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Abstract

The 4.4BSD file system includes a new algorithm for
allocating disk blocks to files. The goal of this algo-
rithm is to improve file clustering, increasing the
amount of sequential I/O when reading or writing
files, thereby improving file system performance. In
this paper we study the effectiveness of this algorithm
at reducing file system fragmentation. We have cre-
ated a program that artificially ages a file system by
replaying a workload similar to that experienced by a
real file system. We used this program to evaluate the
effectiveness of the new disk allocation algorithm by
replaying ten months of activity on two file systems
that differed only in the disk allocation algorithms
that they used. At the end of the ten month simulation,
the file system using the new allocation algorithm had
approximately half the fragmentation of a similarly
aged file system that used the traditional disk alloca-
tion algorithm. Measuring the performance difference
between the two file systems by reading and writing
the same set of files on the two systems showed that
this decrease in fragmentation improved file write
throughput by 20% and read throughput by 32%. In
certain test cases, the new allocation algorithm pro-
vided a performance improvement of greater than
50%.

1 Introduction

Recent file systems [Peacock88][McVoy90] have
used clustering to improve performance. These sys-
tems attempt to place logically sequential file data on
physically contiguous disk blocks. When such layout
is achieved, large multiple block transfers can be used
to read/write files at close to the disk system’s maxi-
mum bandwidth. Measurements have shown that
these clustering enhancements can improve perfor-
mance by a factor of two or three [McVoy90]
[Seltzer93] over file systems that perform I/O one
block at a time. These performance measurements

were made on empty file systems and represent the
best case behavior for clustering file systems. Over
time, clustering is less successful, because free space
becomes fragmented and the disk allocation algo-
rithms fail to fully exploit existing free clusters. A
recent study showed that UNIX file systems that are
more than two years old perform as much as 15%
worse than comparable empty file systems
[Seltzer95]. This decline in performance correlates
closely with increased fragmentation of newly created
files on these file systems. Although the maximum
transfer size on these file systems was seven file sys-
tem blocks, the average cluster size for mid-sized files
(32–128KB) was only three blocks.

As file systems age, clustered file allocation
becomes less successful because the file system is
unable to find clusters of free space from which to
make allocations. This may occur either because free
space becomes too fragmented to support clustering,
or because the file system does not fully exploit
existing clusters of free space when allocating space
for new files. An examination of the file systems on
several file servers at Harvard showed that there are
many large clusters of free space on UNIX file
systems that are two to three years old [Smith94]. We
conclude from this that the file fragmentation
observed on real files systems is the result of a disk
allocation algorithm that is unable to find and exploit
existing clusters of free space.

In the hopes of providing better long term
clustering, Kirk McKusick modified the disk
allocation algorithm used by the 4.4BSD-Lite Fast
File System (FFS) to better exploit existing clusters of
free space [CSRG94].

In order to understand the long term effectiveness
of this new allocation algorithm, we have developed a
tool that simulates a ten month work load in order to
artificially age a file system. We used this tool to age
two different file systems, one that used the original
disk allocation algorithm and one that used the new
allocation algorithm. By tracking the amount of file
fragmentation during the course of the simulation, we
compared the effectiveness of the two disk
algorithms. We also compared the performance of the
resulting aged file systems to understand the impact of
the resulting differences in fragmentation.

This research was supported by Sun Microsystems
Laboratories and by the National Science Foundation
under grant CCR-9502156.



this alternate block does not consider the amount of
free space where the new block is located. Thus if
there is just one free block in a good location and a
cluster of ten free blocks in a slightly worse location,
FFS will allocate the single free block, making it
impossible to perform contiguous allocation after that
block.

McKusick’s new allocation algorithm adds a
reallocation step to the original FFS disk allocation
algorithm. For this reason it is referred to as the
realloc algorithm. FFS initially allocates blocks in the
manner described above. Before the blocks are
written to disk, however, the reallocation code gathers
clusters of logically sequential blocks and tries to
relocate them to free clusters of the appropriate size.
The maximum size cluster produced by the realloc
code is determined by a file system parameter, and is
usually configured to be the maximum I/O transfer
size of the underlying disk system.

