of sprintf() ’s arguments(ex-
cluding the first two) aretainted,we will infer that the
first argumentmustbe taintedaswell. More precisely,
for eachqualifier 0 on any level of a typepassedto the
... of sprintf() , weaddtheconstraint0r� $ 1 2.

The type inferencesystemignoresparametersbeyond
thelastnamedargumentof anunannotatedvarargsfunc-
tion. Thus for soundnessthe user must annotateall
potentially-vulnerablevarargs functions; as mentioned
in Section3.2,we provide a list of unannotatedvarargs
functionsto the userto help with this task. Our imple-
mentationalsodoesnotmodelvarargsfunctionpointers
fully. Both of theseissuescanbeeasilyaddressed,and
weplanto dosoin thefuture.

4.4 const AllowsDeepSubtyping

As describedin Section2.3, we usea conservative rule
for pointersubtyping.This rulecanleadto non-intuitive
reversetaint flow, whichoftencausesfalsepositives.For
example,considerthefollowing code:

f(const char *x);
char *unclean, *clean;
unclean = getenv("PATH");
f(unclean);
f(clean); /* ’clean’ gets tainted */

Herethegetenv() functioncall imposesthecondition
uncleanp � tainted . The first call to f addsthe
constraintf arg0 p � uncleanp. The secondfunction
call generatestheconstraintf arg0 p � cleanp, thereby
marking*clean astainted,which is counter-intuitive.

Observe,however, thatf ’sargumentx is of typeconst
char * , sof cannotmake*x taintedif it is nottainted
in the first place. Consequently, we modify the con-
straintsin Section2 asfollows: For anassignment

const char *s;
char *t;
...
s = t;

we addtheconstraintst � s andt p � s p, if *s hasa
const qualifier. This is to be comparedwith the con-
straint s p � t p which we would otherwisehave im-
posed.In this way we canuse“deepsubtyping”to im-
prove precisionfor formalparametersmarkedconst .

Thisextraprecision,whichhelpsavoid many falseposi-
tives(especiallyin library functions),is themainreason



we work in a subtypingsystem. Note that we rely on
theC compilerto warntheprogrammeraboutany casts
which discardtheconst qualifier, i.e., we assumethat
a variablethatis const is never castto anything thatis
notconst .

5 Real-World Tests

We testedtheeffectivenessof cqual on severalpopu-
lar C programsthatarepotentiallyvulnerableto format
stringattacks.Someof themhadknown vulnerabilities;
othersdid not. In all cases,attackers from acrossthe
network have controlover somestring input to thepro-
gram.If this input is usedasa formatstring,a carefully
choseninput cancrashtheprogramor give theattacker
rootaccess.

5.1 Metrics

Theidealbugdetectorwoulddetectall extantbugswith-
out flaggingcorrectcodeasbeingincorrect.The initial
outputfrom cqual is a list of warningsthat indicatea
typeerrorsomewherein theprogram.Someof thesecor-
respondto realbugs;othersarefalsepositivesstemming
from ourconservativetaintingapproach(andlackof full
polymorphism).Falsenegativesarealsoof interest:we
would like all vulnerabilitiesto show up as warnings.
Onecomplicatingfactor is that many warningscanre-
sult from thesamebug—forexample,if many functions
readingnetwork datacall asinglefunctionthathasafor-
matstringbug,thenall thewarningsmaygoawaywhen
thatbug is fixed.

Wechosethefollowing metrics,measuredper-program:

s How many known vulnerabilities were detected
andhow many wentundetected?

s How many falsepositiveswerethere?

s How easywasit to checkwhethera warningwasa
realbug?

s How longdid theautomaticanalysistake,andwhat
wereits resourceneeds?

s How easywasit to prepareprogramsfor analysis?

5.2 TestSetup

Testing was performedon a dual-processor550MHz
PentiumIII Xeon machinerunning the Linux 2.2.16-
3smp kernel. Only one processorwas used in test-
ing. The machinehad2GB of memory. Tools usedin

preparationandtestingweregcc,versionegcs-2.91.66;
emacs,version 20.7.1; and PAM (ProgramAnalysis
Mode for emacs),version3. Someprogramswerepre-
pared(preprocessed)on an UltraSparc-basedmachine
runningSolaris7 andgcc2.95.2.

