
#ifdef Considered Harmful, or
Portability Experience With C News
Henry Spencer -_Zo9l9gy-Computer Systems, University of Toronto

Geoff Collyer - Software Tool & Die

ABSTRACT

We believe that a C programmer's impulse to use #ifdef in an attempt at portability is
usually a mistake. Portability is generally the result of advance planning rathei than trench
warfare. involving #ifdef. In the course of developing C NewJ on difterent systems, we
evolved various tactics . for dealing with differencès ãmong systems without producing a
welter of #ifdefs at points of difference. We discuss the-altêmadves to, and occasio-nal
proper use of, #ifdef.

Introduction

With uNrx running on many different comput-
ers, vaguely t¡tlD(-like systems running on still more,
and C running on practically everything, man! peo:
ple are suddenly finding it necessary to pott C
software from one machine to another. When differ-
ences among systems cause trouble, the usual first
impulse is to write two different versions of the
code-+ne per system-and use #ifdef to choose the
appropriate one. This is usually a mistake.

Simple use of #ifdef works acceptably well
when differences are localized and only two versions
are present. Unfortunately, as software using this
approach is ported to more and more systems, the
#ifdefs proliferate, nest, and interlock. After a
while, the result is usually an unreadable, unmain-
tainable mess. Portability without tears requires
better advance planning.

When we wrote C News [Coll87a], we put a
high priority on portability, since we ran several dif-
ferent systems ourselves, and expected that the
software would eventually be used on many more.
Planning for future adaptations saved us (and others)
from trying to force changes into an uncooperative
structure when we later encountered new svstems.
Porting C News generally involves writing a few
small primitives. There have been surprises, but in
the course of maintaining and improving the code
and its portability, we insisted that the software
remain readable and fixable. And we were not
prepared to sacrifice performance, since one of C
News's major virtues is that it is far faster than older
news software. We evolved several tactics that
should be widely applicable.

The Nature of the Problem

Consider what happens when #ifdef is used
carelessly. T\e first #ifdef probably doesn't cause
much trouble. Unfortunately, they breed. Worse,
they nest, and tend to become more deeply nested
with time. #ifdefs pile on top of *ifdets as

portability problems are repeatedly worked around
rather than solved. The result is a tangled and often
impenetrable web. Here's- a noteworthy example
from a popular newsreader.l See Figure i. Observe
that, not content with merely nesting fifdefs, the
author has #ifdef and ordinary if statements þlus the
mysterious IF macros) interweaving. This makes
the structure almost impossible to follow without
going over it repeatedly, one case at a time.

Fufhermore, given worst case elaboration and
nesting (each fifdef always has a matching #else),
the number of alternative code paths doub-ies wiitr
each extra level of #ifdef. By the time the depth
reaches 5 (not at all rare in the work of #ifdef
enthusiasts), there are potentially 32 alternate code
paths to consider. How many of those paths have
been tested? Probably two or three. How many of
the possible combinations even make sense? Often
not very many. Figure 2 is another wonderful exam-
ple, the Leaning Tower Of Hostnames. It's most
unlikely that anyone understands this code any more.
In such situations, maintenance is reduced to hit-or-
miss patching. If you find and fix a bug, how many
other branches does it need to be fixed on? If vou
discover a performance bottleneck and work out a
way to fix it, will you have to apply the fix
separately to each branch? Now envision what hap-
pens when hurried or careless maintainers do¿,,
apply their fixes in all the places where they are
relevant.

Philosophical Aspects

The key step in avoiding such messes is to
realize that portability requires planning. There is
an abundance of bad examples to show that portabil-
ity, cannot be added onto or patched into. unportable
software. Many of the problems we diÉcuis stem
from the "never mind good, we want it next week"

/To quote from the old tx¡x kernel: ..you are not
expected to understand this",

Summer '92 USENIX - June 8-June l:Z,1rgg? - San Antonio, TX 18s

fifdef Considered Harmful ...

approach to software.
Even the best planning canriot anticipate all

problems, but it is important to retain the emphasis
on planning even into ongoing maintenance. When
a new portability problem surfaces, it is important to
step back and think about the problem and its solu-
tion. Is this a unique problem, or the harbinger of a
whole new class of them? Usuallv it's the latter.
which makes planning all the more õrucial: how can
the solution deal with all of them, not just the
current one? Failure to think leads to the patch-
upon-patch approach to portability, rapidly producing
unreadable and unmaintainable code.

Once the problem (class) and the solution are
understood, then and only then it is time to start
work on the code. Typically this will mean re-
implementing parts of it, not just hacking up the old
code to work somehow. This highlights another
issue: to revise the code, you must understand it...
and that means not making an incomprehensible
mess this time to interfere with maintenance next
time.

All of this is typically more work than just
hacking in a quick fix. Sometimes a quick fix may
be necessary, or later thought may show that an

Spencer,& Collyer

earlier "solution" was really a quick fix and needs
generalizing. In such cases, it is important to go
back and fix the kludges, The time is not wasted; it
is an investment in the future.

More generally, portability requires time and
thought. Nobody gets everything right the frrst time;
getting the code right means taking the time to think
about what went wrong, decide what the mistakes
were, and go back and frx them.

The alert reader may notice that almost all the
remarks in this section could also be applied to
achieving high performance, high reliability, etc.,
and that no specific boundary between development
and maintenance was mentioned. 'We've

really dis-
cussed how to achieve high-quality software. In our
experience, this approach works; we can't imagine
any other that would.

Portable Interfaces

Systems do, unfortunately, differ. It's often
possible to avoid system-dependent areas well
enough that the same code will run on all systems;
we'll discuss that later. But sometimes multiple
variants are inevitable. Even within the uNIx family,
there are significant variations between systems.

wld
cl.¡nu9_!cl)
{

ragl.t.E tc_nut trgtt
!.gt.t.t re_f,Uü bgþ.Lty - 0 t

tl,!d.! vln¡O8l
¡l(v.rËor.)

