
On Migrating a Distributed Application to
a Multi-Threaded Environment

Thuan Q. Pham, Pankaj K. Garg - Hewlett-Packard Laboratories

ABSTRACT
Light-weight computation threads in a multi-threaded operating system promise to provide
low-overhead computation and fully sharable addressing space not available in convéntional
process-oriented operating systems. Traditional distributed applications based on processes
can be re-architectured to use concurrent threads in a multi-threaded platforrn to take
advantage of faster context switches and shared-memory communication.
We investigated this expectation by porting an existing distributed application to a mulri-
threaded environment. As a result, we virtually eliminated the cost of message-based IPC,
replacing it with shared-memory communication between threads.
In this paper we address the benefits, the difficulties, and the trade-offs of such a re-
architecture. We also comment on some feasible architectures for migrating currently
distributed applications to multi-threaded environments.

Introduction

The usual process abstraction [Sal66] has too
many things anchored to it to meet the needs of
aggressively concurrent applications. Process crea-
tion and context switching result in high overhead on
the part of the operating system, often using fæ
more resources than one would like [AB8+86].
Furthermore, since the processes do not share
resources, distributed applications with significant
data sharing must communicate via expensive
message-based interprocess communication (IPC)
mechanisms.

Earlier efforts have tried to circumvent these
problems by utilizing coroutine and user thread
packages to simulate and manage multiple contexts,
with shared memory, within a single process [Mar90,
JRG+871. However, since the kernel has no
knowledge of such coroutines or sub-processes, these
coroutine packages cannot take advantage of the
operating system's scheduling services, and an appli-
cation using them cannot utilize more than one pro-
cessor in a multi-processor environment. Thus the
questions of alleviating expensive context switching
and expensive interprocess communication are not
completely addressed by user-created coroutines and
sub-processes.

The above problems have been addressed by
operating systems supporting light-weight threads
and shared resources (e.g., OSFI). The creation and
maintenance of threads require lower operating sys-
tem overhead than processes. A thread, when
created, has access to all the process information in
the taskl. Since the computaìion threads share all

JA task with óne thread is equivalent to a process. We
use t¿s* to denote a multi+hreaded process.

resources within a task, including the memory
address space, "inter-ptocess" communication can
be done cheaply and efficiently with shared memory.

A systematic reduction of heavy-weight
processes to light-weight threads with shared
memory, whenever possible, provides a substantial
improvement in performance [A88+86, FR86,
JRG+87, TR87]. However, the threads facility res-
tricts the architecture of distributed systems. Perfor-
mance improvements come at the expense of the lost
generality to the process model: processes are
machine independent; threads may not be. Further
cost is incurred by the effort spent in porting exist-
ing software systems to a new, multi-threaded plat-
form. These issues are investigated by our re-
architecture of an existing distributed application
from a single-threaded environment to a multi-
threaded one. We report on the problems and
benefits of such a re.architecture.
The Experiment

The distributed application used in this experi-
ment is Matisse, a knowledge-based team program-
ming environment derived from the Workshop Sys-
tem [Cle88]. Matßse offers automated support for
communication and coordination in team program-
ming. Its architecture is illustrated in Figure 1. The
core of each unit of Matßse includes an expert sys-
tem, an object editor, and a graphical object browser,
all residing in the programmer's workstation. In the
current implementation, all components of. Matisse
are separate processes that run concurrently and
share information via sockets. By merging some of
these UNIX processes into threads within the same
task, we can obtain significant performance improve-
ment with light-weight threads and shared-memory
IPC.

Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX 45

On Migrating...

For this experiment, we have ported and
merged only the Worlæhop and Editor processes
(Figure 2). These processes are prime candidates to
receive the benefits of the merge because they natur-
ally reside on the same machine and share a large
collection of data. The locality of these processes
enable them to be merged without any loss of gen-
erality or usefulness, and their interprocess commun-
ication can benefit from direct memory sharing.

In addition to providing performance measure-
ments, the experiment gives us some understanding
of the difficulty of this porting process, including the

Pham, Garg

conditions and requirements that make the operation
possible and optimal (data representation, locality,
garbage collection, etc.). These rules of thumb
might be a helpful guide in identifying a suitable
architecture, or re-architecture, of processes and
threads for distributed software systems in the future.
Our experience suggests that performance improve-
ments do not come without costs and it is up to the
designer to judge whether this approach is feasible
for specific applications.

