
Incl: A Tool to Analyze Include Files
Kiem-Phong Vo, Yih-Farn Chen - AT&T Bell Laboratories

ABSTRACT
Large C and C++ softwa¡e projects typically share common types, macros, and variables
among modules via include files organized into hierarchies. Many of these hierarchies grow
so complex that it is hæd for programmers to figure out when a file must be included. Since
including unused symbols is usually harmless, application code tends to include more files
than required. Knowing when ñles are or are not needed is useful to restructure the code and
reduc.e the time required to build a product. It also helps in reorganizing the include
hierarchies - should this be deemed necessary. Incl is a tool that analyzes include
hierarchies !o (1) show the dependencies among include files in graphical or text forms, (2)
infer what files are not needed, and (3) provide ways to remove unused include files. The
inference and removal of unused include files must be done with care for that may change
the meaning of the application programs. We shall describe precise conditions undir whiõh
include files can be safely ignored for compilation and give a linear time algorithm to
compute such files. Incl has been used on many projects and experience shows that, in many
cases, eliminating unnecessary include files significantly reduces compilation time.

Motivation

C and C++ software systems typically share
data types, macros, and declarations of global vari-
ables by including common header files. The header
files and their interdependencies form include hierar-
chies. As with any other parts of a softwa¡e system,
an include hierarchy grows with a project as features
are added, deleted, or refined, and eventually
becomes large and complex, For example, the
include hierarchy for the X Window System gaphics
library and tools on our machine contains over a
hundred files in several different directories.

When an include hierarchy is sufficientlv com-
plex, it is hard for programmeis to find out äxactly
when a file must be included. Since including a file
that does not contain useful information is usually
humless, the tendency is to include enough files so
that the code will compile, For large projects, this
practice may even be institutionalized by providing
global header files that simply include the world.
This practice simplifies programming at the extra
cost of compilation overhead due to the processing
of unneeded include files. For projects that distri-
bute source code, long build time may convey to

. customers a poor image of quality. Therefore, at
some stages of software development, it is useful to
find out when an include ñle is needed or not
needed. This information can be used to redo the
code and avoid unnecessæy include files. It also
helps software architects to reengineer the include
hierarchies - should that be necessary.

For a given source file, finding what set of
include files is needed requires construction and
analysis of complex reference relationships among
symbols across the nested include files. As an
example, Figure 1 shows the include hierarchy and

reference graph of a typical XlL application pro-
gramr In this picture, edges between files mean
either inclusion or reference relationships:

¡ A dotted edge means that the tail file includes
the head file but does not directlv use anv
information contained in it.

o A dashed edge means that the tail file does
not include the head file directly but refers to
information contained in it.

¡ A solid edge means both inclusion and refer-
ence,

All include files that are unnecessary for the compi-
lation of load. c are shown in ovals. Among the 22
include files, t2 ue unnecessary. For example,
X l .1 / In t r ins ic .h inc ludes X11/Ob jec t .h ,
but does not use any symbols defined in that file
(dotted edge). On the other hand, x1.1/object.h
does not include Xl.1/Intrinsic.h, but refers to
some symbols defined in it (dashed edge).

The exploration of relationships among include
files is an example of software reverse engineering.
One attempts to reconstruct high level information
about large objects (in this case, files) in a software
system from the source code. The C Information
Abstractor [2] creates a C program database from C
source files that stores, among other things, the refer-
ence relationships between all global program
objects (types, macros, functions, variables, and
ñles). To analyze relationships among include files,
we need all of these reference relationships. In fact,
the determination of when to exclude an include file
must be done with care so that the meaning of the

rTo simplify the picture, path prefixes of the form
/usr,/include were replaced with UINC and
/ugr/ local/ lnclude/x1 I with x1 1.

Summer '92 USENIX - June 8-June lZ,lgg2 - San Antonio, TX t99

Incl: A Tool to Analyze Include Files

program does not change. Based on the C[A2 data-
base, we shall describe precise conditions for an
include file to become unnecessary during compila-
tion and give a linear time algorithm to detect such
files.

