
A Privilege Mechanism for UNIX System
V Release 4 Operating Systems

Charles Salemi, Suryakanta Shah, Eric Lund - UNIX System Laboratories, Inc.

ABSTRACT

Any multi-user, multi-tasking operating system, such as the LINIX SVR4 Operating
System, must provide protection mechanisms that prohibit one user from interfering with
another user, or limit the execution of certain system operations that affect critical system
resources. These protection mechanisms must also provide the ability to override these
restrictions, cornmonly referred to as privilege. For over twenty years, UNIX-based operating
systems have had one such privilege, called "root" or "super-user" which is signified by ã
process whose effective user ID is 0. The "super-user" has the ability to override the
restrictions imposed by these protection mechanisms. In the UNIX System V Release 4
Enhanced Security product this single, omnipotent, privilege is divided into a set of discrete
privileges designed to assure that sensitive system services execute with the minimum
amount of privilege required to perform the desired task.

This paper describes the privilege control mechanism implemented as part of the IINIX
System V Release 4.1 Enhanced Security (SVR4.lES) product. The SVR4.1ES privilege
control mechanism separates the privilege mechanism from the access control mechanism, it
provides for fine grained control over sensitive operation access by users, and it controls the
propagation of privilege from one process to another. Our goals also include accommodating
multiple privilege control mechanisms within the UNIX System V kernel. These privilege
mechanisms can be "plugged" into the kernel through well defined interfaces, much the' same way as UNIX file systems are currently added to the kernel.

Introduction modifications. This paper describes the kernel inter-
The granularity of rhe ,,root,,privilege is too l::t:":l]"ts

we defined that are required to support
coarse for-a system that dictares nnå granitarity-ìi l[^:",1":pt

of separate.-privilege modules' It also
the assignmení of privitege and rhe abiñty to

"åítr"l
gï:Í^b^t^t the major differences between the two

the assJrtion of privitege-throughout tnr ó*r.uioi-oi n_riv]t3ee modules supported under svR4.lES.
a process. fhe svn¿.irs privilege control mechan- Problem Definition
ism is designed to meet the the following goals: Before we begin our discussion, it is necessary

o to make the privilege control mechanism a to provide a definition for the term privilege. Sim-
separate, loadable module, ply stated, ,,privilege" is the ability to override res-

o to make minimal changes to existing kernel trictions imposed þy protection mechanisms. For
code, example, a process/ requires privilege to change the

a to separate the privilege control mechanism system date, mount or unmount a file systern, or
and access mechanism, modify file attributes (if not the owner of the file)

o to make the file-based privileges file system because these operations are restricted by the protec-
independent, don mechanisms.

' to preserve uNIx system v compatibility'
our mission from the start was explicit: add the

Our approach was to use the concept of privilege capability of supporting discrete privileges assigned
sets th-at are _assigned to both processes and execut- to each sensitive systèm operation in the keinel.
able files. The concept of privilege sets is not new. This was necessary io providè a privilege policy that
We are aware of two papers discussing the imple- based propagation of

-privilege -on
attributes other

mentation of privilege control mechanisms that also than the effective usei Ip. However, we also had
made use of privilege sets [1][2]. the require-ment to remain compatible with previous
The feature that makes the implementation of our l-t:*lt^:f

the UNIX Operating System by maintain-
privilege control mechanism uniqu" is our f;ilh ing the concept of a "super-user"'
goal: file system independence. This feature makes
i t e a s y f o r f i l e s y s t e m d e v e l o p e r s t o m a k e u s e o f o u r _
privirege mechaíism. rn adåition, exisring nr; sys- åi":;,nf: îåi,:Îl.Hf,Lru¿ii:'lJååt":ätem types function properly withour any ;-;';"orotro^.

Summer '92 USENIX - June 8-June L2,1992 - San Antonio. TX 235

A Privilege Mechanism ...

The privilege control mechanism we chose for UNIX
SVR4.1ES removes the omnipotence of effective user
ID 0 by defining a set of discrete privileges, each
one used to override individual restrictions imposed
by. sensitive system operations. It also defines an
inheritance policy, by associating privileges with
executable files, to control propagation of
privileges. In addition, it gives flexibility to
designers of privilege modules by providing
well{efined interface routines that are general
enough to support a privilege policy based on any
process attribute.