Global, Sbarêd

Object Baee

Batcb
!!ools

. complle!

r Debugger

. LaTex

. Nrof f /Trof f

. Make

Ftl.
SystoEs

Figure l: Matisse Architecture: A central shared information base is shared by all team members. Each person
has an individual (active) information base which talks to various interactive tools.

Procaal

Drocor¡

Olobal, Sbared

ObJect, Base

llorkehop
Inf,erenc€

Englne

oÞ
Ed

l€ct
Itor

User

ut¡r

Drocoll

-...-

Figure 2: Matßse: experimental subset

Globalr Sbared

ObJcct Ba6c

xrcB

46 Summer '92 USENIX - June 8.June 12,1992 - San Antonio, TX

Pham, Garg

System Re.Architecture

The experiment is divided into three stages.
The first stage was a "straight port" of the Editor
and the Workshop to the multi-threaded operating
system, making each process a single-threaded task
in the new environment. The second stage involved
merging these two single-threaded tasks into one
task with two threads while leaving their interpro-
cess communication mechanisms undisturbed.
Finally, in the third stage, we replaced most of the
IPC messages between the nvo threads with some
prímitive routines that allow direct access to shared
data in memory, and a new communication protocol
using these primitives. Figure 3 depicts the stages
of the experiment, showing the shared memory and
illustrating also the process, task, and thread boun-
daries. The division of the experiment into these
three stages is natural, since each stage has its own
set of problems that, for the most paf, is distinct
and unrelated to the others. The following sections
describe each phase of the experiment, discuss the
difficulties that were encountered, and present our
solutions.

1,.,¡r l l , . , r¡ lE@gpi ts
rigor. i, Re-architectur,

'oroo.r,
from åt.¡orn,

single-thread tasks to multi-threads task with
memory sharing capability; a) single+hread
tasks, b) multi-thread task, c) multi-thread task
with memory sharing.

From Processes To Singte.Thread Tasls
In stage 1, we had the problem of having dif-

ferent names for [equivalent] system calls and a dif,
ferent file directory hierarchy. This can be rectified
by systematically checking, identifying, and tracking
down the right functions and files in the new
environment. Although this was the simplest and
most straight-fonvard step of the experiment, it was,
however, not necessarily easy, depending on the por-
tability of the existing system. This step could bè as
simple as a recompilation, or as arduous as a major
rewrite. For example, our Workshop port went par-
ticularly smoothly, requiring little beyond setting up
the directories, the Makefile, and the recompilation.
On the other hand, our Editor, a modified Emacs
[Sta84], was particularly hard to port since its com-
plex code exploited many system-specific features,
and exposed numerous system differences.

An interesting problem we encountered was the
difference of implementation of certain operating
system services. One example was the incompatible
side-effects of the fr¡nctions regexlregalrp across the
two operating systems. One library routine stored the

On Migrating...

data to bc processed in an internal static structure,
and thus could not be called recursively, while the
other took the argument from the program stack and
contained no static internal state. It v/as not possible
for us to re-implement such services to suit only our
needs since other existing programs depended on
them. Our solution u/as to define the functions and
data structures necessary to use instead of the exist,
ing resources

Flgure 4: resource contention: Although the Edítor
has it own editing window and does not use the
shell window that the other th¡ead uses for input
(which is really stdin), its code is written in
such a way that the core of. the Editor expects
user inputs ftom stdin by mapping the channel
associated with the editing window to stdin.
The two tlueads' dependence on the input
sÍeam created a confi¡sion that led to system
failure. The communication channel stdin was
"dup't"6 and the copy was given to the
Workshop process to avoid contention.

