
Large Scale Porting through
Param eterization

David Tilbrooh Russell Crook - Siemens Nixdorf Information Svstems Ltd.

ABSTRACT

The advent of open systems and standards, while beneficial, has not eliminated the
diffi-culty of maintaining and transporting large scale software systems across many varying
platforms.

this paper we discuss the need and criteria for a effective porting strategy, one that
allows the rapid and inexpensive retargeting of large scale software systems to mâny widely
varying platforms while not compromising the integrity of that software on any pieviously
supported platform.

"Getting Tigger down", said Eeyore, "and not hurting anybody, Keep
those two ideas in your head, Piglet, and you'll be all right.,'
A. A. Milne, The World of Pooh, 1957, pp2L6, McCeltand & Stewart Ltd.

A key component of any porting strategy is the methodology used to determine,
represent, use, and validate specifications of the target system's characteristics and site or
system dependent build and run time controls. The standards efforts (e.g., pOSIX, ANSI C)
are attempting to eliminate the large number of discrepancies that exist among systems today.
However, the problem will always exist, for ieasons that are discussed.

Hence, the main objective of this paper is to present and justify the methodology that
we use.

_ Ihis methodology is in production use on several commercial products in Sietec. Its
benefits include relieving the programmer from the burden of needing detailed knowledge of
all the idiosyncrasies of the variõus target environments. It is suffi-ciently powerful tñat it
accommodates many flavours of BSD, System V, and DOS.

Introduction

Porting is important for a vendor in the open
systems market. There are many reasons for this:

o Rapid advances in technology are creating
new platforms at an astounding rate. It is
essential that existing software be made avail-
able on new platforms as quickly as possible.

o Being able to port to existing customer equip-
ment has clear financial and marketing
benefits.

o Heterogeneous networks are becoming both
larger and more common. The vendor,s
software product must run, and run well, in
these environments.

o Large scale portability allows deploying the
software on platforms with best
price/performance.

o The reliability of the code is improved, as the
differing environments provide different
checks and constraints on the software.

o Widespread portability gives a leverage on
testing. If the software works in some
environments but not others, attention can be
more quÍckly focused on the relevant areas.
Additionally, different environments may have
different testing tools. Exposing the problem

on a platform with better testing tools can
lead to more rapid repair.
AII of the above are needed for both mature

products and those currently undergoing large scale
development. Responsiveness to market need is crit-
ical for competitive reasons in this environment.
This means that the porting process must be fast,
inexpensive, and robust. That the process should be
fast and inexpensive should not need any further
explanation or justification. In fact both these cri-
teria will be sacrificed if necessary to ensure the pro-
cess is "robust".

To explain what we mean by a "robust" port-
ing process, assume that there is a software system
called Z and that there are three platforms (alpha,
beta and gamma) on which Z is to be supported. Z
was ported to alpha in the past, but has not been or
cannot be reconstructed or tested for sometime. Z is
currently being maintained and tested on beta, and is
under continuous development. Z has never been
ported to gamma, but the sales department has told
an important customer that Z already runs on it.

Our problem is then to port Z to gamrna,
quickly and completely, while ensuring that:

1) the modifications made to port Z to gamma
do not adversely affect the ongoing

Summer '92 USENIX - June 8-June 1rZ,1rgg? - San Antonio, TX 209

Porting through Parameterlzaüon

development on beta, yet can be easily and
reliably integrated into the source once the
port has been completed;

2) development done on beta (also promised by
the salesman) can be added to gamma quickly
and reliably without requiring any additional
work beyond recompilation and test;

3) there is a high degree of confidence that the
modific¿tions made to port to gamma and,
enhance Z on beta will work on alpha,
In this paper, we will describe part of our port-

ing strategy - how we specify the target system's
characteristics - and explore some of the
ramifications for the overall shateg¡¡, particularly
with respect to achieving robustness as described
above.
IVhy adherence to standards is not sufficient

The advent of software standards for open sys-
tems (POSX, ANSI C) has improved the situarion,
but has fæ from solved it. The problem of develop-
ing and maintaining software on multiple platforms
persists. There are many reasons for this per-
sistence:

1) Standards compliance cannot be enforced and
is frequently weak. If non-compliance is
found, the software being ported is forced to
adapt, not the other way around.

2) The standards themselves are often moving
targets, and, despite the best of intentions,
cannot be complete.