To testour system,we choseseveral widely-useddae-
monswritten in C that were likely to containsecurity
vulnerabilities.We alsoincludedseveralprogramswith
reportedformatstringbugsin orderto testthecoverage
(falsenegativerate)of oursystem.Two of thesecases—
mingetty [24] andmarsnwe [25]—are particularly in-
terestingbecausehandauditshad revealedpotentially
dangerousfunction calls, but owing to the difficulty of
manualverification,no actualbugshadbeenreported.
In someothercases,suchascfengine[35] andbftpd[4],
wedetectedbugsthatwereunknown to usat thetimeof
theexperiment,but thatwe laterdiscoveredhadalready
beenknown to others.

5.3 Results

Following is abrief descriptionof theanalysisresultson
sometestsamples:

cfengine: The first run gave many warnings;hotspot
analysisledto arealformatstringvulnerabilitypre-
viously unknown to us. The vulnerability turned
out to be known to others[35]. In addition,there
werea few warningsunrelatedto taintanalysis.

muh: The first run generatedmany warnings. After
looking at the hotspotsandthe list of unannotated
functions,six library functionwrapperswereanno-
tatedwith polymorphictypesin the local prelude
file. A subsequentrun showed twelve warnings,
one of which was a real vulnerability (known to
others[22]).

bftpd: The hotspotsfrom the first run guided us to
mark one function with a polymorphictype. Af-
ter this,thereweretwo warnings,oneof whichwas
a bug of which we werenot previously aware. We
later found that this bug hadalreadybeendiscov-
eredby others[4].

mars nwe: In the first run, therewerea few hundred
warnings,but the hotspotssuggestedmaking two
functionspolymorphic.Whenthis wasdone,there
wereno morewarnings.Note thatothershadpre-
viously reportedquestionablefunctioncallswhere
the auditorwasnot ableto determinewhetherthe
property could be exploited [25]; our tool gives
strongevidencethatthey arenotexploitable.



Name Version Description Lines Preproc. Time Warnings Bugs
cfengine 1.5.4 Systemadministrationtool 24k 126k 28s 5 1
muh 2.05d IRC proxy 3k 103k 5s 12 1
bftpd 1.0.11 FTPserver 2k 34k 2s 2 1
marsnwe 0.99 Novell Netwareemulator 21k 73k 21s 0 0
mingetty 0.9.4 Remoteterminalcontrolutility 0.2k 2k 1s 0 0
apache 1.3.12 HTTP server 33k 136k 43s 0 0
sshd 2.3.0p1 OpenSSHsshdaemon 26k 221k 115s 0 0
imapd 4.7c Univ. of Wash.IMAP4 server 43k 82k 268s 0 0
ipopd 4.7c Univ. of Wash.POP3server 40k 78k 373s 0 0
identd 1.0.0 Network identificationservice 0.2k 1.2k 3s 0 0

Figure6: Resultsof ourexperimentalevaluationof thetool. Thesizeof theprogramis measuredunpreprocessedand
preprocessed,in thousandsof linesof code,excludingcomments.Time is thewall clock time for a run of cqual .
Warningscountsthe total numberof warningsissuedby cqual after the GUI’s recommendationswerefollowed,
andBugsis thenumberof realvulnerabilitiesfound.

mingetty: No warningsissued.As with marsnwe,an
auditorhadpreviously reporteda suspiciousfunc-
tion call of unknown exploitability [24]; cqual
madeit easyto verify thatthesecallsweresafe.

apache: In the first two runs, thereweresomewarn-
ingsdueto inconsistentdeclarationsin theprelude
andthesourcefiles. After theseweresetright, no
warningswereissued.

sshd: The first run suggestedannotationof twelve
vararg functions. After theseweremadepolymor-
phic, therewerenomorewarnings.

imapd, ipopd, andidentd: No warningsissued.

5.4 Evaluation

Our systemreliably found all known bugsin the tested
programs,includingbugswewerenotawareof whenwe
appliedour tool. Codewithout known bugs,andwhich
waslaterexaminedby handandfoundto beunlikely to
containbugs,yieldedfew falsepositives.Indeed,in our
testsall falsepositivesoccurredin programswith actual
bugsoncevarargsfunctionswereannotated.Theheuris-
tics describedin Section3.2 were extremely useful in
suchcases.Theannotationof varargsfunctionsflagged
bycqual wasusuallyenoughto removemostfalsepos-
itives. The hotspotspinpointedthe actualbug in most
cases. The GUI was invaluablein the analysis,mak-
ing quickdetectionandcorrectionof bugspossible.The
sourceof mostbugswasfoundwithin a few minutesof
manualinspectionof unfamiliar code.Thus,our experi-
enceshowsthatfalsepositives—acommondrawbackof
many toolsbasedon staticanalysis—donot seemto be
aproblemin ourapplication.