!Þuta('Chackl¡g out ! rou! ,ù&r!c--h69 oû À raco¡d,, , \D., . !dout)
llSSHl

E8E
todl!
,L!d.! îER6E

lDuÈr l 'Ch.ckl ,Dg .nfr .rc--hùg on.. . \n. , rÈdouÈ) rLUOH r
t6dl!

tor ¡ng* . 0, ô9a < nqÈlcl¡¡ . t nga++l {
i l (tor.âdfng¡t >. lR_w8uB) (

. aat_Þ!a¡d(n9x)t / r thl ' ey raaaÈ ndrglouÞ r/

/ . o r d . c l â r a l t b o g u a ' /
,
1! (Èo!.Àdfn9r¡ . . ÎR-EOCU8)

ÞtoaltY++t

)
lot ¡ngr - ¡qucl l ¡ . - l r ngx >¡ o ¡¡ ro! .¡dfngnl . . tR_rocust n9¡--)

bo9o. l ty-- , /. dfacounÈ alla¡dy evad ona¡ i/

l ! . (s.r tscl l ¡ . > 5 ¡ t bogo. l ty > n.xr lc l ln. / 2) {
It¡uE.l

'It læka llk. gha actlva !11a la r.a.d upt 6nt¡ct !,our Dasa adñtDlaÈs¡Èor,\D\
r. .Èdout) t

!¡ruÈa (
'I.Âva th. \'bogu¡\. gþuD¡ aloÞ., ¡Dd th.y My c6. back b noml. ¡t¡yb.,\¡\
' , . tdoue) l lU8H,

)
ll!d.! ¡lDocÀtr

.1. . l t (bogorlÊy) {
,I!d.l vlRAO88

l l(v.rbo¡.)
!Þuta(,Eovl¡g bogua Dd.gÞuDa b tha and o! your ,eÍarc.\n, ,

rtCout) turs[r
t!81

a6d1!
,l!d.! ÎlRgl

!Þur.(' lbvl¡g bogu.. . b t¡r . .nd.\ t r i , ¡ rdour) ! !u8l l ,
t6dt l

to! (t ¡gi l >. 0, ngr--) {
tl lÞr.rdfng¡l .. Zn-Eocus)

ralæata_ndaglou¡r(n9¡rrsÈrct l ¡a-1) t
I

lr,ld.! DEllocug
!aâak_bogua¡

l¡_ch¡a('D. l . t . bolu. ¡d.grouÞ¡? I¡y¡ . , ,D')¡

. .crt . ! (bul , . ¡ .) t
tltC.! vrRr¡l

Drl¡rqd() t
,6d1!

¡rurch.r(, \B' t l lu88'
1 ! l r b { ! . . ' h ') {

llfC.l V!R¡O88
It(v.rbo.. l

lDuÈ. (' \

Îyt . y b d.ta¡. bogu. nNrl !ouÞ.. \n\
1y¡1. n ot 8t þ l.Âva th4 rÈ !h. 6d 1r CAr. thry r.Èuh.\n\
' , . tdour) ¡ tg8¡ l¡

tlSl
,6d1!
, i ld. t î !R8!

l9ut. l 'y b d. l .È., n !o k. .¡ , \n. ,rèdour) l lugHt
16di!

goto !a.ak_bcgu.t

)
. ¡ . . l l (. b u ! . . , n ' I I ' b u f . . , q ')

.1. . l ' ! l 'bu! . - 'Y' l {
Yàl l . ' (Èa.¡dftr .xÈlcl la.-¡ l . ¡ Aî_loco8 ¡¡ ¡ . r lscl ln. > O)

--nrtacl l ¡at /r a.¡1 tough, huh? r/

)
.1. . {

lDut.(hforh. lD,.ÈCouÈ) ! !U6H,
r.sll._ddír(),
ggco aaaak_boqua,

l
t6dl !

)
, .1r.
tltd.! WRAOSI

¡ l I v. !hoa.)
!Þutr l ' lou ahould adlt bogua ndagrouDa ouË o! !þur .¡ú¡rc. \D.,

lÈdcuÈ) t lu88,
ttSE

t6dl l
tf!d.! îlR8E

!9uÊ. l ' ld lr bogur. . lson,nd.!c. \ t r . , r tdouc) rr ,ug¡t ,
t6dl!
,6d1,!

¡f,amold . lESlt

Figure 1: Example of overuse of #ifdef

186 Summer '92 USENIX - June 8-June 12, Lgg2 - San Antonio, TX

Spencer,& Collyer

#lfdef, or something similar, ultimately is unavoid-
able. It can be managed, however, to minimize
problems.

Among the basic principles of good software
engineering are clean interfaces and information hid-
ing: when faced with a decision that might change,
hide it in one module, with a simple outside-world
interface defined independently of exactly how the
decision is made inside. One would think that well-
educated modern programmers would not need to be
taught the virtues of this technique. Unfortunately,
fifdef doesn't hide anything, and the interface it
creates is arbitrarily complex and almost never docu-
mented.

The best method of managing system-specific
variants is to follow those same basic principles:
define a portable interface to suitably-chosen primi-
tives, and then implement different variants of the
primitives for different systems. The well.defined
interface is the important part: the bulk of the
software, including most of the complexity, can be
written as a single version using that interface, and
can be read and understood in portable terms. It is
common wisdom2 that localizing system dependen-
cies in this way eases porting in cases where the
code must actually be rewritten. Our point is that it

ffiething that is widely known
but usually ignored. (uxx programmer,s definition.)

fifdef Considered Harmful ...

makes the code simpler, cleaner, and more manage-
able even when no rewrite is expected.

As a small case in point, when part of C News
wishes to anange that a file descriptor associated
with a sldio stream be closed at exec time, to avoid
passing it to unprepared children, this is done by

f c l s e x e c (f p) ;
(where þ is the sfdio structure pointer) rather than
by some _complex invocation of. ioctl or something
similar. Only the implementation of. fclsexec needs
to be cluttered with the details. (As others have
noted in the past [ODel87a, SpenSSa] in other con-
texts, one paradoxical problem of UMx's not-too-
complex system interfaces is that that they have
discouraged the development of librarieð with
cleaner, higher-level interfaces.)