Defining the Kernel Privilege Interface

lVhy a Loadable Privilege Control Mechanism?
Our first goal was to make the privilege control

mechanism "plug compatible" so administrators
could choose the privilege policy they prefered at
system configuration time.

There were quite a few "religious" debates sur-
rounding this particular goal. One school of thought
argued very strongly that the operating system
should be configured with a privilege policy that was
in effect for the entire life of the system. It was felt
that any deviation from the privilege policy only
meant that the potential existed for more things to
go wrong./ Another school of thought disagreed con-
tending that the system went through one or more
phases before the entire security policy was in place.
They felt that while the system was transitioning to
the frnal phase, the privilege policy should be based
on the effective user ID and once the transition to a
secure system was complete, change the privilege
policy to one that was file-based.

We decided to go with the first interpretation for
several reasons:

o The privilege mechanism has always been a
"point of attack" with respect to security
break-ins. Adding complexity for determin-
ing which privilege policy was in effect
appeared to weaken the privilege mechanism.

. Using the modular approach and defining
separate privilege policies does not preclude
the use of a privilege control module that
behaves in the manner described by the
second interpretation.

o It is flexible enough to allow a designer of a
privilege module the option of basing the
privilege policy on other attributes of the pro-
cess such.as the effective or real group ID, the
sensitivity label of the process, etc. with
minor modifrcation to existing kernel source
code. In this case, only the privilege module
source code would require modification. The
privilege request checks in the kernel would
remain undisturbed.

@f Murphy'sLaw.

Salemi. . . .

Therefore, to accomplish this goal, a general
privilege interface was required that would allow for
the flexibility of specifying the privilege policy
desired for a particular privilege module.
G eneral Privilege I nterface

Each concept below has a corresponding rou-
tine in a specific privilege control mechanism. The
behavior for each routine is relative to the privilege
policy enforced by that privilege mechanism.
Initialization

To begin with, there must be a way to initialize
the system privilege mechanism at systein initializa-
tion time. Functions that might be performed by this
procedure include: allocation of data structures, ins-
tallation of "bootstrap" data, or initialization of
local static variables.
Privilege Requests

A procedure is needed to determine if a
privilege requested by a process is contained in the
set of privileges currently in effect for that process.
This procedure is the policy maker of any privilege
module because it makes the decision to grant or
deny privilege when a request is made.
Propagation

Another procedure is required to calculate the
privileges for new processes. This procedure pro-
vides the privilege propagation model for the
module.
Process Privilege M anipulation

A procedure is required to allow a process to
count, set, clear, and retrieve its privilege sets.
Process Privilege Recalculetion

A procedure is required that will recalculate
process privileges whenever the effective user ID is
modified.r
FiIe Privilege M anipulation

Another procedure is required to assign and
retrieve privilege associated with a file. This allows
software external to the policy module to identify
files that are included in the system. The system is
made up of files that have been analyzed and deter-
mined to securely use certain privileges.

When retrieving privileges this procedure must
retrieve them from the same data structure where
they are stored for use by the propagation procedure.
Fíle Privilege Removal

A routine is required to remove the privilege
information associated with system files whenever
media containing "trusted" files is removed from
the system. This prevents the introduction of "Tro-
jan Horses" when a new file system is mounted on
the same mount point.

3This procedure is required to maintain compatibility
with lD-based privilege modules.

236 Summer '92 USENIX - June 8.June 12,1992 - San Antonio, TX

Saleml, ...

Privilege M echanism Information

. . A procedure is required to allow a process the
ability to retrieve specific information regarding the
privilege module. This information might be iñ the
form of--how many privilege sets are iupported by
the privilege mechanism, what the nameJ of thosê
sets are, the number of privileges contained in each
set, which privilege mechanism is in effect, etc.
Cunently, two privilege modules exist that make use
of the privilege interface routines. They are:
SUM module provides a privilege policy that sup-

ports a set of discrete privileges and the
"super-user" concept. This module is con-
sidered to be lD-based since the propagation
of privilege is based on the effective'uàer ID
of the process.