We implemented the include file analysis algo-
rithm and many of its common applications in a
tool, íncl, which can be used to generate textual or
graphical representations of relationships among
include files. It can also generate scripts usable with
other programs such as ed , the line editor, ot cpp,
the C preprocessor to exclude unneeded include files.

ffi refcr to the tool and cLA ro
refer to the system and concept.

Vo, Chen

The resulted tool has been used to reduce the compi-
lation time by a third for many C sourc¿ files. We
shall give examples on the use of incl and statistics
collected from a few projects.

Determining Unnecessary Include Files

The determination of what include files are
needed depends on a number of factors defined by
the compilation environment. This section discusses
such factors and how they influence when files are
needed. To simplify the discussion, for each file, we
define the following sets based solely on the include
relationships:

o Closure(F): all include files included by F
directly or indirectly.

o First(F): include files directly included by F.

Figure 1: An Include and Reference Graph that Shows Unnecessary Include Files in Ovals

200 Summer '92 USENIX - June 8-June 12,Igg2 - San Antonio, TX

Yo, Chen

o Nested(F)z members in Closure@) that are not
in First(F).

For example, in Figure 1, First(Ioad.c) consists of
5 members, Nested(Ioad. c) consists of L7
members, and Closure(load. c) consists of. 22
members.

C program global symbols can be divided into
two classes, definition and declaration. A definition
typically requires storage allocation while a declara-
tion only gives type or value information without
requiring any space in the generated code. Exam-
ples of definitions are functions and globally defined
variables. Examples of declarations are macro and
type definitions, or extern variables and functions.
In the compilation of a C source file, all definitions
are required. On the other hand, a declaration is
required only if it is directly or indirectly referred to
by some other definitions. If a declaration is not
required, we shall call it unused.

The key observation about an unused declara-
tion is that it cannot influence program behaviors.
Therefore, reasonable compilation systems routinely
ignore unused declarations in the generated code.
This is the model of compilation that we shall
assume for the rest of the paper. To rephrase, we
assume that the generated code will remain the same
with or without unused declarations. Given this, it
would be nice if such declarations could be ignored
completely during compilation. However, this is not
always possible without extensive changes in either
the source code or the underlying compilation sys-
tem. Since virtually every C còmpilation system
requires a file as the minimum compilation unit, a
good compromise is to detect and ignore include
files that consist only of unused declarations. This
almost works except for two problems. The first
problem is due to the way that most compilers pro-
cess symbols. When a file is processed, all symbols
that it refers to must be firlly resolved whether or not
they are really needed for code generation. This
means that once a file is included, certain other files
may be needed to resolve symbol references even
though these symbols may not figure into the final
code generation. The second problem is due to the
way nested include files are processed. If an include
file H is ignored, then all files in Closure(þ will
also be ignored. This means that if an include file is
deemed necessary by the above definition, at least a
path of include files from the base file to it must be
included. These considerations lead to the following
recursive characterization of a necessary include file
H:

1. H is necessary if it contains a definition of a
variable or a function

2. H is necessary if it contains a declaration of a
symbol referenced by some other necessary
file.

3. H may be necessary if it is on a path from the
base file to a necessary file. If this path is

Incl: A Tool to Analyze Include Files

unique, then H is necessary.
In developing an algorithm to mark files neces-

sary, Conditions 1 and 2 are straightforward to
implement. Condition 3 requires only that there is a
path consisting of files marked necessary between
the base file and any necessary file. Ideally, the
number of marked files should be minimized. How-
ever, it is easily seen that this is an instance of the
Steiner tree problem which is NP-complete t5].
Therefore, a heuristic approach is appropriate. The
path () algorithm presented in the next section is a
Íinear-iime heuristic-based on depth-first search.