3) Any sizable system requires the specification
of a large number of conhols and settings that
depend of factors far beyond the scope of any
standard (e.g., -O vs. -9, the directory into
which the system is to be installed).

4) Standards usually define a minimal system
and we need to be able to use extra "non-
standard" facilities offered by the platforms
that might improve performance or security.

5) There are still a large number of potential
clients using non-standard platforms, that we
do not want to ignore.
Hence we believe that adherence to standards is

not sufficient, thus, the problem of the specification,
determinatíon, use, and validation of the platform
and configuration dependent variations between sys-
tems must be solved.

The next section discusses our environment,
principles we believe to be important, examples of
specifrcations that must be handled, some constraints
on a solution, and the basics of our approach.

Some of this work parallels the goals and
objectives of Lany Wall's metaconfig, and Glenn
Fowler's finclude <feature/*.h> systems. How-
ever, our requirements and constraints are
suffrciently different to require yet another solution,
as will be discussed later in the paper.

Tilbrooþ Crook

Our envlronment

A brief description of our environment and the
challenges to be faced:

We have approximately a dozen softwa¡e
engineers working on various libraries, daemons, and
utilities comprising some 2000 C source files and
500,000 lines of code. The developers tend to do
their development and testing on only one or two of
the available platforms.

Over the past tluee years, there has been an
average of 50 files changed a day.

These changes have been made and tested on
all of the internal platforms averaging six different
platforms, and nine different confrgurations.

In the past year, the sofrware has been moved
to ten new environments (six in the last four
months). Some of these ports have been on very
short notíce.

Finally, most development is done on platforms
that are not (officially) supported in the'released pro-
duct.

Assuring functional consistency and robustness
is a challenge. We require a consistent and
comprehensive porting strategy that works well
within this environment because we have to "port"
and test fifty deltas a day to nine different
configurations, while ensuring that the changes will
not break any of the other dozen or so supported
platforms.

How we solved the problem

Principles
The following are fundamental principles of our

porting shategy:
1) We do not port the software itself; instead, we

configure a platfonn base or portability layer
on which all code is based.

2) Testing must be frequent and widespread. If
the portability layer is conectly configured
and changes to product software uses that
layer conectly, then a successful test of a
change on a single platform should be
sufficient to ensure that the change will be
semantically correct on all platforms. Obvi-
ously testing on only one platform is not
sufficient in practise, therefore we test all nine
standard confrgurations continuously.
To facilitate using these principles, we also

mandate
o The use of exactly the same application

source files for all platforms (the "one true
source"), which in turn means

r avoiding fifdef in application code - espe-
cially those that deal with system dependen-
cies. This applies to application header files
as well; system dependent values should be
inherited from the platform base.

210 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Tilbroolq Crook

Types of problems encountered
There are many different types of platform

differences that give rise to porting difficulties.
Some are listed below, with common examples:
Include frle problems: Differences in location

information (are the open} flags in file.h,
fcntl.h, or even provided at all) incompatibili-
ties amongst vendor headers (multiple, dístinct
definitions of. NULL), ordering dependencies
due to lack of idempotency, etc.

Different names for the same functionz strchr)
vs. indexj, bcopy) vs. memcpy), etc.

Standard libraries that aren't: For a program
that uses terminal capabilities, do you need
-ltermcap, -lterminfo, -lcurses, or some com-
bination?

Functions that have different types on different
platforms: char* sprintf (BSD) vs. int sprintf
(svs Ð.

Presence or absence of a capability: Is /srarfl
available? Does rn¿ of a symbolic link delete
the link or the file behind it?

Runtime environment: Is the user's login name
in $LOGNAME, .$USðR, or even available?

Construction differences: ls ranlib available? Is
JfDc_defined, and can you believe it if it
is?

Bugs: If the rename| function exists, does it
work, and how well does it work? [1]

Differing tool interfaces and semantics: Is the
debugging flag for cc, -g 01 -gx? Is the ar -o
flag supported?

Attributes of a Viable Solution
There are several attributes that a solution

within this problem domain must possess:
Extensibility: It has been our experience that

every new port introduces a new variation that
has not been seen in any of the previous ports.
To preserve portedness of old systems over
time despite changes we must therefore
extend capabilities without breaking old ports.

Recreatable: We must preserve port information
for old systems over time so that we can
recreate that port or extend as required as ne\ry
requirements arise.