This confines #ifdef, but at first glance doesn't
seem to eliminate it. Sometimes several svstem-
specific primitives will be compiled from the same
source, with portions selected by fifdef. Note that
even limiting the damage can be very important.
However, in our experience, it's much more usual
for the different variants to be completely different
code, compiled from different source files-in
essence, the parts oußide the #ifdef disappear, The
individual source files are generally imall and
comprehensible, since they implement only the prim-
itives and are uncluttered with the complexities of
the main-line logic. Out of 50 such source files in C

/* name of this si te */
#ifdef GETHOSTNA¡',IE

char *hostnamei
undef SITENA¡,IE
define SITENA¡'{E hostname
#el-se /', IGETHoSTNA¡,1E */
ifdef DOUNAME
incl-ude <sys/utsname.h>

struct utsname utsni
undef SITENA¡,IE

def ine SITENAME utsn.nodename
else /* IDoUNAME */
ifdef pHOSTNAtvtE

char *hogtnamei

undef SITENA¡,IE
defíne SITENAIIE hostnane

else /* tpHosTNAME */
ifdef !{HOAtvtr

undef SITENAI|E
define SITENA¡,IE sysname
endi f / * VüHOAMT */
endif /* PHOSTNA¡',IE */
endif /* DOUNAME */

#endif /* C¡IHOSTNAÌ|E */

Figure 2: The Iæaning Tower of Hostnames

Summer '92 USENIX - June 8-June tZ,lgg}- San Antonio, TX

#
#

187

fifdef Considered Harmful ...

News, half are less than 25 lines, most are under 50,
and only a few are over 100. As an example, Figure
3 and Figure 4 are two implementations of. fclsexec.
There is hardly anything to be gained by trying to
combine these two files into one file with fifdefs
every second line.

There are, of course, things that cannot con-
veniently be encapsulated as functions, for reasons
of either interface or efficiency. But a "primitive"
is not necessarily a function. Types and macros
defined in a header file are also useful ways of hid-
ing system-specific detail. Programmers often use
such facilities on a small scale; e.g. the use of ollt
as the system-supplied type for a size of a file or an
offset within it, but they don't write such header

Spencer,& Collyer

files nearly as often as they should.
Although C's limited macro facilities hamper

large-scale use of header-file encapsulation, more
ambitious applications can be useful despite occa-
sional clumsiness. As an example, consider our
STRCHR primitive, which generates in-line code
except on machines with compilers clever enough to
do so automatically (see Figure 5). This is a bit
awkward: what is being defined here is not exactly
a function, but C preprocessor macros nevertheless
force it to look like one. In the absence of a stan-
dard way to force inline expansion of normal func-
tions, it remains a powerful technique for portable
performance engineering despite its flaws: this and
similar portable optimizations sped up major

/ *
* set c lose on exec (on UNIX)
* /

#include <stdio.h>
#include <sgtty.h>

void
fclsexec (fp)
F ILE * fP i

{
(vo id) ioc t l (f i l eno(fp) , F IOCLEX, (s t ruc t sg t tyb *)NULL) ;

)

Figure 3: One implementation of. fclsexec

/ *
* set c lose on exec (on System V)
t t /

#include <stdio.h>
#include <fcnt l .h>

void
fclsexec (fp)
FTLE * fP ;

{
1 v o Í d) f c n t l (f i l e n o (f p) , F _ S E T F D , t) ;

)

Figure 4: Another implementation of. fclsexec

#ifdef
#define
#eIse
#def ine

for
t

i f

#endif

FÀSTSTRCHR
STRCHR(src , chr , des t) (des t) = s t rchr (s rc , chr)

STRCHR(src , chr , des t ¡ \
((d e s t) = (s r c) i * (d e s t ,) l = , \ 0 , & & * (d e s t ¡ t = (c h r) ; + + (d e s t)) \
\

(t (d e s t ¡ = = ' \ 0 ') \
(dest) = NULL /* t ¡ .8 . : ¡n iss ing sen i -co lon * /

Flgure 5: To inline or not to inline

Summer '92 USENIX - June 8,June 12,lgg2- San Antonio, TXlEE

Spencer,& Collyer

components of C News by 4OVo without serious loss
of clarity.

If one must use fifdef, and it cannot be
confined to header files and the like, one good rule
of thumb is ¿se #ifdef only in declaratians (where
"declarations" is understood to include macro
definitions). This at least encourages some thought
about defining an interface, rather than just hacking
in something that somehow seems to work.

Finally, when defining interfaces, it is impor-
tant to document them. The biggest reason for doing
this is that it is important discipline that forces you
to think about the issues and fill in fuzzy spots. The
resulting documentation is also very ïaiuable for
maintenance. Perhaps somewhat surprisingly, it's
also valuable for development, even if the project is
not an army-of-ants operation using buildings full of
people. We found it very important to document
crucial interfaces like our configuration primitives,
even though only two people were involved, to make
sure things were being done consistently and we
understood each other.S

Standard Interfaces

Of course, good interface design is not simple,
especially given the limitations of existing program-
ming languages. Often the best way to solvè this
problem is to avoid it instead. If an interface is
needed, there is much to be said for choosing one
that is already standard.

#ifdef Considered Harmful ...

There are several sources of reasonably decent
standard interfaces, notably ANSI C [Inst89a] and
POSIX 1003.1[Engi90a]. Since these srandards are
quite recent, many of the systems of interest do not
implemenl them firlly. This doesn't preclude using
the interfaces, however: you can supply your own
implementation(s) for use on outdated systêms. An
example is the ANSI function strerror (shown in
Figure 6).