3 File System Aging

To understand the effectiveness of a disk
allocation algorithm, the long term effect of the
algorithm on file system layout must be examined. To
do this in a laboratory setting, we generated an
artificial load intended to simulate the pattern of file
operations that a file system sees over an extended
period of time. This process is called file system
aging. After aging a file system, the layout of its files
can be analyzed and compared with similarly aged file
systems that used different allocation algorithms.

3.1 Generating a Workload

The central problem in aging a file system is
generating a realistic workload. Because a test system
is likely to start with an empty disk, this workload
should start with an empty file system and simulate
the load on a new file system over many months or
years. The ideal method for generating this workload
would be to collect extended file system traces and to
age a test file system by replaying the exact set of file
operations seen in the trace. The duration of the
required traces makes this strategy impractical.
Instead, we generated a workload from two sets of file
system data that were readily available. Fortunately,
an exact reproduction of the load on a real file system
is not required.

We used a set of file system snapshots collected
from a file system on a local file server to simulate the
day-to-day changes on a file system. These snapshots,
which were originally collected for a study of file
system fragmentation [Smith94], were collected

In Section 2, we describe the disk allocation
algorithm that has traditionally been used by the
UNIX Fast File System and explain the improvements
offered by the new algorithm. Section 3 explains the
file system aging process, including the methodology
used to generate the aging workload and a validation
of the aging program by comparing its results to a real
file system. In Section 4, we compare the file
fragmentation that results from the original FFS
allocation algorithm and the new allocation algorithm.
Section 5 provides a performance comparison of the
aged file systems. Section 6 discusses some future
research directions based on the results of this work.
Section 7 summarizes this study.

2 FFS Disk Allocation Algorithms

A simplified explanation of the original FFS disk
allocation algorithm is presented here. A more
detailed explanation may be found in The Design and
Implementation of the 4.3BSD UNIX Operating
System [Leffler89].

FFS divides the disk into cylinder groups, each of
which is a set of consecutive cylinders. Cylinder
groups are used to exploit locality; related data are
co-located in the same cylinder group. Thus FFS
allocates logically sequential blocks of a file in the
same cylinder group, and likewise allocates all of the
files in a directory to the same cylinder group as the
directory.

The FFS disk allocation policy is divided into
two steps. When a new block is allocated to a file,
FFS first determines the cylinder group from which
the block will be allocated. FFS then selects a free
block from that cylinder group and allocates it.
Selecting a cylinder group is a simple task; FFS uses
the cylinder group where the previous block(s) of the
file are located1. In this paper, we focus on the second
part of the allocation—selecting a block from within a
cylinder group.

The original FFS disk allocation algorithm
allocates one block at a time to a file, attempting to
allocate contiguous blocks where possible. When a
new block is allocated, FFS determines the location of
the previous block of the file and attempts to allocate
the next disk block. If this block is not available, FFS
allocates a different block from the cylinder group,
attempting to find one that minimizes the seek time
from the previous block of the file. The selection of

1. To prevent one large file from filling an entire
cylinder group, each time an indirect block is allocated
to a file, allocation changes to a different cylinder
group.



nightly over a period of one year. Each snapshot
describes all of the files on a file system at the time of
the snapshot. For each file the snapshot includes the
file’s inode number, inode change time, file type, file
size, and a list of the disk blocks allocated to the file.

By comparing successive snapshots of one file
system, we generated a list of the files that were
created, deleted, or modified on each day. In order to
simulate the activity on an empty file system, we
chose a file system that was nearly empty at one point
in the snapshot collection period, using the point of
lowest utilization (9% full) as the starting time.