Locale independence: The mechanism must be
host, site, and user independent. For example,
we conshuct our DOS version on a UNIX sys-
tem. This implies that no aspect of any
specific host is needed to maintain this
mechanism.

Ease of use: Given the rapidity with which new
ports must be done, it is necessary to have a
mechanism that allows eaiy addition or
corrections of these parameters. This also
encourages ready experimentation.
The extensibility øiteria dictates that this can-

not be a fully automated process, with all relevant
information determined at compile or run time.

Porting through Parameterization

Additionally, some values cannot be determined
automatically, as they are almost a matter of taste
and local custom. Such preferences should be
specified with the same mechanisms as the platform
constraints.

Configuring the Portability Layer

The foundation of the portability layer is a set
of configured header and data files. The portability
layer also contains a compatibility library, run time
confrguration tools and techniques and data, and a
highly configurable construction system used to per-
form system constructions, but all these components
are built using the foundation.

The portability layer foundation is built from
the following ingredients:

1) A parameters frle for the target system to be
constructed.

2) A set of prototypes for files to be configured.
3) A program called srr,¡1x which, for a given

prototype and the parameters file produces the
confi gured information.
Descriptions of each of these ingredients fol-

lows:
The parameters file: The parameters file contains

the configuration or discrepancy specifications
as namelvalue pairs. The name is a upper
case C identifier, and the value is an arbitrary
string. Inclusion of other parameter files is
supported to allow the inheritance of common
or base systems values, as well as other
shared information. An annotated example is
provided in a later section.
Multiple specifrcations for a given name are
allowed, with the last specification taking
effect.

Prototype files: A prototype is a standard text frle
with embedded strings of the following forms:

€<name>€
€ <name><operator><ar gument> €

where <name> is a possible parameters flle
setting, and <operator> is used to indicate
special interpretation such as ":default" to
specify a default value,

strfix: The program strfx reads a prototype file,
replacing embedded @<name>.;.@ strings
with corresponding values from the parame-
ters file. All other text is passed through
unchanged.

The process
Creating the portability layer foundation is sim-

ply a matter of applying strûx against all the proto-
type files using the parameters frle to produce a set
of configured files which are copied to their proper
locations.

Summer '92 USENIX - June 8-June 12,L992 - San Antonio, TX zL':

Porting through Parameterization

Validation
Validating the portability layer is done, in part,

by using it to compile and install the portability
layer tools, which are then applied to rebuild itself.
However, this is not an exhaustive test, consequently
there are a number of regression tests that attempt to
provide complete coverage.

This process is obviously dependent on the
correct functioning of the strfix program. To
minimize the chances that a new platform will force
a change to strfix, its functioning has been kept very
simple and easily tested.
Requirements of the construction system to sup-

port this stratery
This strategy has obvious implications for both

the use of header frles and the characteristics of the
construction system. These will be addressed in a
Iater section.
Prevention of gratuitous timestamp propagation

Obviously, every file in the portability layer
depends upon the parameter file. Just as obviously,
lots of programs depend on the portability layei.
Therefore, unless other steps are taken, a cosmetic
change in the parameters file would result in the
complete and gratuitous reconstruction of the entire
system.
Aids in preparing the parameters frle

Whereas other approaches try to probe the sys-
tem to determine the settings of various system
values (and then automatically use these values), we
do very little interpretation of the host environment,
other than a program to extract required manifests
f,rom syslparam,h - a file we are anxious to avoid.

Such probe programs are particularly vulnerable
to unanticipated values (or new parameten) forcing a
coding change in the probe program, which then
makes it difficult to assure that the new program
would work conectly on previously ported systems.

Nearly all of our values depend on the parame-
ters file. Instead of probing, we have tools to help
the user to prepare and conect the parameters file,
Construction system implications

We are highly dependent upon having a con-
struction system that will guarantee that a construc-
tion rule will be automatically applied whenever it is
necessary - dependencies are automatically tracked
and a changed dependency list or recipe forces reap-
plication.

The second requirement is that we adopt a pro-
gramming style that uses our generated header files
in lieu of the system provided header files.

If a discrepancy arises in a standard host header
file, this ensures that we do not have to change the
host header file. Hence we provide header file
wrappers for all system header files that are used in
the application code.

Tilbrooþ Crook

Note that this provides the necessary insulation
from system dependencies that allows the program-
meni to ignore the underlying header structure. They
need only use the generated header files rather than
the system headers directly.