This approach does impose a few constraints,
since the standard interfaces sometimes are a bit
ugly, and often aren't ideal for every program. It's
tempting to come up with customized ones instead.
But the standard ones have major advantages. For
one thing, people understand (or will understand)
them without having to decipher your code. For
another, on systems which do implement the stan-
dard interfaces, the system-provided ones can be
used. (This is particularly significant for primitives
like memcpy, where system-specific tuning can pro-
duce major improvements in efficiency [Spen88a]. If
you define your own customized interface, you must
do your own customized implementation, which
denies you the opportunity to benefit from the work
of others.) For a third, while the standard interfaces
may not be ideal, by and large they contain no
grievous mistakes, and avoiding disasters is usually
more important than achieving a precisely optimal
solution. Finally, a standard interface saves endless
puzzling, not to mention uncomplimentary specula-
tion, by later maintainers: "did he have some deep
subtle reason for using a non-standard interface, or
was he just stupid?".

Reimplementing a standard interface can be a
useful tactic when the standard interface does the
right thing but the usual implementations perform

3lndeed, places where intemal interfaces weren,t
completely documented were fruitful sourc€s of
misun<lerstandings, bugs, and a certain amount of snarling
at each other.

/ t .

* strerror - map error number to descriptive string
*
* This version is obviously somewhat UNlx-specif ic.
) . /

char *
strerror(errnum)
int errnum;
{

extern int sys_nerr;
ex te rn char *sys_er r l i s t [] ;

i f (errnum > 0 && errnum < sys_nerr)
return (sl¡s_errlist I errnum]) t

e lse i f (e r rnum t= 0)
returnl "unknown error" ¡ ;

e lse
return("no detai ls given' , ¡ ;

Figure 6: strerror

Summer '92 USENIX - Jirne E-June lZ, tgg2- San Antonio, TX 189

fifdef Considered Harmful ...

poorly. A version which is faster but compatible
can solve performance problems while leaving the
door open to the possibility that the system imple-
mentations will improve someday. The stdio library
is a particular case in point: old implementations of
functions like lgets and fread are extremely
inefñcient, and even modern ones often can be
improved on. This particular case gets tricky,
because doing better means relying on ill-
documented and somewhat variable internal inter-
faces,4 but the performance wins for C News are so
massive that we nevertheless did it.

Pitfalls that need careful attention when using
standard interfaces are error checking and boundary
conditions. It is important not to make assumptions
that aren't in the standard. For example, a depress-
ing amount of umx software assumes that close
never returns any interesting status. Unfortunately,
as networked file systems get more common and
other complications are introduced, it is not at all
unthinkable for an I/O error to be discovered onlv at
close time. Meticulous eror checking

-
is

important [Darw85a]. For example, see Figure 7.
Finally, note that standard interfaces exist on

more than just the C level. By including an "over-
ride" directory early in the shell's search path, it
becomes trivial to substitute reimplemented pro-
grams for standard ones that are missing or

4The standard build procedu¡e for C News runs a test
p¡ogram to check compatibility with the locåI stdío
implementation.

Spencer,& Collyer

defective. We have a remarkably large-and
steadily growing-list of known portability problems
that arise from defective implementations of standard
lrxx programs.S

Inside-Out Interfaces

Sometimes there simply isn't any way to pro-
vide a nec€ssary primitive on some systems. For
example, most modern UNIXes permit setting the real
userlD to equal the effective userlD, but some old
systems allow only root to change the real IDs...
and it is necessary to change the real IDs to create
directories with proper ownerships. Given that many
people will beo reluctant to let a large and complex
program written by a stranger run as root, there
doesn't seem to be any easy way out.

In this case, there is: turn the interface inside
out, and have the dirty work done by caller rather
than callee. Specifically, have the cÒmplex program
invoked by a simple setuid-roof program which sets
things up properly on uncooperative systems.

@re disparaging porers and
¡esellers only, we should comment that AT&T is as guilty
as anyone else. For example, several releases of System
Y makc have violated the System V Interface Definition in
their handling of command lines like test -s f ile in
makcfiles. (Makefile command lines are specified to be
executed just as if by the shell, but if resr is a shell built.
in and there is no actual program by that name, malæ
often chokes and dies on this line.)

60r shouldbelll

/ t

* n fc lose(s t rean) - f lush the s t ream, fsync
* fc lose the stream, checking for errors at
* is needed to work around the lack of UNIX
* in Sun 's NFS. Returns EOF on er ro r .
* /

i ts f i le descr ipt ,or and
a l l s tages . Th Ís dance
f i le system semantics

#include <stdio.h>

int
nfclose (stream)
register FILE *stream;

{
register j -nt ret = 0 i

i f (f f l u s h (s t r e a m) = = E O F)
ret = EOF'

i f (f sync(f i leno(s t ream)) < 0 l / * may ge t de layed er ro r here * /
ret = EOF'

i f (f c l o s e (s t r e a m) = = E O F)
ret = EOF'

return ret i
)

Figure 7: Necessary enor checking

Summer '92 USENIX - June E.June 12,1992 - San Antonio, TX190

Spencer,& Collyer

A more mundane example is the problem of
reading directories. Thanks to the lack of a library
package for directory-reading in the oldest UNrxes,
there isn't any standard way to do it. Raw reads
don't work on 4.2+BSD systems (and increasingly-
many others), the Berkeley directory library works
well but has stupid name clashes with many old sys-
tems, and the POSIX library isn't widespread yet.
Worse, because the insides of a directory-reading
library are system-specific, it's difficult to provide ã
portable reimplementation of the POSIX functions.

The simplest way around this one is to move
the problem out to a higher level of abstraction. The
ls utility portably does the job, so wrap the invoca-
tion of the program in a shell file, with the list of
names generated by ls and fed into the application as
arguments or on standard input. The performance
impact is rarely significant, and the alternative
currently involves at least s¡x different variants of
the code, with more surfacing daily.

A less happy example of this technique is C
News's spaceþr program, used to check disk space
so activity can be curtailed when it runs short. Its
interface is simple and clean, and it is used every-
where in C News. Making it a shell program
offered the possibility of exploiting the d/ commlnd,
whicl encapsulates the ugly complications of finding
out hov/ much space is available (and, sometimes,
the root privileges needed to do so). Unfortunately,
d/ is often relatively costly to invoke; worse, the
only portable \¡/ay to do 32-bit arithmetic from shell
scripts is to use awk, which likewise tends to have
considerable startup overhead. With some care, the
performance impact was tolerable, although not
entirely pleasant.