The major obstacle to accurately reproducing the
original workload from the file system snapshots was
interpolating the file system activity that occurred
between successive snapshots. By comparing the list
of allocated inodes in two snapshots, it was easy to
determine which files were created, deleted, or
modified during the intervening interval.
Unfortunately, the snapshots did not provide sufficient
information to determine the exact time at which
these operations took place.

We used several heuristics to assign creation and
deletion times to these file operations. Previous
studies have shown that files are seldom modified
after they are first written [Ousterhout85]. Therefore,
when a new file was created, we used its inode change
time as the time the file was created. Similarly, if a file
was modified, we assumed that it had been removed
(or truncated to zero length) and then rewritten. The
most difficult operations to which to assign times
were deletes. When a file was deleted between two
snapshots, there was no information that provided
hints about the time it was deleted. We randomly
assigned times to file deletions, making sure that they
fell during the range of times that other operations
were occurring on the file system.

Another difficulty in recreating the file system’s
workload from the daily snapshots was accounting for
files that were created and then deleted on the same
day. Trace-based file system studies [Ousterhout85]
[Baker91] have shown that most files live for less than
the twenty-four hours between successive snapshots.
These files, which did not show up in the snapshots,
can affect the fragmentation of the longer-lived files
on the file system. To approximate the additional file
creations and deletions generated by these short-lived
files, we used multiple-day traces of NFS requests to
Network Appliance file servers [Hitz94]. This data,
which was originally used in a study of cleaning
algorithms for log-structured file systems
[Blackwell95], includes all of the create, delete, and
write requests issued to the servers during the trace
periods.

We generated a list of all of the files created and
deleted during each 24-hour period in the NFS traces.
These files were sorted by the day they were created
and the directory in which they were created (the
directory information is available in the create
requests). The result was a trace log describing all of
the files that were created and then deleted on the
same day.

The next step was to integrate these short-lived
files into the workload generated from the file system
snapshots. For each day in the snapshot period, we
randomly selected one day from the NFS traces, and
integrated that day’s short-lived file activity into the
aging workload. The file operations from the NFS
traces were placed in the directories that had the most
changes between snapshots. To ensure that the NFS
operations overlapped with the file operations
generated from the snapshots, all of the NFS
operations in each directory were time-shifted to
coincide with the peak period of activity in the
directory to which they were added. The end result
was that the operations on short-lived files (generated
from the NFS traces) were interleaved with the
creations and deletions of longer-lived files
(generated from the snapshots).

The resulting workload simulates ten months of
activity (from April, 1994 through February, 1995) on
a 502 megabyte file system. The source file system is
used for the home directories of one professor and
three students in a networking research group. At the
beginning of the ten month period, the file system was
9% utilized, and for most of the ten month period
utilization was greater than 70%, reaching a high of
90%2. The workload contains approximately 800,000
file operations that write 48.6 gigabytes of data to the
disk and take fourteen hours to replay on our test
machine.

3.2 Replaying the Workload

To age a file system, we applied the workload
described above to an empty file system. The aging
program reads records from the workload file,
performing the specified file operations. This task was
complicated by the fact that complete pathnames for
the created files were not available in the snapshots
used to generate the workload. Because FFS assigns
files to cylinder groups based on the cylinder group of
the file’s directory, the algorithm used by the aging

2. These utilization numbers treat FFS’s free space
reserve (10% of the disk) as free space.



program to assign files to directories can have a major
impact on the accuracy of the aging simulation.

In the absence of the original pathnames in the
file system snapshots, we decided to simply create the
files in the correct cylinder groups. Cylinder groups
represent the pools from which disk blocks are
allocated. By creating files in the same cylinder group
on the simulated file system as on the original file
system, we ensured that each cylinder group on the
simulated file system saw the same set of allocation
and deallocation requests that were presented to the
corresponding cylinder group on the original file
system. We used each file’s inode number to compute
the cylinder group to which it was allocated on the
original file system. To force the files into the same
cylinder groups on the aged file system, we exploited
several details of the FFS implementation.