Merging Slngle.Thread Tasls To A Multi.Thread
Task
In stage 2, we created a new z¿in function to

set up global, shared resources such as th¡ead IDs,
mutex and condition variables, and then fork the trvo
execution threads. Since the interface allows only
one argument to be passed to a thfead at creation
time, the naín function must parse the command-
line arguments, package them in data structures, and
hand them to the appropriate tluead creation routine.
IIO Contentíon

A th¡ead-unsafe situation resulted when the
merged th¡eads both wanted to access the same file
descriptor (most commonly stdin). To give one
th¡ead exclusive contol of the file descriptor would
reguire a major rewrite of the other thread. Our
solution was to dup the overlapping file descriptors
and give each thread a different handle. As a result,
the two th¡eads no longer contend for the same file
descriptor. This problem is depicted in Figure 4.

Summer '92 USENIX - June 8.June 12,lgg? - San Antonio, TX 47

On Migrating...

Problems With UNEXEC
Applications often use a mechanism called

unexec to freeze the image of the process and dump
it out to an a.out format file capable of being res-
tarted. Making unexec work for a multi-threaded
task requires that we properly start up the threads,
coordinate their terminations, and clean up after they
exit.

First, for the program to be restarted after an
unexec, we must call the thread initialization routine
to set up the internal system resources needed for
operation because the individual thread states are not
saved by unexec. Since the effects of calling the
thread initialization routine are not idempotent, in
many systems this th¡ead initialization routine is
automatically called by the start up code, only once.
In our C threads [CD88] package, for example, a
static flag is used to avoid initializing more than
once. This static flag prevented the initialization
routine from being called when we restarted from
the unexec image. To resolve this problem, we
forced the C start up code to call the initialization
routine at the next start up.

Figure 5: Synchronization on th¡ead exit. To
ensure that the Editor thread exits cleanly, the
Workshop th¡ead waits for the join operation to
complete before proceeding to call unexec

Even if the thread initialization routine were
being called every time, we still could not restart the
dumped image of the program if it was not cleaned
up properly before the unexec dump. The problem
here was that the thread initialization routine tried to
use the internal data stuctures for the threads
already present in the dumped image from the previ-
ous run, but failed to re-initialize these structures
corresponding to the states of the newly started
threads. The stale data in these structures conupted
the th¡eads and led to system crashes. To remedy
this, we extended the thread-exit code to free all
such data structures, forcing the th¡ead initialization

Pham, Garg

code to create new ones each time the program was
restarted from an unexec. To ensure that the th¡ead
calling the unexec code was the last one to exit, we
synchronized all thread exits via the jo¡n operation
(Figure 5).
Sharlng Memory

Having merged the threads, the Workshop and
Editor now shared the same address space and could
access each others' data directly. At this time, we
no longer needed to keep separate copies of the data
in both the rilorkshop and the Editor. Since the
lVorkshop proc.ess does most of the computation
with the data, we let the Workshop thread manage
all the data. A transparent layer of memory-
read/write primitives wai implemênted to perform
object read and conversion from the Workshop for-
mat to that of the Editor (Figure 6).

Figure 6: Data sharing: The new read primitive
hansparently reads the data directly from the
lilorkshop heap and converting it to the format
usable by the Editor, thus eliminating the need
for IPC.

It is worth mentioning here that other imple-
mentations for this type of data sharing are possible,
such as providing a separate th¡ead to manage the
entire shæed object base, including synchronization
primitives and memory management techniques (Fig-
ure 7). However, due to the architecture of Matisse,
using a general data sharing method would have
required us to rewrite many memory management
operations and the garbage collector, which are
already present as part of the Workshop. Designers
of future systems should carefully consider exploit-
ing the existing architecture before resorting to a
more general scheme.
Garbage Collection Considerations

For an application with an embedded LISP
environment, we must carefully consider the memory
management issue. ln Matisse, the Editor accesses
\Vorkshop's heap of data directly and must be pro-
tected from the Workshop's garbage collector during
a critical time when it is holding pointers to
Workshop's objects and reading them. This conten-
tion is handled by a simple mutex lock to be seized
by either of these two entities as they try to get to
the data. Locking can be done at a finer object

forl ldltor

ldltos

4E Summer '92 USENIX - June 8.June 12,1992 - San Antonio, TX

Pham, Garg

level, but the infrequent Editor's look-ups make it
costly and infeasible to implement a mutex for each
objeót2.

Figure 7: Shared-memory alternative: the object
management mechanism can be implemented by
an independent thread. Synchronization of
object access between the Workshop and Editor
threads can be handled by the Object Manager.