LPM module provides a privilege policy that sup-
ports a set of discrete privileges and an inheii-
tanc.e policy.a This module il considered to be
file-based since the propagation of privilege is
based on the inheritance policy that useJ the
maximum privilege set of the current process
and the set (or sets) of discrete privileges
assigned to the executable program hte Uelng
exec'ed,

Definitions

. T!. following is a list of the privilege sets
required and their definitions. Also- indicãted is
which- privilege sets are used by the two privilege
modules supported in SVR4.lES
Process Privilege Sets

A process can have several privilege sets.5
These are used to control the assignmènt of privilege
throughout the life of the process. Cunently, boih
privilege modules support the following þrocesspnvilege sets:

. YT1 u. privileges: the ser of privileges
held in trust for a process. This is ihe seiof
privileges required by a process to complete
all of the program tasks.

o Working privileges: the set of privileges
necessary to complete a particular program
task in a process.

The following rules apply to the maximum and
working process privilege sets:

o The working set is always a subset of the
maximum set.

. fF working set may be alrered at any rime.
The new working set must be a subset of the
maximum set.

o The maximum set may be altered at any time.
The new maximum set is a subset of the pre-
vious maximum set.

When the maximum set is altered, privileges

4Defined iathe privitege propagatian interface routine.JThe current implementation limit is 255.

A Privilege Mechanism ...

in the working set that are not in the new
ma,rimum set are removed from the working
set.

a Process privilege sets are unchanged during a
fork(2) operarion. The privilege sets of ihe
child process are identical to those of the
parent.

File Privilege Sefs..
A file can have several privilege sets.ó File privilege
sets are used to establish the privilege s of. lhe newT
process when the file is executed. The following file
privilege set is cunently supported for both privilege
modules:

¡ Fixed privileges: a set of privileges always
given to the new process independent of tñe
process privileges of the invoking process.

The -following file privilege set is supported only in
the file-based privilege module:

o Inheritable privileges: a set of privileges
given to the new process only if the privilege
was in the maximum set of the invoking pro-
cess.

The following rules apply to file privilege sets:
¡ File privilege sets can only be assigned to

ordinary, executable file types.
o All privileges associated with a file ate

removed when the file is modified.

Isolation of the Privilege Mechanism Code in the
Kernel

The second and third goals involve the isolation
of the privilege kernel mechanism in the kernel
cod.e. .The privilege mechanism was tightlfcoupled
with the access mechanism because a-process i,rith
effective user ID 0 had unlimited access. This asso-
ciation had to be severed. When we did this, how:
ever, we wanted to keep the modification of existing
kernel source code to a minimum.
Minimizing Kernel Changes

To achieve the second goal, minimizing kernel
changes, the kernel source code was analvzeã. Two
mechanisms for determining privilege in the kernel
were identified:

1. calling the internal kernel routine suser0 to
check if the effective user ID was 0, and

2. explicitly checking whether or not the effec-
tive user ID was 0.

Existing routines in the kernel that either called the
suser0 routine or checked the effective user ID

oFile privilege sets are also limited to 255./The term zew is used here rather than child because a
prccess may be exec'ed directly ove¡ the calling process
without invoking the fork(2) system call. ThJprivilege
cont¡ol mechanism will work properly because the
privilege setting for the new process is done before the
new process is executed.

Summer '92 USENIX - June E-June LZ, LggZ - San Antonio. TX 237

A Privilege Mechanism ...

had to be modified to call the prívilege request tolr-
tine defined in the privilege module.6
Separatlon of Privllege and Access Mechanlsms

Our third goal, separation of the privilege
mechanism in the kemel, does not affect the current
setuíd and setgid mæ,hanism. A process using the
setuídlsetgid mechanism works as it currently does
by only allowing a user access to files that they
might not normally have based on the file access
bits. Removing the "omnipotence" of user ID 0 in
the kernel means that the file access permission
works exactly the same for user ID 0 as any other
user ID.
Associating Privilege with a File

Privilege needs to be associated with files that
are part of the system. One method of associating
privilege with a file is to store the privilege in the
inode of. the file. This method provides a protection
from users because of the well-defined svstem inter-
face for accessing the inode. However, this imple-
mentation is limited because file system types
already in use can not take advantage of a modular
privilege implementation.

Because of this limitation another method was
needed to achieve the fourth goal of file system
independence. This method must provide similar
protection from users that the inode scheme pro-
vides, i.e., it should be accessed only through a
well-defined interface. Also, to achieve the first
goal, it has to fit well into the modular privilege
interface.