We started the aging process with an empty file
system. The first step was to create one directory for
each cylinder group on the file system. The algorithm
used by FFS to assign directories to cylinder groups
ensures that each directory was placed in a different
cylinder group. For each file in the aging workload,
we used its inode number to compute the cylinder
group to which it was allocated on the original file
system, and placed the file in the corresponding
directory on the aged file system. Because FFS places
all files in the same cylinder group as their directory,
this guaranteed that all of the files that were in the
same cylinder group on the original file system were
also in the same cylinder group on the aged file
system. Thus, the sequence of block allocation and

freeing operations in each cylinder group was the
same as on the original file system.

This approach does have one minor
disadvantage. By creating an extra directory for each
cylinder group, we are introducing one file per
cylinder group that did not exist in any of the data sets
used to generate the aging workload (i.e., the
directory). The effect of these extra directories is
negligable, however, since the space they occupy
(approximately 300 kilobytes) represents less then
0.1% of the total disk utilization during the aging
simulation.

3.3 Verifying the Aging Process

To verify the accuracy of the aging process, we
compared the file fragmentation on an artificially aged
file system with the fragmentation on the original file
system that was used to generate the aging workload.
We define a layout score to quantify the amount of file
fragmentation in a file or file system. The layout score
for an individual file is the fraction of that file’s blocks
that are optimally allocated. An optimally allocated
block is one that is physically contiguous with the
previous block of the same file. The first block of a
file is not included in this calculation, since it is
impossible for it to have a “previous block.”
Similarly, layout score is undefined for one block
files, since they cannot be fragmented. A file with a
layout score 1.00 is perfectly allocated; all of its
blocks are contiguously allocated. A file with a layout
score of 0.00 has no contiguously allocated blocks.

CPU Parameters Disk Parameters File System Parameters

CPU Intel Pentium Disk Controller Bustek 946C
(SCSI)

Size 502 MB

Clock Speed 120 MHz Disk Type Seagate 32430N Fragment Size 1 KB

Memory 64 MB Total Disk Space 2.1 GB Block Size 8 KB

Bus Type PCI Rotational Speed 5411 RPM Max. Cluster
Size

56 KB

Sector Size 512 Bytes Rotational Gap 0

Cylinders 3992 Cylinder Groups 27

Heads 9 Heads 22

Average Sectors
per Track

116 Sectors per Track 118

Track Buffer 512 KB

Average Seek 11 ms

Table 1: Benchmark Configuration. This table describes the hardware configuration used for benchmarking and for
verifying the file system aging workload. The file system parameters shown in italics were set to match the file system
from which the aging workload was generated despite the fact that they do not match the underlying hardware.



To evaluate the fragmentation of all of the files on
a file system, we compute the file system’s aggregate
layout score. This metric is the fraction of the file
system’s allocated blocks that are optimally allocated
(again ignoring the first block of each file and one
block files).

To verify the accuracy of the aging process, we
constructed a file system with the same parameters as
the file system from which the aging workload was
generated. These parameters, along with our hardware
configuration, are summarized in Table 1. We used
BSD/OS Version 2.0.1 for these and all of the other
measurements in this paper. We then ran the aging
workload on this file system, computing the file
system’s aggregate layout score at the end of each
simulated day in the workload. For comparison, we
also computed the aggregate layout score on the
original file system for each day during the period
from which the aging workload was generated. The
resulting layout scores for the two file systems are
plotted in Figure 1.