This simple locking scheme is sufficient if
there is never a need for obtaining the mutex lock
again during the critical section where the mutex
lock is already held by either the garbage collector
or the read primitive. However, in our system, there
is a problem when the memory of the object heap
runs low during the critical section of the Editor's
read operation. In this case, the Editor thread would
block by running the garbage collector, which would
block waiting for the mutex lock to be released by
the Editor. This deadlock is resolved by requiring
the Editor to yield the mutex lock to the garbage
collector and redo its read operation latet'.

Performance Evaluation

As described by the previous sections, Matßse
evolved through three stages. Version 1 is a
"straight port", featuring a one-to-one mapping of
one UNIX process to one single-threaded task. Ver-
sion 2 is the merge of these single-threaded tasks
into one multi-threaded task with the IPC mechan-
ism unaltered. Finally, version 3 is the multi-
threaded version similar to version 2, but most of the
IPC messages are replaced by direct readlwrite of
data in shared memory between the threads. How-
ever, it was also necessary to implement version 3 in
two steps: I/* reduced the number of IPC bytes
being transfened; and V3¿ reduced both the number
of IPC messages and bytes. Version t of. Matßse
serves as the baseline with which all performance

On Migrating...

measurements are compared4.
Tlmlng Measurements

To effectively illustrate the performance
improvement from the re-architecture described in
the previous section, two scenarios with significant
IPC overhead were chosen as benchmark tests for
each version of the system as it evolved from two
single-threaded tasks to one multi-threaded task with
shared-memory IPC. The IPC cost of these
scenarios, mostly involving passing data back and
forth bet\¡/een the Workshop and the Edítor, is
estimated at 40Vo of the system overhead. We use
otJJ est¡mote here because the actual execution time.
comprised of user time 5 and, system time 6 , cannoi
be precisely measured across thread boundaries. The
task of breaking a message into data packets, send-
ing the packets across the wire, and reassembling the
data stream, starts in one thread and ends in another.

d1.plr
ratult

a r]

.;,-J
I (tdr.)

!PC

;;-------r I rrar.r

2A thorough coverage of concurrent programming,
threads, and mutexes can be found in [Bir89].rT\e redo is done simply by having the read primitive
release the lock, call the gubage collector, and then calt
itself with the original a¡guments.

Figure E: Timing measurement. This operation
scenario contains 3 Editor transactions and 1
Worl<shop transaction. The total execution time
is the sum of three (t4-t1) and one (t3-t2), in
both user time and system time. Note that the
idle time is not charged to the execution time of
either thread

The system timing utilities available to us
could not be used to measure system execution time
across thread boundaries. Thus, in order to coarsely
measure the percentage of IPC overhead in a tran-
saction, we computed, from time stamps, the real
time it takes to send a message from the sending
thread to the receiving thread. Since we can only
measure this using reøl time, the number we get is,
of course, slightly larger than the actual execution
time of the two entities due to some other system
threads (such as the scheduler, the window manager)
utílizing the CPU in between. In our test machine,

@compare the performance of
the ported application to the original one running on the
LJNIX pladorm sincp there are simply too ma¡ry system
diffe¡ences between the two operating systems to have a
mganingful comparison.

)user tíme is the total amount of time the system spends
exgcuting in user mode

osystem time is the total amount of time the system
spends executing on behalf of the thread or process.

Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX 49

On Migrating...

the experimental threads are the only user th¡eads
running other than the essential system threads. The
CPU cost of the system threads, being constant
across all measurements, does not affect the qualita-
tive analysis of the performance profile, and amounts
only to a small offset factor in the quantitative
analysis. Along with the timing measurementi, a
pair of counters was also implemented to count the
number of messages and the number of bytes being
sent via the communication sockets.

The execution time of each scenario is meas-
ured by obtaining the total running time of all
threads (or taslæ, in version 1) between its start and
end points. The acquisition of user time and system
titne is done by calling the system üility getrusage.
With getrwage, we have a timing granularity of 1
microsecond, which is adequate for measuring tran-
saction time lasting in the order of tens of seconds.
The following paragraph and Figure I illustrate the
timing measurement for a typical transaction.
Test Cases

The first test case is the startup sequence of
actions that takes place as each user logs into
Matisse. This scenario has a high percentage of IPC
activities because the Editor and the Workshop must
communicate with each other extensively to set up
the environment for the user. The setup process
involves the Editor getting the numerous program
objects from the Workshop and initializing the
display screen. This interprocess communication is
done via sockets in versions ! and 2, and via shared
memory in version 3 of the system.