To meet these goals a memory-based kernel table is
used to define the privileged commands in the
operating system. Using a memory based table pro-
vides the following beneñts:

o File system independence. The privilege con-
trol mechanism can work across file system
types.

o The number of privileged commands can be
reduced, or expanded, independent of the
privilege policy in use.

o Privilege can never be imported from othe¡
media since the privilege information is not
part of the file attributes]

ID-B as ed M echanisrn F e ature
Using the setuid-on-exec mechanism9 and set-

ting the owner of an executable file to roor is still
supported in the lD-based privilege mechanism
because that privilege policy supports the concept of
"super-user." However, this mechanism also sup-
ports fued privileges on executable files. Therefore,
it is possible to assign to an executable file only

@in device drivers had already
been addressed in SVR4 by providing the DDr/DKI
interface routine, drv3riv [4].YU. S. Patent # 4,135,240.

Salemi, . . .

those privileges requìred to complete all its tasks
instead of giving it all privileges via the
s etui.d<n-exec mechanism.

Compatibility

Our fifth and final goal was to preserve compa-
tibility with previous releases of the UNIX Operating
System. As mentioned previously, there are two
privilege modules supported in SVR4.1ES.

Most of the routines defined for each privilege
module are the same because of the similarities
between the two privilege policies. The major
differences occur in the propagatio¿ routine and the
process prívilege recalculation routine.
Privilege Propagation

The propagation routine determines how
privilege is propagated for the particular privilege
policy in use.
F ile-B ased Propagation Model

The following model is in effect for the
file-based privilege module:

A privilege can be acquired only if the
privilege exists in the maximum set of, the cal-
ling process or is in the frxed sef of a file. A
process with an empty maximurn set can never
pass a privilege to another process. The com-
putation of the new maximum and working sets
is done in the execQ kernel code:

Step [A] The maximum set of the calling process
is intersected with the inheritable set associ-
ated with the program file being executed.

Step [B] The result of Step [A] is unioned with
the fued set associated with the program file
being executed to form the new maximum and
working sets,

There is an important principle implemented
by this feature: A process gains only those
privileges that were in either its fixed or
inheritable privileges. A starting proc€ss can-
not force a privilege onto or through a new
process. If a process mistakenly executes the
t¡/rong new process (i.e., a "Trojan Horse"),
it cannot pass any privileges that the new pro-
cess was not designed to enforce.
Figure L illustrates the file-based propagation

model.
ID-Based Propa gation Model

The following model is in effect for the
ID-based privilege module:

A privilege can be acquired only if the
privilege exists in the maximum set of, the cal-
lirg process or is in the fixed sef of a file. The
computation of. the maximum and workíng sets
for the resulting proc€ss is done in the execQ
kernel code:

238 Summer '92 USENIX - June 8.June L2,1992 - San Antonio, TX

Salemi, ...

First, the maximum privilege set of the calling
process is stored in a temporary privilege set
when the propagation routine is entered. Then,
the following conditions are evaluated to deter-
mine the maximum and working privilege sets
for the resulting proc€ss:

Step [A] Does the executable file being exec,ed
have the setuid-on-exec bit asserted? If
yes, go to Step [B]. If no, set the tem-
polary privilege set to 0 and go to Step
tDl.

Step [B] Is the owner of the executable file being
exec'ed "root"? If yes, turn on all
privileges in the temporary privilege set
and go to Step [D]. Otherwise, go to
Step [C].

Step [C] Is the effecrive user ID of the calling
process "root"? If no, turn off all
privileges in the temporary privilege set
and go to Step [D]. Otherwise, set an

A Privilege Mechanism ...

indicator for use later and go to Step
tDl.

Step [D] Does the executable file being exec'ed
have any fixed privileges? If so, add
these privileges to the temporary
privilege set.

If the privilege sets for the calling pro-
cess differ from the temporary privilege
set generated above, do the following:

a. set the maximum privilege set for
the resulting process to the tem-
porary privilege set.

b. If the indicator was set in Step
[C], set the working privilege set
for the resulting process to the
fixed set of privileges found on
the executablõ file.Io Otherwise,

ffin compatibility with older
versions of the UNIX operating system.

exec0

Figure 1: The File-Based Propagation Model

maxlmum {2,3,6,91

working {2,3,6,9}

Figure 2: The ID-Based propagation Model

- June 8-June 12,1992 - San Antonio, TXSummer'92 USENIX 239

A Privilege Mechanism ...

set the working privilege set for
the resulting process to 0.

Figure 2 illustrates the lÞ-based propagation
model.