The simulated file system has higher layout
scores than the original file system, indicating that the
aging process does not cause as much file
fragmentation as the original file system experienced.
At the end of the ten month period, the simulated file
system’s aggregate layout score was 0.77, compared
to the 0.68 aggregate layout score of the original file
system. Despite the greater fragmentation on the
original file system, the two file systems exhibit
comparable behavior, as can be seen by the similar
contours of the two curves in Figure 1; the simulated
file system has many of the same drops and jumps as
the original, although they are of smaller magnitude.
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Figure 1: Aggregate Layout Score Over Time: Real vs.
Simulated File Systems. This chart plots the aggregate
layout score for each day in the ten month simulation
period. The “Simulated” line shows the fragmentation on
the artificially aged file system. The “Real” line shows the
fragmentation on the original file system from which the
aging workload was generated.

There are also some areas where the simulated file
system has failed to capture changes that occurred on
the original. The clearest example of this is in days
90–110 of the simulation, where the aggregate layout
score of the original file system changes from day to
day while the layout score of the simulated file system
remains relatively constant.

The difference in fragmentation between the two
file systems is the result inaccuracies in the aging
workload. Section 3.1 discussed the approximations
that were necessary due to the incomplete information
contained in the file system snapshots used to
generate the workload. Despite these differences, the
aging workload is realistic in many ways. As on the
real file system, the layout score of the artificially
aged file system decreases steadily over time,
occasionally declining quickly for a day or two,
sometimes remaining almost constant for many
weeks.

4 Comparison of Allocation Algorithms

To compare the FFS disk allocation algorithm to
the realloc algorithm, we aged two file systems that
differed only in the disk allocation algorithm that they
used. These tests were also performed on the
hardware configuration described in Table 1. After
each simulated day during the aging, we computed
the aggregate layout score for the two file systems.
The results are plotted in Figure 2.

The file system that used the realloc allocation
algorithm exhibited less fragmentation (higher layout
scores) for the entire duration of the 300 day

Figure 2: Aggregate Layout Score Over Time: FFS vs.
realloc algorithm. This chart plots the aggregate layout
score on each day of the ten month simulation period. The
“FFS” line shows the aggregate layout scores on the file
system that used the original FFS disk allocation
algorithm. The “FFS + Realloc” line shows the aggregate
layout scores on the file system that used the new realloc
allocation algorithm.
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simulation. The difference in aggregate layout score
between the two file systems increased over time,
from a difference of 0.026 (0.950 vs. 0.924) after the
first day of the simulation, to a difference of 0.133
(0.899 vs. 0.766) at the end of the simulation. In other
words, by the end of the simulation only 10.1% of the
file blocks were non-optimally allocated when using
the realloc algorithm, in contrast to 23.4% when the
realloc code was not used—an improvement of
56.8%.

To understand the types of files that derive the
most benefit from the realloc algorithm, we sorted the
files on both file systems by size, and computed the
aggregate layout score for files of a variety of sizes.
The results are shown in Figure 3. This graph shows
that the realloc disk allocation algorithm produces
better file layout (i.e., less fragmentation) for all file
sizes, and near optimal layout for files smaller than
the file system cluster size. Surprisingly, two block
files have a lower layout score than slightly larger
files when the realloc algorithm is used. This is due to
a quirk in the disk allocation code, which does not
invoke the realloc functionality until a file fills the
second block. The lower layout score for two block
files in Figure 3 is the result of files that are big
enough to use two blocks (instead of one block and
some number of fragments) but do not completely fill
the second block.

Both file systems in Figure 3 exhibit a drop in
layout score when file size passes twelve blocks (96
KB). Files larger than twelve blocks require an
indirect block, which is always allocated in a different
cylinder group than the first part of the file. The result
is that all files of more than twelve blocks contain at
least one non-optimal block (the thirteenth), lowering

Figure 3: Layout Score as a Function of File Size. The
“FFS” line was generated from the aged file system that
used the original FFS allocation algorithm. The “FFS +
Realloc” was generated from the aged file system that
used the realloc enhancements.
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the average layout score for these files. As the file size
grows past thirteen blocks, the effect of this
mandatory seek becomes smaller, and the layout score
rises again.