Annotated Examples

To describe in full the parameterization system
would require the inclusion of a lot of documenta-
tion. Therefore, the following brief annotated exam-
ples are presented to- clarify some of the issues
presented in this paperr.

The following is the parameters file for the
optimized, X11R4 BSD4.3 side configuration of our
product.

S I D G (#) m i p s 4 . S b - n i x 1 . 1 8
include DefaultConf
include Sites/sni tor
include Platforms/mips_ .3b
CONFIG mips
C_OPT -{ -systype bsd43
HOSTNA¡'{E helium
OPTIONS DTMACH NO-MAN
RDIST # nixtdcz/u/dtree/mips
xsYS_vERSTONXt 1R4

The include lines act as one would expect.
Note that the last setting specified is the one that
takes effect, therefore the setting for OPTIONS will
override those specified in the default specifrcation
frle DefaultConf.

Also note the presence of an SCCS SID line.
This file is source and is subject to all the normal
source controls. This file is the only specification
used to parameterize the construction and this file is
the only one that will differ from source used to
build any other configuration. To build and install
the specified configuration the only required initial
human action is to specify this file to the initial
configuration setup command. Once that
specification has been stated, the file is an inherent
part of the source and is subject to the same depen-
dency tracking and rules as any other source file. A
change to the file itself or any of its component files
will result in the rerunning of any of the construction
processes that use it as an input.

The following lines are a subset of the
TreeConfig prototype file which itself is a srrJ?r input
file used to configure the construction process.

S I D € (#) T r e e C o n f i g . D 1 . 1 1 t . .
This f i le conf igured from e_FILE_€
OPTIONS EOPTIONSE
e { g B L r r : f a 1 s e Q

/Some example lines are truncated to ensure that they fit
within the two column format requested by the programme
committee.

212 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

e l
e l
€ l

e)
xs

Tilbrooh Crook

Èrue
BLIT truE

f a l se
!t

€ | BI, IT(eBLITg) must be true , . . .

YS VERSION EXSYS VERSIONE

When this file is processed by strf*, given the
example parameters file, the following will be out-
Put:

S I D 0 (#) T r e e C o n f i g . D 1 . . 1 1
Th is f i le con f igured f rom /n3 / . . .
OPTIONS DTMACH NO-MAN
xsYs_vERsIoN xl1R4

The @OPTIONS@ and @X,S[S-VER.S/OÌf@ in the
original strings in the prototype file have been
replaced by the settings specified in the parms file.
The €{ through €} lines are a case statement
based in the value of €¡llr: f alse@. lf. the BLIT
parameter is true, f alse or unspecified (defaults
to false) the lines immediately following the 0 |
true or g I f alse line are processed up to the
next € | or ê) line. The € | arguments are one or
more shell-like regular expressions, hence * will
match everything, thereby processing any value that
is not true, fa1se, or unspecified. The e t
string causes strfix to abort with a diagnostic thereby
providing a quick and fool-proof check that the
parameter is one of the legitimate values.

This is not an untypical example of a prototype
file. Many are not C source and many are them-
selves used to configure other aspects of the system.
The BLIT parameter is also a good illustration of a
fundamental principle of our approach. It is used is
one and only one place in the prototype files and it
need not appear in any parameters file other than one
for a system that indeed supports a BLIT, Thus no
previous configuration file needs to be changed.
Furthermore, the addition of this parameter will not
change any existing generated file unless the BUT
parameter's value is true, thereby ensuring that no
previous port is broken.

A typical parameters file, when the includes are
unfolded, contains the settings for about L30 parame-
ters. The number varies according to the target sys-
tem as only variations for the default values are usu-
ally specified in the parameters files themselves and
new parameteni are created during most ports. This
sounds Íntimidating, but for the most part just
including the base system file (e.g., bsd4.[123],
unix5.[O-]) is sufficient to get started. The valida-
tion process quickly finds inappropriate settings that
are fairly easily fixed by adding the appropriate
override to the platform file. To list all the parame-
ters is beyond the scope of this paper. However,
they can be roughly partioned into the following
grouPs:

Porting through Parameterization

Site information: the site addresses and phone
numbers used within various packages to
build new source files;

System configuration: the name of the system,
the flags to be used to compile it (e.g., -O vs.
-g); the target location for the installed pro-
duct; the name to be used to access the
installed product (frequently not the same as
the target locationr).