I h d r / d b . h]

inc lude "d i r .h "
inc lude "cdb.h"
inc lude "er ro r .h"

extern DIR *dbdir t

I hdr /cdb.h]

#def ine SYMDB "symbol.db"
typedef char *CDBNAMEt
extern CDBNA¡4E *dbs [] ;

extern DIR *dbdir i

I hdr /e r ro r .h]

#define ERR_FOPEN 1

I h d r / d i r . h]

inc lude <sys /s ta t .h>
typedef char *DIR;
in t CheckDi r l / * char *dbdLr * / l ¡

I opendb.c]

#include <stdio.h>
#include <ctype.h>
inc lude udb.h"

F ILE *opendb(f)
c h a r * f i

{
F ILE * fP i

#i fdef CDB
i f (l f) f = S Y M D B i e l s e f = d b s [0] ;

#endif
i f (I (f P = f o P e n (f r " r u ' ")))

exit (ERR_FOPEN) ;
e lse re tu rn(fp) ;

)
Figure 2: A Simple C Program that Includes

Unnecessarv Include Files

To illustrate the concepts of include and refer-
ence relationships, Figure 2 shows a small C source
file and associated include files. This example will
also be used later to demonstrate various uses of
íncl, the program to analyze include relationships
among files. Figure 3 shows all include and

Summer '92 USENIX - June E-June 12,1992 - San Antonio, TX 201

Incl: A Tool to Analyze Include Files

reference relationships of this example, following the
conventions used in Figure 1.

-Following the definition of necessary files, we
see that:

o Both hdr/error.h and hdr/cdb.h are
necessary because there are symbols defined
in these files referenced by opendb. c. They
satisfy condition 2.

o hdr/db.h is necessary because it is on the
include path from opendb.c to
hdr/cdb.h. It satisfies condition 3.

o hdr/dir.h becomes necessary because it is
referenced by hdr/db.h. It satisfies condi-
tion 2.

. <ctype.h> and <sys/stat.h> do not
satisfy any of the three conditions; therefore,
these two files are unnecessary for the compi-
Iation of opendb. c.

The Algorithm

. Determining when files are needed for compila-
tion requires knowledge of reference relationships
among symbols. From the source code, the CIA sys-
tem generates databases of global symbols and their
reference relationships. We developed an algorithm
to detect unnecessary include files based on CIA
data and the definition given in the last section.
Currently, CIA does not keep exact information
about data structures and functiõns whose definitions
span include files. This, in turn, incurs a limitation
on-th€ -tool. However, one can easily argue thar par-
tial definitions of structures and functions in include
files constitute bad programming practice. In our
experiences, we have not seen code written this way.

To ease the desøiption of the algorithm that
detects necessary include files, we õhall use a
pseudo-C language. Each algorithm will be
presented with line numbers which are used for
references in subsequent discussions. First, we

Vo. Chen

describe the primitives that retrieve data from a CIA
database. These primitives are provided by CIA
itself.

. c iaob j_ t * ge tc iaob j (basef i le) :
This function reads a CIA object record per-
taining to the file basefile. An object
record contains at least the following fields:

O na¡ne: the name of the object.
o f ile: the file where it is defined.
o sclass: the storage class of the

object. We are interested in whether or
not the object is defined or just
declared in the associated f ile.

¡ C ia re f_ t * ge tc ia re f (basef i l .e) :
This function reads a CLA reference record
pertaining to the file basef ile. Each refer-
ence record contains at least the following
fields:

o namel, name2: the names of the
refening and refened objects.

o f ile1, f i1e2: the files where the
objects appear.

o kindl, kind2: the types of the
objects.

The overall incl algorithm to detect nec€ssary files is
as follows:

1 : i n c l (b a s e f i l e)
2z { roo t = makegraph(basef i le) ;
3 : d fnumber (roo t) t
4z root->type = NECESSARYT
5: enqueue(roo t) t
6 : wh i le (no tempty())
7z { node = dequeueQ;
8 : re fe rence(node) ;
9 : p a t h (n o d e) ;

L 0 :)
1 . 1 :)

Figure 3: The Include and Reference Relationships in opendb. c

202 Summer '92 USENIX - June 8-June L2,lgg2 - San Antonio. TX

Vo, Chen

Remarls
Lne 2 consüucts the include/reference graph

rooted at the file basefile. Line 3 computes a
numbering of the nodes based on depth-first search.
We shall omit the description of dfnumber() as
its implementation is straighÉorward [1]. Lines 4-5
mark the root node as necessary, then insert it into
the queue to be processed. We assume as given the
operations engueue (), dequeue () and
notempty I ¡ which respectively inserts an element
to the queue, deletes an element the queue and
checks to see if the queue is not empty. Lines 6-10
process each element on the queue by frrst calling
reference() to mark other necessary files that
contain symbols directly or indirectly referenced
from it. Then, path () is called to ensure that
there is a path of files marked necessary from the
foot file to the given file.