What we had not anticipated was that every lit-
tle uNIx variant has its own different, incompãtible
d/ oulpur format. Even "consider it standardt, Sys-
tem V has at least three. The importance of pro- ¡
gram-output being useful as program inputÍRitclïal
has been disregarded completely. In the

-end,
wè

found that while the d/ version remains useful-
people with really odd systems can customize it
easily-it was best to also provide C variants that
use the three or four commonest space-determining
system calls, improving (!) portability within a fairly
large subset ofu¡nx variants.

Levels of Abstraction

In general, avoiding problems is better than
solving them. The best ',¡iay to solve portability
problems is not to get involved with them. Some-
times they can't be avoided, but often a bit of
ingenuity suffices to find a way around them.

_The most powerful way of avoiding problems is
to choose a level of abstraction where thev don't
show up, The /s example earlier was a case in
point. The standard ur.rrx shell is a very powerful

#ifdef Considered Harmful ...

programming language, sufficiently removed from
the lower levels of the system that shell programs
are often highly portable. (Gratuitous diffeiences in
utility programs do get in the way, as do attempts to
"improve" the shell that result in subtle or not-so-
subtle incompatibilities, but this is usually a manage-
able problem.)

. -_The usual objection to shell programming is the
inefficiency of the result, but a careful division of
labor between the shell and the programs it invokes
is all that is needed. Most of the C News batching
subsystem is written in shell, but it remains highly
efficient, because most of its time is spent in-thê
"batcher I compress I uux" pþeline, and
those are all C programs.

Intermediate levels of abstraction, although
harder to find, do exist. Substantial pieces of C
News are coded in aw,t[Spen9l.a] where efficiency is
not crucial and requirements permit.

One situation where high-level abstractions are
particularly beneficial is when one must step outside
"common base uMx". Common base

-uNIx
is

essentially Version 7lLaboS2al, rhough the later V7
innovations have taken a while to find their wav into
System V (and some have never done so). p'OSIX
1003.1 [Engi90a] is mosrly an artempt ro codify com-
mon base UMX. Unfortunately, common base UNIX
did not address some issues at all, notably dealing
with real-time networks like the Internet. Attempts
to define interfaces for real-time networks l,Divig3a.
ATT86a] have generally resulted in complex aná
ugly messes./ Worse, there is no consensus on which
9n9 to use, and the quality of the designs can be
judged by the rate at which they are being
redesigned to deal with unexpected problems-.
Although higher-level abstractioas for networking
are not as common or as well-designed as they
should be, networked file systems and shell invoca-
tion of programs like rså can provide limited net-
working functionality without having to deal with
the underlying mess.

A side benefit of high-level abstractions is that
the resulting programs are generally far easier to
modify and customize. This is a particularly impor-
tant consideration for software intended to be run on
m¿ny systems with varying administrative policies.
Many system administrators who are not up to deci-
phering a 5000-line C program can cope quite well
with modifying a 50-line shell script. We have
made a conscious effort to put policy decisions in
shell scripts, not in C code, wherever possible, and
have had extensive and loud positive feedback on
this.

ffiepdons like v1o Resea¡ch
tnx [Cent90a] that are useful sources of interface ideas.

Summer '92 USENIX - June 8-June LZ,lgg2 - San Antonio, TX 191

#ifdef Considered Harmfr¡l ... Spencer,& Collyer

- - There _is one negative aspect to moving to a underlying abstractions. Porting C News to a radi-
higher_level of abstraction:- the resulting programs cally non-uNx-like operating syitem reportedly typi-
depend on a larger and perhaps more fragile set of cally involves little change to itre C code, since-the

#ffdef SYSLOG
#ifdef BSD_¿2

openloE("nntpxf€r", f ,Oc_pID) i
#eIee

openlogl "nntpxfer", LOc_pfD, SySLOc) ;
#endif
#endÍf

#ifdef DBM
If (dbmfnlt(HrSToRy_FrLE) < 0)

t
#ifdef SYSLOG

syslog(LOG_ERR, "couldn,t open hietory f l le: trn,,) ;
#eIee

perror("nntpxferr couldn,t open history f1le"¡ ¡
#endff

e x i t (1) t
)

#endif
#ifdef NDBM

If ((db - dbn_openlHISTORY_FILE, O_RDONI.Y, O)) -- NULL)
t

#lfdef SySLOc
syalog(LOG_ERR,"couldn,t open hlstory f i le: trn' ,¡ ;

#else
perror("nntpxferr couldn,t open history f i le, ') ;

#endlf
e x l t (1) ì
)

#endlf
I f ((server - ge t_ tcp_conn(argv l1 ¡ , .nn tp , ,)) < O)

{
#lfdef SYSLOG

syslog(LOG_ERR, "could not open socket: tm,,) i
#eIse

perrorf"nntpxfer: could .not open socket, ') ;
#endif

e x l t (1) ì
)

i f ((rd_ fp - fdopenqaerver , ' , r , , ¡ ¡ - - (F I ÌE *) O) {
#ifdef sYsLOc

syslog(LOG_ERRr "could not fdopen aocket: trn,') ;
#else

perror("nntpxfer: could not fdopen socket, ') ;
#endlf

e x l t (1) t
)

#lfdef SYSLOG
sys log(Loc_DEBuc, "connected to nn tp server a t t s , , , a rgv l l ¡) ;

#endlf
#Ifdef DEBUG

pr ln t f ("connêct€d to nn tp aerv€r a t $B\n , ' , a rgv l1]) i
#endlf

/ *
r ok, at thfe point n€,re connected to the nntp daenon
* at the dlstant ho8t.
* /

Figure E: A truly awful style

Summer '92 USENIX - June 8.June 12, L992 - San Antonio, TXt92

Spencer,& Collyer

u¡¡lx and C programming interfaces are widespread
even on non-UNIX systems, but substantial shell files
relying on dozens of major UMX utilities are more of
a challenge. There is also the problem, mentioned
earlier, of u¡ux suppliers breaking formerly-working
utilities.