5 Performance

We expected the decreased fragmentation seen
when using the realloc algorithm to lead to better file
system performance. In this section we present the
results of several benchmarks that quantify the
performance difference between file systems using
the two allocation algorithms.

The most important difference in the two disk
allocation algorithms is the long-term effect that they
have on file layout. To account for this in
benchmarking the two FFS implementations, we ran
all of our benchmarks on file systems that were aged
using the ten month aging workload described in
Section 3.

One set of benchmarks measures the performance
of sequential reads and writes to files of varying sizes.
A second benchmark uses the files left on the file
systems at the end of the aging process to compare the
performance of files that were created in a more
realistic manner.

5.1 Sequential I/O Performance

Our first measurement compared the file systems
using a benchmark of sequential read and write
performance. The benchmark operated on thirty-two
megabytes of data, which was decomposed into the
appropriate number of files for the file size being
measured. Because FFS allocates all of the files in a
single directory to the same cylinder group, the data
was divided into subdirectories, each containing no
more than twenty-five files. This distributed the
benchmark data across more cylinder groups than if
all of the test files had been placed in one directory.

The benchmark executed in two phases:

1. Create/write: All of the files were created.
For file sizes of four megabytes or smaller,
the entire file was created with one write
operation. Large files were created using as
many four megabyte writes as necessary.

2. Read: The files were read in the same order
in which they were created. As with the
create phase, I/O was performed in four
megabyte units.

We ran this benchmark for a variety of file sizes
from sixteen kilobytes (two file blocks) to thirty-two



megabytes. The results, presented in Figure 4, show
that the FFS implementation that included the realloc
algorithm performed better for nearly all file sizes.
The sharp dip in all of the performance curves at 104
KB corresponds to the file size at which FFS begins to
use indirect blocks. Because FFS allocates indirect
blocks, and the data blocks to which they point, in a
different cylinder group than the previous part of the
file, a large performance penalty is incurred at this file
size. The overhead of this seek between cylinder
groups is amortized as the file size grows, improving
throughput for larger file sizes.

Figure 4: Sequential I/O Performance. These graphs
show the read and write performance of the sequential I/O
benchmark on the two FFS implementations. The
throughput reading and writing the raw disk are also
shown. In the top graph, showing read performance, we
see that when the realloc algorithm is used, performance
improves by as much as 58%. Similarly, as shown in the
bottom graph, the realloc algorithm improves write
performance by as much as 44%. For large file sizes,
performance using the realloc algorithm exceeds the
throughput to the raw disk. This surprising result is due to
lost rotations when writing the raw disk. All benchmarks
were executed ten times and had standard deviations
smaller than 1.5% of the mean data value.
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Small file reads exhibit a large performance
difference between the two FFS implementations. 96
kilobyte files, the largest size possible without an
indirect block, have 58% greater read throughput on
the file system with the realloc disk allocation
algorithm. This performance improvement is directly
attributable to the better layout attained when using
the realloc algorithm. Figure 5, which graphs the
average layout score of the files created for each run
of the benchmark, shows that for files of up to
fifty-six kilobytes (the file system cluster size) the
realloc algorithm attained perfectly contiguous file
layout.

The improvement in create performance when
using the realloc algorithm is less noticeable than the
corresponding change in read performance, especially
for smaller file sizes. This smaller performance
difference is due to the synchronous metadata updates
that FFS performs when creating a file. These
metadata updates dominate the total run time of the
create benchmark, and differences in file layout have
little effect on the performance of small file creates.

For larger files, there was a more noticeable
improvement in write performance when using the
realloc algorithm. Large files (four megabytes and
larger) perform 25% better, and 64 kilobyte files
perform 44% better using the realloc algorithm than
they do on the original FFS.