Code Segment 1 shows the algorithm to con-
shuct the include/reference graph from a source file.
Lines 2-10 read object descriptions from the CIA
database and construct the nodes of the include
graph. The fr¡nction getnode () is called on line 3
to either find a node corresponding to the file obj-
>file or construct one if it does not vet exist. A
node structure contains at least the following fields:

a nanre: the file name associated with the node.
. type: type of node.
o edges: edges outgoing from the node.
o dfn: the depth-fust number of the node.

Incl: A Tool to Analyze Include Files

Lines 4-9 mark node->type as NECESSÀRy if
the storage class of the object is statically defined
(s) or globally defined (g) and insert the file into the
queue of files that must be processed to resolve sym-
bol references. This implements condition 1 of the
definition of necessary files. Lines tl-22 rcad object
reference information from the CIA database and
construct the edges connecting the involved files. An
edge connection is made via the function
getedge (). Each edge structure contains the fol-
lowing fields:

. node: the head of the edge. This is the file
being referenced.

. type: the type of edge.
Lines 75-27 mark edge->type as either

INCLUDE if both objects are files or as REFER-
ENCE otherwise. Note that an edge may be both
INCI,UDE and REFERENCE. When an TNCLUDE
edge is conshucted, its opposite INCLUDED edge is
also constructed. This opposite edge is used for an
efficient implementation of the path() algorithm
below. Finally, line 23 retums the root node of the
include/reference graph.

Code Segment 2 shows the algorithm to mark
files that contain symbols directly or indirectly refer-
enced from a given file.

Lne 2 iterates over each edge coming from
node. Lines 3-4 ensures that only REFERENCE
edges will be searched and only nodes that have not
been searched will be searched. Lines 5-7 mark an

nakegraph (basef i le)
{ w h i l e ((o b j = g e t c Í a o b j (b a s e f i l e)) l = E O F)

{ node = ge tnode(ob j -> f i le) ;
i f (o b j - > s c l a s s = = , s , | | o b j - > s c l a s s = = , g ,)

{ i f (node->type l= NECESSARY)
(node->typê = NECESSARy;

enqueue(node) ;
)

)
)
wh i le ((re f = ge tc ia re f (basef i le)) t= EOF)
{ node l = ge tnode(re f -> f i1e l) ;

node2 = getnode(ref->f i1e2l ¡
edge = ge tedge(node l rnode2) ;
i f l r e f - > k i n d l = = ' f ' & & r e f - > k i n d 2 = = , f ' l

{ edge->type l= INCLUDE;
6 = ge tedge(node2¿node1) ;
e->tYPe l= INCLUDED;

)
else edge->type l= REf¡RENCE;

)
return getnode (basef i le) ;

)

Code Segment 1: Constucting include/reference graph

Summer '92 USENIX - June 8.June lZ,lgg2 - San Antonio, TX

1 :
2 ¿
3 :
4 z
5 :
6 :
7 ¿
8 :
9 :

1 0 :
1 1 :
12 t
1 3 :
1 4 :
1 5 :
1 7 ¿
1 8 :
1 9 :
2 0 ¿
2 L z
22¿
2 3 ¿
2 4 2

203

Incl: A Tool to Analyze Include Files

unsearched node as NECESSARY, then recurse.
reference() implements condition 2 in the char-
acterization of necessary files.

Code Segment 3 is the algorithm to mark nodes
on paths from the root file to a necessary files.