Low-Level Portability

We assume that everyone reading this has had
exposure to elementary notions of portability like
using typedef names, avoiding stupid assumptions
about the sizes of integers and/or pointers, being
careful about byte order in interchange formats, etc.
There are nevertheless a good many fine points that
deserve some illumination, particularly in the area of
how to use #ifdef safely.

As rnentioned earlier, if #ifdef is needed at all,
it is best confined to declarations, to try to preserve
some explicit notion of interfaces. Such declara-
tions, in turn, preferably should be confined to
header (.h) files, to minimize the temptation to intro-
duce #ifdef into main-line code.

An optional feature such as debugging assis-
tance or logging can be defined as a macro or func-
tion that does nothing when not needed, else the
full-blown function can be defined (perhaps in one of
several system-specific ways, e.g. using a sys/og dae-
mon or not). At worst, this requires one #ifdef per
such feature rather than the now-notorious style,
seen in various bits of popular software, of clustering
#ifdefs at the site of èaõh call of. said function(si
see Figure 8.

One awkward areaS is functions with variable
numbers of arguments. There is no way to write a C
macro that can take a variable number of arguments,
which makes it awkward to provide such an inter-
face while still being able to hide the innards. Vari-
ous tricks are in use, none of them entirely satisfac-
tory; perhaps the least objectionable is an extra level
of parentheses:

D E B U G ((" o o p s : t s t d \ n " , b , c)) i
which lets a header file decide to either pass or dis-
card the whole argument list:

#ifdef NDEBUG
def ine DEBUG(l i s t) / * no th ing *7
#eIse
de f ine DEBUG(l i s t) p r in t f t i s t
#endif

A related problem is that definition of a
variable-arguments function pretty well invariably
involves some #ifdefing to cope with the unfortunate
differences between ANSI C stdarg.h and the tradi-
tional (although less portable) varargs.h.

SActually, it's awkward in a great many ways, this being
only one.

#ifdef Considered Harmful ...

Although macros cannot take variable numbers
of arguments, it ¿,s still possible to have them pick
and choose among a fixed number of arguments.
For example, the VERBOSE-TERSE business in one
of our first exhibits, an attempt to avoid compiling in
unneeded strings, can be handled with a macro:

MSG(short_forn, long_forn, iostream)
A shorþform-only definition of the macro simply
doesn't use the long_form argument. The choice can
even be made at run time using f or the '?' opera-
tor, all by changing only the definitíon of the macro.

One valid use of #ifdef, particularly in header
files, is the idiom

#ifndef COPYSIzE
#define COPYSIzE 8192

/* uni t of copying */
#endif

to supply a default value that can be overridden at
compilation time (with cc -DCOPYSIZE=4096).
One could wish for a shorter form (e.g., #ifndefdef),
or even a compiler option allowing one to specify a
value that overrides the first one defined in the pro-
gram, since this idiom is common and very usefui.

However, the first question to ask about such
numeric parameters is whether they should be there
at all. consider:

#i fdef pdpl1
#def ine LBUFLEN 512

/* l ine bu f fe r leng th * /
#e lse
#def ine LBUFLEN 1024

/* I ine buffer length ' t l
#endif

This code presumes that people on small machines
(or at least PDP-11s) prefer their programs to crash
earlier than people on large machines. Any code
using such (unchecked) fixed-sized buffers is prone
to falling over and dying (or at best mysteriously
truncating or wrapping long lines) anyway; the
#ifdefs tip us óff that rhese limits should be abol-
ished and replaced with code that deals with
dynamically-sized strings.

Another legitimate use of #ifde[in fact
required by the ANSI C standard in standard header
files, is in protecting header files against multiple
inclusion. In complex programs it can be quite
difficult to ensure that a needed header file is
included once and only once, and including it more
than once typically causes problems with duplicate
typedefs, structure tags, etc. Ignoring some issues of
name-space control, the usual idiom for defending
header files against multiple inclusion goes some-
thing like this:

#ifndef FOO_H
#define Foo_H 1
/* interface to the foo module */

Summer '92 USENIX - June 8-June 12,lgg2 - San Antonio, TX 193

fifdef Considered Harmful ...

typedef struct {
char *foo_ai
char *foo_b;

) foo ;
extern foo *mkfoo() ;
extern int rmfoo() ;
#endif

(Some compiler implementors have invented buane
special-purpose constructs, typically using ANSI C's
#pragma, to avoid having the compiler re-scan the

#ifdef vax
f (* p t r) t

#endif
#i fdef pyr

/ *
* darned Pyramid is so picky
* about nul l pointers
* /

i f (p t r t= NULL)
f (* p t r) ,

#endif
#i fdef sparc

/ * the Sun 4 is jus t as badt * /
i f (p t r t= NULL)

f (*p t r) ;
#endif
/ * t /

Figure 9: Protecting broken code

header file on later inclusions. That is not neces-
sary. It suffices to have the compiler remember that
the entire text of the file is inside the #ifndef, and
hence need not be rescanned if FOO H is still
defined.)

#ifdef is often used to protect broken code in
the style sho\¡/n in Figure 9. The solution here is to
face realities and write the code in a conect and
portable manner:

/* avoid dereferencing nuII * /
i f (p r r l= NULL)

f (* p t r) ;

A related point, also illustrated by that exam-
ple, is that if. one must use fifdef, one should test for
specific features or characteristics (typically indi-
cated to the compiler by symbols defined in a header
file or on a command line), not for specific
møchines. There will almost always be another
machine with the same problem. Consider the

Spencer,& Collyer

interesting bit of code shown in Figure 10. Rather
mysterious, isn't it? What is so odd about Crays,
and is it only Crays that are affected?