Header file mappings: the header file used to
retrieve various types, settings, defines, etc.;

Tool names and availability: the name of the
compiler, loader, yacc, etc, to be used in the
construction process, as well as the names
(and full path if desirable) of various useful
facilities whose names may differ across sys-
tems (e.g., rså vs. rcmd);

Compiler characteristics: Can one use proto-
types? Can one use prototypes for function
pointers? Some compilers can do one but
dump core when one attempts the other. Is
char signed or unsigned? How does one
specify the use of an alternative C pre-
processor? Tools are provided to help the
installer find out answers to some of these
questions, but we never depend on them
working correctly.

Routine mappings: which routine should be
used to copy memory? To move memory? Is
there a dup2 routine?

Supported bugs: Does rename work? and so on.
Before leaving this examples section, our solu-

tion to a particularly difficult header file mapping is
illustrated.

The specification of which header files contain
the definitions of the tm and the timeval structs is
one which cannot be based on loose specification of
the base system (e.g., bsd vs. unixS). The two
structs are frequently used in the same source and
the inclusion of the appropriate header files (e.g.,
sysltine.h and time.h) is not a matter of simply
#includeing both. In some situations one includes
the other and the second is not idempotent (that is, it
may not be included nvice). On other systems both
files have to be included in a specific order and may
or may not require the previous inclusion of
sysltypes.h, which itself is sometimes not idempo-
tent.

We solve this problem by creating our own
envirltime.h header file which contains the
speciñcation of both required structs, plus those pro-
totypes that are sometimes not specified. This is a
configured file that uses two parameters:
TMEVAL_H and TM-STRUCT_H which respec-
tively name the header files to be used to access the
definitions for the timeval and tm structs

@instatlthem.

Summer '92 USENIX - June 8-June L2, Lggz - San Antonio, TX 2t3

Portlng through Parameterizatlon

respectively, with one minor caveat. If one header
file enforces the inclusion of the other, the other is
assigned the empty string. The following lines are
included as part of our prototype tíme.h ñle:

/ *
* include our osrn idempotent
* types.h wrapper
). /

#inc ludecenvir/typee . h>
/ *

* include timeval header
* i f necessary
t t /

ETIMEVA¡-H#iE
/ r c

* header containing struct tm
* if not same as above
t t /

g { XêTM_STRUCT_H : sys /time. h€X
g I xeTrMEvAL_Hex
0 l *

€ TM_STRUCT_H#isys /time . h 0
e)

The €<name>#i. ..0 string causes strfu to
output a #include line if the parameter is defined
or a default value is specified. The above may look
baroque, but the resulting file just consists of the
comments and the required includes. Also note the
absence of #ifdefs.

Evaluation.

How does this strategy meet the criteria given
earlier?

o The simple text file is portable, and strfix is
simple and almost immune to environmental
idiosyncrasies.

o We can add new parameter files that allow us
to use old configurations with new perturba-
tions. For example, a quick look at the
machine (or its documentation) will indicate
whether we should start with a BSD 4.x base,
or System V, or something else.

o Usually no application C code or header file
changes are required. \ile will not discuss
creating of a portability library to compensate
for system deficiencies; it is a simple applica-
tion of the parameter ñle to select or provide
appropriate functionality or provide name
mapping.

o In the last year, we have ported our major
software product to ten new platforms. Six of
these were in the last four months, for an
average of one pórt every three weeks. These
ports included our first encounters with
X11R4 and System V Release 4, The porting
itself took an average of a day, with testing
taking a week. During these porting efforts,
development efforts continued at their normal

Tilbrooþ Crook

rate on the application code.
o Through this mechanism we have virtually

eliminated the use of #lfdefs in C code. Dur-
ing the last year, with its ten ports, there were
no #lfdefs added anywhere in the application
code or header file. Those #ifdefs that remain
are either in taste or capability selection (e.g.,
build with debugging code in oi out) or are
based on settings in the parameter file. When
it is required to alter a setting for a specific
platform or host, the parameter file is
changed, and not the C code. The importance
of this to our efforts should be obvious:

+ Since we do not change the code, we
virtually eliminate the possibility of
breaking an old port.