To understand how path () works, we note
that df number () does two things: (1) it computes
a spanning tree rooted at the base file, and (2) it
numbers the nodes as they are searched. Now, for
any given node H, let ln (H) be the set of nodes with
edges pointing to H. A property of depth-first
numbering is that, for all K in in (H), if the depth-
fi¡st number of K is smaller than that of H, then K is
an ancestor of H in the spanning tree. Further, such
ancestor nodes are numbered só that smaller num-
bered nodes are ancestors of higher ones in the span-
ning tree. Given this, it is easy to see that the
for (; ;) loop between lines 3-L2 examines and
selects some node from the set of ancestors of node
to mark necessary. Lines 7-8 stop the algorithm
without marking any node if such a node already
exists. Lines 9-10 make sure that if a new node is
to be marked, the one that is closest to the root will
be selected.

Vo, Chen

Let F be a source frle to be compiled and H
some include file in Closure(F). We note that each
NECESSARY file H is enqueued once and dequeued
once. When the file is dequeued, path () is called
to ensure that there is another NECESSARY file
closer to the base file on the spanning tree that
directly includes H. Thus, an easy induction based
on the distance Aom the root file shows that:

Theorem 1. If H is an include ûle of F that is
marked NECESSÀRY, there is an Ínclude path from
F to H in which all files are marked NECESSARy.

Next consider an include file H in Closure@)
that is not marked NECESSARY by incÌ (), We
need to show that H can be safely excluded in the
compilation of F. Assume by contradiction that
there is some symbol s in H that may affect the
compilation of F. If s is a defined symbol, then
makegraphl ¡ would mark H as necessary, a con-
hadiction. This means that s must be a declared
symbol. In this case, .s can affect the compilation of
F only because it is referenced by some other sym-
bol in a file X that is marked necessary. Since X is
marked necessary, it must be enqueued at some
point in time. Upon dequeuing, it is examined by
referenceO. Now, the check on line 5 of

1 : re fe rence(node)
2z { fo r (edge in node->edges)
3 : { i f (t (e d g e - > t y p e & R E F E R E N C E) l l
4¿ cont inue;
5: edge->node->type = NECESSARy;
6 : enqueue(edge->node) ;
7 ¿ re fe rence(edge->node) ;
8 :)
9 :)

Code Segment 2: Marking referenced frles

edge->node->type == NECESSARY)

l. : path (node)
2 z { m a r k = N U L L ;
3 : fo r (edge in node->edges)
4¿ { i f (t (edge-> typeeINCLUDED))
5 : con t inue;
6 : i f (edge->node->dfn < node->dfn¡
7z { í f (edge->node-> type == NECESSARy)
8 : re tu rn ;
9: i f (rnark == NULL I I e->node->dfn < mark->dfn¡

10 : mark = edge->node;
1 1 . :)
L 2 ¿)
1 3 : i f (m a r k l = N U L L)
I 4 z { m a r k - > t y p e = N E C E S S À R y ;
15: engueue(mark) t
L 6 :)
1 7 ¿)

Code Segment 3: Marking nodes on paths

204 Summer '92 USENIX - June B-June lZ, LggZ - San Antonio, TX

Vo, Chen

referencel ¡ would cause H to be marked neces-
sary, a similar contradiction. This proves:

Theorem 2. If. H is an include file of F that is
not mæked necessary by incl(), then it is safe to
exclude H in the compilation of F.

Theorems t and 2 show that incl () correctly
implements the conditions for necessary include files
discussed previously, Therefore, in an appropriate
compilation model, the files that incl () does not
mark as necessary can be safely excluded. It would
be nice to have the reverse, i,e., all files marked
necessary are required for compilation. However,
this is not generally true. Consider an example
where a base file a. c includes two files b. h and
c. h. In turn, both b. h and c . h include d. h.
Finally, c. h includes e. h. Suppose that neither
b. h nor c. h contains any definitions or declæations
required by a.c but d.h and e.h do. It is clear
that, for correct compilation of a . c, only c . h, d. h,
and e.h æe required. However, path() may also
mark b. h as necessary if df number () searches
b. h before c . h. This shows a limitation of the
path() heuristic algorithm.