It is interesting to note that write performance
when using the realloc algorithm drops after 64
kilobytes, unlike read performance which does not

Figure 5: File Fragmentation During Sequential I/O
Benchmark. This graph shows the average layout score
of files created by the sequential I/O benchmark as a
function of file size. The “FFS” line was generated from
the aged file system using the original FFS disk allocation
algorithm. The “FFS + Realloc” line was generated from
the aged file system using the realloc allocation algorithm.
For all file sizes, the realloc algorithm produced better file
layout. For files up to 56 KB (7 blocks) the realloc
algorithm achieved perfect layout.
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5.2 Existing File Performance

One important aspect of the previous benchmark
is not representative of many types of real world file
system usage. On a real file system, files are deleted
as well as created; this may create small holes of free
space that cause fragmentation in subsequently
created file. Unlike the sequential I/O benchmark, the
aging workload interleaves many create and delete
operations, possibly resulting in more file
fragmentation than is produced by the sequential I/O
benchmark. To gauge the effect of using more
“realistically” created files, we ran some benchmarks
using the files that were present on the test file
systems at the end of the aging process.

Previous research has shown that most older files
are seldom accessed [Satyanarayanan81], and
therefore that the most active files on a file system
tend to be relatively young. We approximated the set
of “hot” files on our simulated file system by using all
of the files that were modified during the last month of
the aging workload. These files represent 10.5% of
the files on the aged file system (929 out of 8774
files), and use 59.5 megabytes of storage (19% of the
allocated disk space). Since these files cannot all fit in
the buffer cache, their layout and performance should
have a large effect on the overall performance of the
file system.

We measured the file system throughput when
reading and writing this complete set of files. To limit
the amount of time spent seeking between files, we
sorted the files by directory, so multiple files would be
read from one cylinder group before moving to
another. In order to preserve the layout of the original

FFS FFS + Realloc

Layout
Score

0.80 0.96

Read
Throughput

1.65 MB/sec 2.18 MB/sec

Write
Throughput

1.04 MB/sec 1.25 MB/sec

Table 2: Performance of Recently Modified Files.
This table presents the read and write throughput of
the files modified during the last month of the aging
simulation. The aggregate layout score of these files
is also presented. The “FFS” column provides the
measurements on a standard FFS file system. The
“FFS + Realloc” column presents the same
measurements on an FFS that includes the realloc
disk allocation algorithm. Each of the throughput
tests was run ten times. All standard deviations
were less than 2% of the corresponding mean value.

drop off until the first indirect block is allocated at
104 kilobytes. This is an artifact of the maximum disk
transfer size imposed by the hardware (64 kilobytes).
As Figure 5 indicates, most files between 64 and 96
kilobytes are allocated completely contiguously,
despite the fact that they require more than one cluster
on the disk. When writing to such a file, the first 64
kilobytes of data is transferred in one request, and the
remaining data in a second request. By the time the
second request has been issued, however, the disk has
rotated past the location where the data is to be
written, adding the latency of an extra disk rotation to
the I/O time. This phenomenon does not occur when
reading the same file because of the read-ahead
performed by the track buffer [Seltzer95].

These lost disk rotations between sequential write
requests also explain why the write throughput to
large files when using the realloc algorithm exceeds
the write throughput to the raw disk. When writing to
the raw disk, all writes are sequential, and a rotation is
lost between each transfer. When the realloc
algorithm is used, large files achieve good, but not
perfect layout (as shown in Figure 5). These
imperfections actually improve write performance, as
a small seek between transfers is preferable to a lost
rotation. A similar benefit is not seen for large files
using the original FFS allocation algorithm because
the resulting layout is more fragmented. The overhead
of these additional seeks exceeds the savings from
avoiding extra rotations.