Theautomatedanalysisusuallytook lessthana minute,

andnever morethantenminutes.Themanualeffort re-
quiredfor eachprogramwasusuallywithin a few tens
of minutes.

Preparationof the programsfor analysistypically took
betweenthirty and sixty minuteseach. Note that we
werenot familiarwith thelayoutandparticularstructure
of thesourcecodefor any of thetestprograms.Prepara-
tion consistedof modifying the build processto output
preprocessed,filtered source. In practicethis could be
moresystematicallyaddedto thebuild process.

In summary, we evaluatedour tool on a number of
security-sensitiveapplications,demonstratingtheability
of our tool to find securityholesthatwe werenot previ-
ouslyawareof. We feel that this validatesthepower of
ourapproach.

6 RelatedWork

Lexical Techniques. pscan [15] is a simpletool for
automaticallyscanningsourcecode for format string
vulnerabilities. pscan searchesthe input sourcecode
for lexical occurrencesof function calls syntactically
similar to, e.g., sprintf(buffer, variable) .
Becausepscan operatesonly on the lexical level, it
cannotreasonabouttheflow of valuesthroughthepro-
gram and fails in the presenceof wrappersaroundC
libraries (see,e.g.,Figure1). pscan alsocannotdis-
tinguishbetweensafecalls whenthe format string is a
variableandunsafecalls—it flagsany call wherea for-
matstringis non-constant.

Othershave exploited lexical sourcecode analysisto
find securitybugs[7, 38]. Themainadvantagesof lex-
ical analysisare that it is extremely fast, it can find
bugs in non-preprocessedsourcefiles, and it is virtu-



ally languageindependent. However, becauselexical
tools have no knowledgeof languagesemantics,many
errors—suchas those involving aliasing or non-local
controlpaths—cannotbedetected.

Taint Analysis. Our useof tainting,inspiredby Perl’s
taint mode[32], bearssomeresemblanceto a Biba in-
tegrity model [6] andthus is distantly relatedto previ-
ouswork onenforcinginformationflow policiesthrough
typing [29, 39, 40]. However, becausewe do not have
to dealwith maliciouslyconstructedcode,we avoid the
needto solve many of themostvexing challenges(e.g.,
covert channels)in enforcinginformationflow policies.

Type Qualifiers. The basicframework for type qual-
ifiers, aspresentedin Section2, is due to Fosteret al.
[19] andhasbeenusedto build Carillon,a tool for find-
ing Y2K bugsin C programs[16]. As describedin Sec-
tion 4, we developedseveral refinementsto make taint-
ing analysispractical: improved handlingof castsand
variable-argumentfunctions; the notationfor polymor-
phic type signatures;and the improved user-interface.
However, the onefeaturepresentin previous tools that
is missingfrom our systemis automatedtype inference
of polymorphictypesfor all functions.We areplanning
to incorporatepolymorphicrecursion[33] in the future
to remedythis.

Static Bug Detection. Many authorshave notedthat
static analysiscan be a useful tool for detectingbugs.
For instance,LCLint [18] usesdataflow analysis to
searchfor commonerrorsin C programs;Engleret al.’s
Meta-level Compilation[17] staticallysimulatesthebe-
havior of auser-definedfinitestatemachineandhasbeen
successfulat finding many new bugs;andtheExtended
StaticCheckingsystem(ESC)[26] usestheoremprov-
ing to verify thevalidity of annotatedJavasourcecode.

Thesesystemshave beenvery successfulat detecting
many commonbugs. However, they arenot well suited
to detectingformat string vulnerabilities,for two rea-
sons. First, they focus primarily on local properties,
whereasformat string vulnerabilitiesoften arisedueto
global mishandlingof strings. Second,many of them
(e.g.,ESCand,to a lesserdegree,LCLint) requireex-
tensive annotationsfrom theuser, which we would like
to avoid. Our type-basedtechniquesaddressthesechal-
lengesdirectly.