Finally, we need to anzlyze the time require-
ment of incl (). This can be divided into two
parts: the construction of the include/refetence
graph and the search for necessary include files. In
constructing the graph, the time is dominated by the
primitives to access the CIA database. However,
these primitives are called exactly once for each
symbol and reference relationships. The CLA data-
base is arranged so that it takes constant time to per-
form each call to these primitives. The search for an
existing node or edge by the functions getnode ()
and getedge() can be implemented in hash tables
so that each function call is constant time on aver-
age. This means that the graph construction phase
can be done in linear time (on average). In the
search for necessary include files, first note that the
depth-first numbering of the nodes requires linear
time. Then, note that each node in the graph can be
marked as NECESSARY exactly once. Each REFER-
ENCE edge is searched at most once when its tail
node is examined by reference(). Likewise,
each INCLUDED edge is searched at most once
when its head node is examined by path (). Thus,
the total run time for referencê1¡ and path()
is linearly bounded in the number of files and rela-
tionships among them. To sum this up, we have:

Theorem 3. The algorithm incl () runs in
linear time in the number of files, symbols and sym-
bol references.

Analyzing Include Hierarchies

Section 3 shows that finding unnecessary
include files is computationally feasible. The pro-
gram incl simplifies the analysis of include hierar-
chies by providing a variety of ways to extract and

Incl: A Tool to Analyze Include Files

present information. Using the C program shown in
Figure 2 as a base, this section gives examples on
the use of. incl. We shall use the convention that a
user input command line starts with g, the shell
prompt. Any output from the command will
immediately follow this line.

Before incl can be used, a C program database
file opendb.À must be created with the cia com-
mand using the same options as given to the C com-
piler:

$ cia -c - Ihdr -DCDB opendb.c

Note that compiler options like -DCDB may
influence the file include relationships because of
#ifdef 's. This, in turn, influences the working of
incl.

After the database opendb.A is created, incl
can be used to generate the include and reference
graph derived from opendb.c. The best way to see
this information is to generate a picture such as the
one in Figure 3 with:

$ i n c l - R 7 , 3 . 5 o p e n d b . À
$ dag -Tps opendb.d

Here, the option -R7 , 3 . 5 directs incl
to generate a file opendb . d that contains a descrip-
tion of the include hierarchy as a directed graph to
be drawn in an area that is 7 inches by 3.5 inches.
Then, the program dag Vl is used to generate a pic-
ture specified in the PostScript language (the option
-Tps).

Below is a quick scan to see what files are not
needed. The result shows that two files can be
skipped. One of them,
(/usr/ include/sys/stat.h), is included
indirectly.

I incl opendb.A
opendb.c r

/usr/ include/ctype. h
/usr / inc lude/ sys /s ta t . h

To see the full hierarchy of include relation-
ships with proper indentation, use the -1 option. In
this textual view, the character - tags unnecessary
files in Closure(opendb. c):

$ incl -1 opendb.A
opendb.c :

/usr / ínc lude/s td io . h
/usr / inc lude/c type. h
hdr /db . h

hdr /d i r . h
/ usr / include/sys / stat . h-

hdr /cdb. h
hdr/error. h

After finding out what include files are not
needed, a few options are available to eliminate or at
least avoid them. The most direct approach is to
edit a C source file F and remove anv unneeded files

Summer '92 USENIX - June 8-June 12, L992 - San Antonio, TX 205

Incl: A Tool to Analyze Include Files

in First(F). For example, the statement #include
<ctype. h> can be safely deleted from
opendb. c. However, deleting #inc lude
<sys/stat.h> from hdr/dir .h is dangerous
because hdr/dir.h may be used by other pro-
grams. Iæt's suppose for now that we have control
over opendb. c so rfr¡e can delete any unnecessary
#include statements from it. We can run incl
with the option -e to generate an ed script, then run
ed to acfially delete the unnecessary statements:

$ incl -e opendb.À
opendb. c :

/usr/ include/ctype. h
$ cat opendb.e
2 d
w
$ ed opendb.c < opendb.e
"opendb.c" 16 l Ínes | 2L9 characters
inc lude "db .h"
"opendb.c" 15 l ines , 2OO charac terg

Though it is not generally safe to delete code
from a source file, incl -e can help in software
reengineering. An example of this is to partition a
large module of code into smaller units. Each new
unit may start by including all original include files,
Then, incl -e can be used to modifv the new
units so that they will include only what ii needed.