The performance improvement seen when using
the realloc algorithm was larger than we had
anticipated. Before running the sequential I/O
benchmark, we had expected to see performance
differences of no more than 15%, in line with
previous research comparing the performance of
contiguous and fragmented FFS files [Seltzer95]. The
larger than expected performance improvements seen
in our tests of the realloc algorithm are explained by
comparing our hardware configuration to the one used
in the earlier research. Although the two systems had
comparable disks, the SparcStation 1 used in the
earlier study provided substantially less I/O
bandwidth than the PCI bus in our current test
configuration. As a result, the ratio of seek time to
transfer time was higher on the PCI-based system,
and reducing the seek time resulted in larger
performance improvements (expressed as a
percentage of the total I/O time) than were possible on
the SparcStation.



files, the write phase of this benchmark overwrote the
existing files. Thus the write performance does not
include the overhead of creating the files or of
allocating disk space to them (these overheads were
included in the sequential write performance
measurements of Section 5.1). We also computed the
aggregate layout score of the files used in this test.
The results, presented in Table 2, show that the FFS
with the realloc algorithm had 32% higher read
throughput and 20% higher write throughput than the
original FFS. The performance difference between the
two files systems on this benchmark is consistent with
the sequential I/O performance measurements shown
in Figure 4.

Figure 6 shows the layout score of the hot files
plotted as a function of file size for the two file
systems. For comparison, we also present the same
data for the files from the sequential I/O test (copied
from Figure 5). These data show that although the
sequential I/O tests produced better layout than the
“hot” files under the original FFS implementation,
with the realloc algorithm, the layout of the hot files is
almost identical to that of the files produced by the
sequential I/O test. This indicates the ability of the
realloc algorithm to produce near optimal file layout
in a variety of circumstances. In the hot file
benchmark on the file system that used the realloc
algorithm, the layout score for two block files is lower
than any other layout score measured in this test. The
poor layout of two block files is a result of the same
behavior described in Section 4.

6 Future Work

We believe that file system aging can be used to
address two issues frequently overlooked in file

Figure 6: Layout Score of Hot Files. This graph plots
the layout score of the hot file set on the two file systems
as a function of file size. For comparison, the layout
scores of the files produced by the sequential I/O
benchmarks (from Figure 5) are also graphed.
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system performance analysis. This first is the simple
fact that real-world file systems usually operate at
close to full utilization, unlike the empty file systems
that are often used when analyzing file system
behavior in a laboratory setting. The second issue that
file system aging allows us to address is the impact of
specific design decisions on the long term behavior of
a file system. The interaction of the disk allocation
algorithm and file layout examined in this paper is one
such issue. There are a variety of other issues in FFS
and other file systems that readily suggest themselves
for similar analysis.

In order to apply the file system aging technique
to other file systems, we need to generalize the way
the aging workload is replayed. The current program
makes an important assumption about the behavior of
the underlying file system in the way it assigns file
operations to directories. More work also needs to be
done to make the aging program work on file systems
where the idle time between file operations can effect
the behavior of the file system itself. An example of
this is the timing of cleaner execution on a
log-structured file system [Rosenblum92].

We also plan to generate a variety of different
aging workloads representative of different file
system usage patterns, such as news, database, and
personal computing workloads. By analyzing the
demands of different workloads, we hope to
determine the file system design parameters that are
best suited for each type of workload.

7 Conclusions

Our simulations and benchmarks provide
conclusive evidence of the improved file layout and
file system performance achieved using the realloc
disk allocation algorithm. A simulation of ten months
of file system activity shows that the reallocation
algorithm decreases the number of intra-file disk
seeks by more than 50%. With the exception of the
mandatory seek imposed by FFS when a file becomes
large enough to require an indirect block, the realloc
algorithm produces nearly optimal file layout.

In all of the benchmarks that we conducted, an
FFS using the realloc code outperformed a file system
that did not include this enhancement. The improved
file layout achieved by the realloc algorithm improved
read and write performance for large files by up to
16%. Read performance for files up to 96 kilobytes
improved by as much as 20%. The synchronous
metadata updates performed when creating a file
limited the performance improvements for writing
small files.



8 Availability

The source code for the aging tool and the bench-
marks along with the aging workload are available on
the World Wide Web at:
http://www.eecs.harvard.edu/~keith
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