+ By not creating platform-specific blocls
of code, the regression tests remain
accurate.

o The ability to use these techniques in a cross-
compilation environment allowed porting the
code to a DOS¡TVindows environment without
forcing an unfamiliar development environ-
ment on the developers. A probe-based
mechanism would not have readily permitted
this. As importantly, it permitted application
of multiple developers to the porting effort
without jeopardizing source code consistency.
Although this effort did in facr require sub-
stantial code changes due to the radical
environmental differences between DOS and
UNIX (filename syntax, environment vari-
ables, unusual C environment), these changes
were applied to the one true source for both
the DOS and UNIX environments, and then
continually tested in both environments on an
ongoing basis.

How well does this work?
Very well indeed. This approach has suc-

ceeded in all UNIX platforms tried to date (over fifty
at last count). Our approach is now being used to
support our application code in a DOSAilindows
environment.

Products at other Siemens sites have adopted
this approach by converting their software to use our
portability layer. One such product, which had pre-
viously only worked on one platform was ported to
three new platforms in two months.

The application developers are, in our experi-
ence, very happy to suffer the style and coding prac-
tises in exchange for not having to understand the
arcane topology of all the systemsr encountered.
The effort required of the developers to use the

@t during the Dos/\ilindows
work. Running the regression tests under DOSÂilindows
was all the contact most of the developers had with the
DOS environment.

2t4 Summer '92 USENIX - June 8-June 12,1992 - San Antonlo, TX

Tilbrooþ Crook

portability layer is very small by comparison.
Most pofs of our software (up to and including

running of the automated regression test suite) do
indeed take only a day or so. The exceptions occur
when the applications have made non-portable
assumptions (e.9., using X11R3 and porting to a plat-
form with X11R4). Even in these cases, the ability
to rapidly mutate the platform base layer to adapt to
the new environment without invalidating previous
portsa is of great benefit.

It is worth noting another large benefit - any-
thing that is a text file can make use of the platform
base. This obviously applies to applications written
in languages other than C, but it also applies to shell
scripts, construction system recipes, application data
files (e.g., X resource files), etc.

It is worthwhile casting our recent experiences
into the Z software mold mentioned previously, with
past platforms alpha which may not be testable for a
while, present platforms beta onwhich most ongoing
development occurs, and future platforms gamma.
Platforms that were gamma systems have become
alpha syslems since the equipment was here for
short term evaluation only; some of the future
gammn systemsS will be new corporate platforms,
and will become beta platforms. Some of. the alpha
sygtems are now befø systems, as equipment has
been repaired or returned. During all this activity,
software development continued at close to its nor-
mal rate.

In such an environment of flux, it is clear that
we cannot afford to freeze application development,
port the code by modifying it and rhen test it on the
relevant platforms. Attempting to modify the appli-
cation for porting purposes while letring appücátlon
development proceed has obvious quality problems.
We a¡e convinced that the more usual approaches
would not suffice in our environment.
What would be done differentty?

o Documentation of an individual parameter and
the expression of its use is currently weak.
This is especially important since each new
port (so far) has iútroduced new parameteÍs.

o Comprehensive validation of a parameter's
setting is sometimes delayed until late in a
system's construction due to prerequisites.
We need a better framework for specifying
and executing parameter regression tests.

o Similarly there needs to be an easy to use
f¡amework for adding aids to help the user
determine the correct settings, although most
of the time a simple guess is sufficient.

Porting through Parameterization

Other Approaches

Conñg
This paper would be incomplete without dis-

cussing a widely used approach to the problem
addressed by this paper, namely Larry Wall's config
and netaconfig systems. config is sufficient for the
distribution of a small shareware system to users
who are willing to invest the required time and effort
to fix it when it goes wrong. However, config can-
not be considered as the mechanism to be used to do
large professional systems due to a number of
deficiencies.

o It requires user interaction, which is time-
consuming and error-prone, and most impor-
tantly cannot be expressed as an administered
source file, something that we believe to be
essential. It also rules out the possibility of
rerunning the confrguration stage as part of
any construction, again something that we
believe is essential.