In contrast to source files, deleting code from
include files is inherently dangerous because header
files are usually shared. In certain development
organÞations, for a variety of reasons, programmers
may not be allowed to delete code from certain
source files. In such a case, we must rely on a smart
compilation system to skip unnecessary include files.
The C preprocessor developed by Glenn Fowler and
distributed with nmake [3] takes a special option -
I-f-.u that reads file ,u to determine what files to
skip during C preprocessing. Assuming that this
special C preprocessor is available, incl -u can
be used to generate appropriate . u files for compila-
tion:

$ incl -u opendb.A
opendb.A:
$ cat opendb.u
" /usr/ include/ctype. h "
" /us r / inc lude/sys /s ta t . h "
$ cc - ¡ - t - .u - Ihdr -DCDB -c opendb.c

Figure 4 shows the include graph of the file
graphics.c from a picture drawing program.
Most path prefixes of the filenames and reference-
only edges were removed to simplify the picture.
Out of the 67 files included directly or indirectly by
graphics.c, there are 52 unnecessary files (shown
in oval nodes). Using a similar' compilation
approach as in the above example, cpp skipped these
52 files, which reduced the total lines that cpp pro-
cessed from 231.55 to 9076 - a saving of 67V0. The

Vo. Chen

total compilation time of graphics.c went from
10.04 (user+sys) seconds to 6.64 seconds on a SUN
Sparcstation I, a saving of 34Vo. We shall give more
detailed statistics on three projects in the next sec-
tion.

Statistics

To see the effectiveness of using incl, we
experimented with compiling the source code from
two different projects on a Solboume running SUN
OS 4.0. These projects are based on the graphics
facilities provided in SunView and X respectively.
Figure 5 shows the data from the experiment. For
comparative purpose, the third column of Figure 5
shows data from a module in a large project on a
different machine architecture. This data was given
to us from a user of incl.

Here are the measures displayed in the table:
a NumsrcFiles: the number of files in the

database with suffix .c.
. NumlncFÍles: the number of files with

suffix .h, including all user and system
header files.

a Numlncscans: the total number of times
that include files are scanned. Note that an
include file shared by several source files may
be scanned several times.

. Numlncskips: the number of include file
scans that can be skipped with incl :u.

o PerclncSave: this is the ratio of
NumlncSkips over Numf ncscans.

o OrgcompTime: the time it takes to compile
all . c frles. The time taken is the sum of the
user time and the system time obtained by
using the UNIX regmark] time command
(actually, a built-in shell command in our
case). It does not include the linking time.

o SkipCompTime: the time it takes to compile
all .c files by ignoring unnecessary include
files.

a PercTimeSaved: one minus the ratio of
SkipCompT j-me over OrgCompT j-me.

As Figure 5 shows, the compile time saving
ranges from l2/o to 36qo. Note that there are two
different wastage problems with processing header

measure Project A Project B Project C
NunSrcFileB 23 L9 35
Nu¡nIncFiles 74 54 163
Nu¡nlncScans 1158 378 1168
NumlncSkips 821 209 479
PerclncSave TLVo 55Vo 4LVo
OrgCompTime 152 secs 96 secs 15m58s
SkipConpTirne 98 secs 85 secs 1lm41s
PercTimeSaved 36Vo IZVI 267o

Figure 5: Include File Statistics on Three Projects

206 Summer '92 USENIX - June 8-June L2,lgg2 - San Antonio, TX

Vo, Chen

!fes: processing unnecessary files and processing
files that are included multiple times. To avoid thé
latter, a number of the header files in the study are
protected by pain of #ifndef , #endif. This

Incl: A Tool to Analyze Include Flles

helps _standard C preprocessors to avoid scanning
such files more than once. Our C preprocessor (by
Glenn Fowler) is smart enough to, in fact, avoid reo-
pening such header files when applicable. Therefore,

Figure 4: An Include Hierarchy with Many Unnecessary Include Files

Summer '92 USENIX - June 8.June 12,lgg? - San Antonio, TX 207

Incl: A Tool to Analyze Include Files

the compile time via incl -u measures the true
saving of skipping files that are unnecessary, and not
just the saving of avoiding multiple file openings.