If testing for particular machines is unavoid-
able, perhaps because of some highly machine-
specific operation, consider what happens if no
machine is specified (or if the machine is one you've
never heard of and hence didn't bother to list).
Don't assume there is a default machine. It is much
kinder to produce a syntax enor than silently inap-
propriate code.

Occurrences of finclude inside #ifdef should
always be viewed with suspicion. There are better
ways. Consider:

#ifdef NDIR
#ifdef M_XENIX
#include <sys/ndir .h>
#else
#include <ndir .h>
#endif
#eIse
#include <sys/dir .h>
#endif
#i fdef USG
#include <t ime.h>
#e lse
#include <sys/t ime.h>
#endif

This clutter could be avoided via judicious use of cc
-Ilusrlincludelsys and consistent use of dirent.h, pto-
viding a fake one if necessary:

#include <direct.h>
#def ine dirent direct

Arranging, typically via a makefile, to put an "over-
ride" directory in the search path for header files is
a tremendously powerful way of fixing botches in a
site's header frles without #ifdef.

When one uses #ifdef, one should base the tests
on individual features:

#include <signal.h>
/* nay def ine srcrsrP */

#i fdef SIGTSTP
(vo id) s igna l (S IGTSTP, S IG_IGN) ;

/* no suspension, thanke */
#endif

and not on (inaccurate) generalisations:

#ifdef cray
) w h i l e ' 1 * g

#eIse
) whi le 1 *g

#endif

l t t i l l a

/ * t i l l a

Figure 10: Mysterious code

newline (not

newline (not

* /

* /

t = ' \ r ') i

' \ n ') i

echoed)

echoed)

194

! =

Summer '92 USENIX - June 8.June 12,1992 - San Antonio, TX

Spencer,& Collyer

#i fndef SYSV
(vo id) s igna l (S IGTSTP¡ SIG- IGN) ;

/* no suspension, thanks */
#endif

or this example of the reverse problem (generalising
from the specific) from a newsreader

/* Things vre can f igure out */

#i fdef sIcTsTP
define BERKELEy

/* include job control s ignals? */
#endif

This particular point is worth emphasizing: the UNrx
world is not cleanly split into System V and 4BSD
camps, particularly with the advent of System v
Release 4. Hybrid uNlxes are the rule, not the
exception, nowadays.

Pragmatic Aspects of Portability

In practice, one encounters all manner of break-
age in vendor-supplied system software: compilers,
utilities (notably the shell and awk), libraries, ker-
nels. Optiqrizers may need to be turned off if they
are broken.v Installers may have to pick up working
commands f¡om other sources (e.g. the Usenet
group comp.sources.unix or the GNU [Founa] pro-
ject). Sometimes it is worth supplying simple but
correct versions of small things (e.g. library func-
tions) when a large class of machines is known to
have broken ones. We ultimately decided that we
could not provide complete replacements, or even
workarounds, for all potentially-broken system
software. Sometimes the problems are horrific
enough that the right response is not to contort one's
code but to get the customers to complain about the
breakage until it is fixed.

Given all these potential problems, it is impor-
tant to deteu breakage as well as avoiding it or cop-
ing with it. IVe think very highly of regression
tests, prepackaged tests that exercise the basic func-
tionality of the software and check that the results
are correct. They are very useful during develop-
ment, both for bûg-hunting in new codeI0 and for
confidence testing before release.f/ Of equal impor-
tance, though, is that they give the installer reason-
able confrdence that the software is actually working
on his system, and that no glaring portability prob-
lems have escaped his notice.

.
tlhe single most frequently reported ,,bug,' in C News

is,actually a bug in a popular 386 C compilei's optimizer.ruOne of us (HS) observes: "When I set up a
regression test for software that has never had one before,
I always find bugs. Always. Every tíme,"rrOne very useful t¡ick is to add a regression-test item
looking for each bug that is found. This avoids the classic
syndrome of having "fixed" bugs reappear in a later
release,

#ifdef Considered Harmful ...

Similarly, intemal consistency checks, such as
validated magic numbers in structures passed
between user code and libraries, can save one's san-
ity by detecting breakage in system software early,
before corruption spreads everywhere. Trying to
debug a core dump by mail on an unfamiliar
machine is not fun.

To a greater extent than we had anticipated,
one leains about portability by porting. The system
call variations among uNIx systems are fairly well
documented and understood. The variations in com-
mands were less well understood, at least by us, and
the variations in programming environments were
still more surprising. There is no substitute for try-
ing your software on several seriously-different/2
machines before release. It's also worth making an
effort to pick your beta-testers for maximum diver-
sity of envi¡onments: we found a lot of unexpected
problems that way.

Finally, a plea: if you find portability prob-
lems, document them. You can't expect everyone to
actually read the documentation-we frequently
respond to queries with "please read section so-
and-so in document such-and-such, it'll tell you all
about it"-but the more careful and conscientious
installers benefit greatly from an advance look at
known problems, especially when a truly weird sys-
tem is involved.

Configuration

Given the senseless diversity in existing sys-
tems, some way to configure software for a new sys-
tem is needed. Given that #ifdef can't do the whole
job, how should we proceed? C News currently has
an interactive build script that interrogates the
installer about his system and then constructs a few
shell scripts, which when run will use make to build
the software. We intend to push most of the shell
scripts nto the makefiles, so that casual use of make
works as people expect,l3 but the general approach
seems to be a good one: ask which emulation rou-
tines and header files are necess:rry. rather than rv-
ing to guess. This strategy e.rln aflows cross-
configuration and some degree of cross-compilation,
which autoconfiguration schemes generally don't. It
is also more trustworthy than autoconfiguration
schemes, which can be fooled by some new innova-
tion.

Almost all of. build's configuration questionsl4
turn into choices of files rather than values for #ifdef

ffi our university environmenr,
it was quite difficult to find System V machines. When
we actually tried one, not long before our first real release,
there were some unpleasant surprises.

rJThe main reason for not doing this from the start was
the lack of a standard #include mechanism in make.