Privilege Recalculatlon
The privilege recalculation routine adjusts the

maximum and working privilege sets of a process
according to the privilege module in use.
F iIe-B as ed Re c alculation M o de I

This routine has a null effect in the file-based
privilege module. This is because we intentionally
separated the access mechanism from the privilege
mechanism (see Section 3.2).
IÈB øs e d Re ca lculation M o de I

This routine has extreme signiñcance in the
IÞ-based privilege module because of the right-
coupling between the access and privilege mechan-
ism. This routine is called by the access0,
setuid0, and seteuidQ system calls.

The following model is in effect for the lD-based
privilege mechanism:

The maximum and working privilege sets for
the current process are adjusted whenever the
effective user ID is modified based on the fol-
lowing conditions:

Condition [A] Clear the maximum and working
privilege sets for the curent process if
none of the process UIDs (effective UID,
saved UP-, or real UID) equal the
privilegedll lo.

Condition [B] Otherwise, ser the working privilege
set to the maximum privilege set if the

ttTtre privìleged ID has traditionally been user ID 0.
However, this is now a tunable variable allowing for any
user ID to be considered "all-powerful" in an lD-based
privilege mechanism. User ID 0 is the default value for
this variable.

Salemi, ...

effective UID is equal to the privileged
tD.

Otherwise, only clear the working privilege set
if neither Condition [A] nor Condition [B] are
true.

Figure i illustrates the lÞ-based recalculation
model.

Conclusion

Moving the privilege mechanism from the ker-
nel proper to a separate, loadable module was
extremely simple. We were fortunate that the
checks for privilege in the kemel were somewhat
well-defined. We were also fortunate that our sys-
tem was based on UNIX System V Release 4 since a
lot of the ground work to make the separation easier
was done in that release.

In addition, we maintained compatibility with SVR4
despite extensive modifications required in the ker-
nel. This means that any operating system
configured with the SUM module bühaves in the
exact same manner as an SVR4 Operating System
with hard-coded privilege checks for effective UID
0.

References

[1] Knowles, F. and Bunçh, 5., A Least Privilege
Mechanism for UNIX. Proceedings of the 10th
National Computer Security Conference. (Sep
1987) Baltimore, MD.

[2] Hecht, M. S., et al. UNIX Without the
Superuser. Summer USENIX Technical Confer-
ences and Exhibition. (Jun 1987) Phoenix, AZ.

[3] Bach, Maurice J., The Design of the UNIX
Operating S.ystem, Prentice-Hall, Inc., 1986

[4] UMX Press Title, UNIX System V Release 4
Device Driver InterfacelDriver-Kernel Inter-
face Reþrence Manual,

A¡e any process UID's
equal to the "privileged" ID?

Is the effective UID
equal to the "privileged" ID?

Figure 3: The ID-Based Recalculation Model

240 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Salemir...

Author Informatlon

Charles Salemi is currently a Member of Staff
at UNIX System Laboratories, Inc. He has been
involved with the UNIX Operating System since he
received his degree in Computer Science from the
City University of New York in 7977. He has been
a member of the Security Development Team since
1987. Within this project his principal interests have
been in the area of the privilege mechanism and the
Identification' and Authentication facility. Along
with his other accomplishments, he was one of
several people responsible for the development of
the Source Code Control System (SCCS).

Suryakanta Shah is a Senior Member of Staff at
UNIX System Laboratories. She received a MS in
Computer Science from Queens College in 1983.
During the past 1.0 years at UNIX System Labora-
tories, she has worked on numerous features of Sys-
tem V including 82 security, process management,
virtual memory, a¡d the RFS distributed file system.
Cunently, Kanta is adding multiprocessing capabili-
ties to the 82 security features.

Eric Lund received a BA in English from Tufts
University in 1984. Since Spring of 1991 he has
been a Senior Programmer / Analyst developing on
Multi-Level Security features for Cray Research Inc.'in

Eagan, Minnesota. Prior to his work at Cray, Eric
worked at USL where he helped develop the
Privilege, Trusted Path, and Audit mechanisms,
developed the Trusted Facility Management mechan-
ism, and performed Covert Channel Analysis on Sys-
tem V Release 4.l.ES. Eric was also one of the prin-
cipal developers of the System V Verification Suite.
In his spare time, Eric enjoys camping, rock climb-
iog, juggling, woodworking, and beer
brewing/tasting.

A Privilege Mechanism ...

Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX 241