Conclusion

Reverse engineering is the activity of recover-
ing from a system's implementation its high level
objects and their intenelationshíps. This paper
describes a tool, incl, suitable to analyze the rela-
tionships among include files in a C software sys-
tem. The analysis of such files must be done with
care if we want to use the resulting information to
reengineer the software. We described a precise set
of conditions under which include files could be
safely ignored during compilation, implemented a
linear time algorithm to compute such files, and
proved the algorithm's correctness. Our method is
general and could be used to analyze C++ include
files, but we have not yet explored this direction.

Incl can be used to generate textual and graphi-
cal information on include hierarchies. Such infor-
mation shows the include structures of large projects
and provides a starting point in any effort to reen-
gineer such structures. In a more limited fashion,
IneI can also be used to generate scripts for
automatic deletion of unused include files. We gave
examples of how to use the program.

Eliminating unused include files can save
significant compile time. incl can be used in con-
junction with a smart C preprocessor to ignore
unused include files during corirpilation. Note that
this approach is different from the standard practice
of using #ifndef _HEADER_FILE to avoid mul-
tiply included files. We presented experimental data
showing that up to a third of compile time can be
saved by ignoring unused include files.

Finally, incl is a part of the repertoire of C
software analysis tools provided under the umbrella
of the CIA system. It is a small application (650
lines of amply commented C code) written on top
of the CIA database. The ease of its implementatioñ
shows that the CIA conceptual model and data pro-
vide a good basis for developing C analysis tools
that deal with nonlocal C objects. This also shows
the power of software tool modularity in which
appropriate abstractions are captured and imple-
mented in the right place.

References

[1] Alfred V. Aho and John E. Hopcrofr and Jef-
frey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley pub-
lishing Company, 1974.

[2] Yih-Farn Chen. The C Program Database and
Its Applications. ln USENIX Baltimore 1989
Summer Conference Proceedings, 1989.

[3] G. S. Fowler. A Case for make. Software -
Practice and Experience,20:35-46, June 1990.

Vo, Chen

[4] E. R. Gansner and S. C. North and K. p. Vo.
DAG A Program that Draws Directed
Graphs. Sofrware: Practice and Experience,
18(1i), November 1988.

[5] Michael R. Gæey and David S. Johnson. Cor¿-
puters and Intractability: A Guide to the
Theory of NP-Conpleteness. W. H. Freeman
and Company,1979.

Author Information

Phong Vo lost his B.A degree somewhere but
did manage to retain an M.A and a Ph.D. in
Mathematics from the University of California at
San Diego in 1977 and 1981 respectively. He joined
Bell Labs in 1981 and is currently a Distinguished
Member of Technical Staff. His research inrerests
include graph theory, data structures and algorithms,
user interface and reusable software tools. Aside
from obscure theoretical works, Phong is responsible
or partially responsible for a number of popular
software tools including the current System V
<curses> and malloc libraries, IFS, the Interpretive
Frame System, a language for building applications
with menu and form interfaces, and DAG, a program
to draw directed graphs. He was awarded an AT&T
Bell Labs Fellowship this year. Phong can be
reached at kpv@ulysses.att.com or Kiem-Phong Vo,
AT&T Bell Laboratories, 600 Mountain Ave., Mur-
ray Hill, New Jercey 07974.

Yih-Fæn (Robin) Chen received rhe B.S.
degree in electrical engineering from National
Taiwan University, Taiwan, in 1980, the M.S. degree
in Computer Science from University of Wisconsin,
Madison, in 1983, and the Ph.D. degree in Computer
Science from the University of California, Berkeley,
in 1987. He is currently a Member of Technical
Staff at AT&T Bell Laborarories in Murray Hill,
New Jersey. His research interests include the
modeling and integration of software databases, pro-
gramming environments, and network management.
Yih-Fa¡n can be reached at chen@ulysses.att.com or
Yih-Farn Chen, AT&T Bell Laboratories, 600 Moun-
tain Ave., Munay Hill, New Jersey 07974.

208 Summer '92 USENIX - June 8.June 12,l9g2 - San Antonio, TX