Summer '92 USENIX - June 8-June lZ,1992 - San Antohio, TX 195

comment 4
config. 6
protect .h 5
_STDC- 3
pdp11 2
lint 1
sccsid 0
STATS O
other 0

#ifdef Considered Harmful ...

to examine. The few exceptions are mostly histori-
cal relics, and will be revised or deleted as time per-
mits.

Statistics

A snapshot of cunent C News working sources
shows 955 lines of header files and 19,762lines of C
flles, split between 5,640 lines from libraries (includ-
ing alternate versions of primitives), and 14,122 lines
of mainline C code. Here is a breakdown of the
fifdef usage in that code:

reason .h main .c dbz rna total
ifndefdef 13 40 6 0

Spencer,& Collyer

In our experience, #ifdef is usually a bad idea
(although we do use it in places). Its legitimate uses
are fairly narow, and it gets abused almost as badly
as the notorious goto statement. Like the goto, the
#ifdef often degrades modularity and readability
(intentionally or not). Given some advance plan-
ning, there are better ways to be portable.

Acknowledgements

Thanks to Rob Kolstad for helpful comments
on a draft of this paper. Thanks to James Clark for
grefer (and the rest of. groff). And thanks ro rhe
authors of our bad examples-you know who you
are.

References

ATT86a. AT&T, System V Interface Definition, 2,
1986.

Cent90a. Computing Science Research Center,
AT&T Bell Laboratories, Murray Hill, New
Jersey, UNIX Research System Programmer's
ManuøL, Tenth Editio4 Saunders College Pub-
lishing, 1990.

Coll87a. Geoff Collyer and Henry Spencer, "News
Need Not Be Slow," Proc. Winter Usenix
Conf. Washington 1987, pp. 181-190, January
7987.

Darw85a. Ian Darwin and Geoff Collyer, 'lCan't
Happen or /* NOTREACHED */ or Real Pro-
grams Dump Core," Proc. Winter Usenix Conf,
Dallas 1985, pp. 136-157, January 1985.

Divi83a. Computer Science Division, Dept. of E.E.
and C.S., UCB, U¡üã Programmer's Manual
4.2 Berkelq Softare Dßtribution, August,
1983.

Engi90a. Institute of Electrical and Elechonics
Engineers, Portable Operating System Interface
(POSU), Part l: System Application Program
Interface (API) rc Languagel (IEEE Std
1003.1-1990) = ISOIIEC 9945-1:1990, IEEE,
New York, 1990.

Founa. Free Software Foundation, GNU software,
anonymous ftp from prep.ai.mit.edu:/pub/gnu.

InstS9a.American National Standards Institute,
X3J11 committee, Amerícan Natìonal Stan-
dards Institute X3.159-1989 - programming
Language C, = ISOIIEC 9899:1990, ANSI,
New York, 1989.

Labo82a.Bell Laboratories, UNIX Progrømmer's
Manual, Holt, Rinehart and Winston, 1982.

ODel87a. Mike O'Dell, "UNIX: The World View,"
Proc. Winter Usenix Conf. Washington 1987,
pp. 35-45, January 1987.

Ritc78a. D. M. Ritchie, "UND(Time-Sharing Sys-
tem: A Retrospective," Bell Sys, Tech. J., vol.
57, no. 6, pp; L947-1969, L978. Also in Proc.
Hawaii International Conference on Systems
Science, Honolulu, Hawaii, Jan, 1977.

59
25
57

7
2
4
1

1

2 7 0 0
2 5 1 9 7
0 0 0
3 1 0
0 0 0
1 , 2 0
1 0 0
5 0 0
1 0 0

total 34 97 28 7 t66

The ,h column represents header files. The main .c
column represents all .c files other than those in the
dbz and nra (Australian readnews) directories. The
ifndefdef row represeäts the 'if not defined, define'
idiom. The comment row represents uses of #ifdef
to comment out obsolete, futuristic or otherwise
unwanted code. The config. row represents uses of
#ifdef to configure the software.

rnø is presented separately because we inher-
ited it rather than writing it. dbz is presented
separately because it usés #ifdef heavíly for
configuration, for backwæd compatibility and to
attempt to stand independently of C News. The
main C files' use of #ifdef for "configuration', is
misleading; in fact this is mostly vestigial code,
superseded but not yet deleted from our current
working copies.

Conclusions

Despite problems along the way, C News is
outstandingly portable. It comes up easily on an
amazing variety of UND(systems. Other people have
reported porting C News relatively easily to environ-
ments that we had considered too hostile, or at least
too different from umx, to even consider as possible
target systems: notably VMS, MS-DOS and Amiga
DOS. The only major operating system known to
present serious obstacles is VM/CMS.

@iladon at all; some questions
are decisions affecting setup of control files for the
compiled software to usc.

L96 Summer '92 USENIX - June t:June 12,lgg? - San Antonlo, TX

Spencer,& Collyer

Spen88a. Henry Spencer, "How To Steal Code,"
Proc. Winter Usenix Conf. Dallas 1988, pp.
335-345, January 1988.

Spen91a. Henry Spencer, "Awk As A Major Sys-
tems Programming Language," Proc, Whter
Usenix Conf, Dallas 1991, pp. t37-t43, January
199r.

Author Information

Henry Spencer is head of Zoology Computer
Systems at the University of Toronto. He is known
for his regular expression and string libraries, and as
a co-author of the C News netnews software. Reach
him via Canada Post at Zoology Computer Systems,
25 Harbord St., University of Toronto, Toronto, Ont.
M5S 141 Canada. His electronic mail address is
utzoo I henry or henry€zoo. toronto.edu.

Geoff Collyer leads C News development at
Software Tool & Die. He is senior author of the C
News netnews software. His interests include sim-
ple, small, fast, elegant and powerful system
software. Reach him via U.S. Mail at Softrvare Tool
& Die, 1330 Beacon St. #215, Brookline, MA
02146. His electronic mail address is
worldl geoff or geoff€world. std.com.

#ifdef Consldered Harmful ...

Summer '92 USENIX - June 8-June 12, LggZ - San Antonio, TX L97