Run-time Techniques. Another defenseagainst for-
mat string vulnerabilitiesis to dynamicallyprevent ex-
ploits throughappropriatemodificationsto the C run-
time [3], compiler, or libraries. libformat , a library
designedto halt executionof any programthat might

be susceptibleto a format string bug, follows this ap-
proach:it interceptscallsto printf -like functionsand
abortstheapplicationif the formatstringspecifiercon-
tains%nandtheformatstringis in a writableportionof
theaddressspace[34]. However, this approachis frag-
ile, sincethe libformat mechanismmustbe kept in
perfectsynchronizationwith the libc implementation
of all printf -like functions.

FormatGuard,a compilermodification,injectscodeto
dynamicallycheckandrejectall printf -like function
callswherethenumberof argumentsdoesnotmatchthe
numberof “%” specifiers[13]. Of course,only applica-
tions thatarere-compiledusingFormatGuardwill ben-
efit from its protection.Also, onetechnicalshortcoming
of FormatGuardis that it doesnot protectuser-defined
wrapperfunctions(see,e.g.,Figure1).

Moreover, a commonlimitation of both libformat
and FormatGuardis that programswith format string
vulnerabilitiesremainvulnerableto denialof serviceat-
tacks.Nonetheless,animportantadvantageof theserun-
timetechniquesis thatthey arecheapandrequirealmost
no humanintervention.Thus,we feel thatrun-timeand
static measuresare both useful and complementeach
otherwell.

7 Conclusions

Wehavedescribedatool for automateddetectionof for-
matstringvulnerabilitiesin legacy sourcecode.Wehave
shown thatour tool hasvery low falsepositive andfalse
negative ratesandis usefulin practiceat detectingeven
securityholesthat wereunknown to us. Therefore,we
feel thatour work representsa strongsteptowarda us-
ablebug-detectionsystem.

Thekey techniqueweexploit is typequalifierinference,
appliedto theproblemof statictaint analysis.This ap-
proachallowedus to scaleto largeprogramswith hun-
dredsof thousandsof linesof codeandto presentanin-
tuitive userinterfaceto theprogrammer. Consequently,
we conjecturethat thesetechniquesmayfind usein fu-
tureapplicationsaswell.
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A Proof of Theorem4.1

Theorem A.1 Let �A@B,���� beanyfinitepartial order. Let
�DCFE�,�G�� bethelattice of subsetsof H with thesetinclu-
sionordering. Thenthereexistsa mappingMtN&@uQvCFE ,
such that w&��,A��\x@B,A���y�zVYX M ���B�7G`M^���{� and
M ���B� is a finitesubsetof H for all �]\#@ .

Proof : Weprove thetheoremby inductionon |}@�| .
BaseCase: Let |}@�| = 1. Thentheclaim trivially holds.
InductionHypothesis: Let theclaimhold for all @ such
that |}@�|~��� .
InductionStep: |}@�| � ��� a .
Let �I@B,���� be a partial order suchthat |}@�| � �t� a .
Since @ is finite, @ has a minimal element, say S .
Considerthepartial order �I@�� _ S c�,��K� . Clearly this is
a partial orderand |}@�� _ S cb| � � . Henceby induction
hypothesis,thereexists MxN�@x� _ S c�Q�C E , suchthat
w&��,I��\v@o� _ S c�,A���1� VYX M^���B�#G�M ���{� and
M ���B� is a finite subsetof H for all ��\�@�� _ S c . Let
. ���Y�b�&�4_ )�\2� �!���������b����M^���B�5c . Define M$�N�@�Q�CLE
asfollows.

M � ���B� �
_ .f� a c ���A� � S
M ���B��� _ .q� a c����A�2�� S �b ~¡ �]� S
M ���B� ¢b£5¤F¥"¦4§���¨4¥

Since S waschosento be a minimal element,the only
relationsinvolving S are of the form S �U� , and for
these,by definition, M$�A� S � ��_ .�� a cKG�M^���B�©� _ .�� a c �
M � ���B� . For all � suchthat S ���� , we have M � � S � ��_ .#�a cª�G«M ���B� by choiceof . . For relationsnot involvingS , theshow below that thesetcontainmentrelationsare
preserved. Let M^���B�rG�M ���^� . Since M&�A���{�re¬M^���{� , the
casewhen M$�A���B� � M ���B� is trivial. So assumeM^���J�KG
M ���{� and M&�A���B� � M^���B�B� _ .� a c . This implies thatS ��� , and �y��� , andthereforeS ��� . Thus M$�A���^�
wouldbedefinedas M^���^�F� _ .t� a c , andhenceM&�®���B�JG
M$�A���^� .Thustheinductionstepholds.