¡ The use of probes to determine the appropri-
ate settings for the equivalent of our parame-
ters has several drawbacks. When a probe is
in error, the probe mechanism itself must be
altered to accomdate the fix. Frequently the
probes themselves are constructed with impli-
cit assumptions about the target system.
When these assumptions are incorrect, major
surgery is often required. Hence, previously
valid probing assumprions may be upset by
the change to the mechanism, jeopardizing the
validity of previous ports.

a The probe information cannot be managed
historically. The probe evaluation depended
on the state of the host system at the time
config was executed and therefore its replica-
tion cannot be guaranteed. Regenerating a
configuration for an unavailable platform (say,
an older release of an operating system) for
support purposes becomes problematic.

a The addition of a new parameter or correction
of an old one has severe performance implica-
tions when constructing large systems. Our
experience with config is limitedó, blut config
users who do use it stated that the actual pro-
ducts of the config process are two configured
files (one for C and the other for sh). This
means that the simple corection of a parame-
ter will require the entire recompilation of the
complete system, something that one cannot
afford when running four to five thousand
compiles across nine different platforms.

ffito use it to install rn but
gave up when it failed. The cost of trying ûo adapt a
much hacked 1800 line shell script was considered to be
far mo¡e than the benefits of being ablc to use r¿. For
comparison, we normally use a ten li¡e tcxt file to
install 800 prog¡ams and 30 libraries.

alo this case, the changes have to be tested both in an
old (X11R3) and new (Xt1R4) envi¡onments to be
considered safe.

SWe have three of these anticipated in the next six
weeks,.

Summer '92 USENIX - June 8-June LZ,1:gg? - San Antonio, TX 2L5

Porting through Parameterization

o The dependence on the host system eliminates
the possibility of doing cross compilation,
something that we must have to adequately
deal with inadequate systems such as DOS.
Our approach is to provide probes that may be
used to determine and/or test the appropriate
value for a parameter, but to never incorporate
its running as part of the construction process.

Fowler's #feature mechanlsm
Glenn Fowler, the creator of the fourth make,

has an approach to the confrguration process that to
our knowledge and that of one of his colleagues has
not been documented. Briefly, the use of:

#include <feature/ name.h>

within a C program, and the dynamic depen-
dency tracking of. make4, will trigger, if necessary,
the creation of the named header file by running the
associated probe. This shares some of config's
weaknesses with respect to the dependence on
automated probes and the host environment, but
avoids some of config's major flaws. As stated the
system is, as yet, undocumented but shows promise.

Conclusions

Pofing is extremely important to us, and our tech-
niques have proven to be profitable for us.

This paper addresses only one aspect of the
porting problem - that of the specification of param-
eters for a system. We have been led to this stra-
tegy by the requirements of today's environment of
open systems and need of rapid ports. The parame-
terization and characterizations of systems in this
way has proven sufflcient to handle all porting prob-
lems we have seen in the past ten years. Indeed,
expectations are now so high we have the situation
that all ports are expected to be done in a day, even
though they may involve substantial rework and test-
ing to deal with new challenges.

Bibliography

[1] David Tilbrook, rename("open",
" swinging _to _and_fro ") ; EurOpen Newsletter,
1991.

[2] David Tilbrook & John McMullen, Washing
Behind Your Ears: Principles of Software
Hygiene, EurOpen Nice Conference, Oct, 1990.

Author Information

By the time this paper is published, David Til-
brook will have stafed his new position as Vice
President, Technology at CS Computing Services in
Toronto. For the last three years he has been a con-
sulting engineer at Sietec and the manager of the
Software Hygiene Research group. His primary
research interest is Software Hygiene and the
Software Process. David has served as the pro-
gramme chai¡ for four EurOpen conferences, a

Tilbrooþ Crook

Usenix conference and the Sofnvare Management
Workshop, and is the chair for the 1993 Uniforum
Canada conference on Software Hygiene. In 1985,
David was awarded an Honourary Lifetime member-
ship to EurOpen (and a much treasured Swiss army
knife).
David's new address is unknown at this time due to
the fact that his company is relocating to as yet at
unknown location in downtown Toronto but he may
be contacted via Russell or dt€sni.ca for the
time being.

Russell Crook has worked at Sietec since 1988
as a Project Leader within the Imaging and Data
Storage groups, working on problems in large scale
data storage and management. He has a long stand-
ing interest in computer chess, including work on the
Treefrog chess program, which won the 1974 CACM
computer chess tournament.

Russell may be reached at:

Sietec Open Systems Division
2235 Sheppard Avenue East
Suite 1800
trVillowdale, Ontario
Canada
M2J 585

or a t rmc€sn i .ca .

216 Summer '92 USENIX - June 8.June 12, L992 - San Antonio, TX