The second test case involves another IPC-
intensive sequence of actions: modifying and saving
a program object In order to save a text object, the
Editor first sends the modified object to the
Workshop where it is validated, updated, stored, and
sent back to the Editor to be displayed. In addition,
the Workshop uses its rule base to determine and
make the necessary changes in the system
configuration.

Although the IPC overhead in both test cases is
high (about 40Vo), they are slightly different in com-
position. The first test case involves numerous small
IPC messages, while the second test case is
comprised of fewer, but larger, IPC messages. This
difference plays a key role in explaining the amount
of system performance improvement and will be dis-
cussed in the following sections.
Light.Weight Threads And Shared Memory

The first set of experiments compares the per-
formance of versions Vr, Vr, and Vro. Table 1 illus-
trates the percentage reduction in IPC bytes and
CPU time between every two versions compared.

As seen in Table 1 and Table 2, the improve-
ment between I/, and V2 is indicative of the light-
weight thread issues. Unfortunately, only a slight
improvement is observed here because the scheduler

Pham, Garg

of our operating systemz does not provide light-
weight threads with much advantage over conven-
tional processes or tasks, and crossing the kernel
boundary is expensive (as much as for processes).
r#ith a smarter scheduler, we would expect to do
much better, For example, our system (HP9000
series 350) uses a virtual cache which can hold
information for one address spâce at a time. A smar-
ter scheduler could notice that the next thread run-
ning on the processor uses the same address space as
the previous one, and avoid any unnecessary cache
flush. Thus, by allowing the next thread to use valid
data in the cache rather than causing expensive
cache misses (after an unnecessary cache flush), an
intelligent scheduler can cut the cost of a context
switch on a virtual cache machine [CM89].

A IPC A CPU
v t -vz
Vz-Vto
Vt-V^^

-5.óUu/o
-37.25Vo
-33.87Vo

-J.'U"/o
-tL,17Vo
-75.82Vo

Table l: Performance Improvement, test Scenario
1: small IPC messages

A IPC A CPU
v t - v z
Vz-Vso
V,-Vo^

- L.ó t"/o
-40.86Vo
-41,.97Vo

-J.UJ"/o
-1,5.38Vo
- 1 7 . 7 w o

Table 2: Performance Improvement, test Scenario
2: large IPC messages

The tables also show that the performance
improvement between V" and I/r, however, is much
more significant due to shared memory. By shifting
from socket-based IPC to shared-memory IPC, we
reduced the number of bytes to be sent via sockets
by 37Vo and improved the overall system speed by
17Vo. Since roughly 40Vo of. the original system over
head is IPC related, we have effectively slashed the
IPC overhead by approxim^tely 2580.

In addition, second order effects exist which
indirectly improve system performance. These
beneficial factors occurred naturally as part of our
re-architecture. For example, with the data sharing
in version Vro, the Editor no longer has to keep its
local copy of the data, saving 400K of memory at
run time. Being smaller in size, the merged version
has less paging overhead, takes much less time to
load into memory, and is less likely to be swapped
out during a context switch.

@tah's port of MACH2.o on
HP platform because it is readily available. Although
MACH 2.5 exists for the HP9000 machines, it was not
stable enough. OSF1 was not available at the time of this
experiment.

50 Summer '92 USENIX - June t.June 12,1992 - San Antonio, TX

Pham, Garg

Bytes vs. Messages
After examining %o, we discovered that we

can do much better by not only reducing the number
of bytes being sent between threads, but also the
number of IPC messages. We examined the result
of two slightly different variations of memory shar-
ing techniques: version I/r, which reduces the IPC
bytes, and version Iz9 which reduces the number of
IPC messages as well,

The original Matisse processes sent and
received the [OID,Slot,Value] messages via sockets.
Version V3o eliminated most of the byte transfer by
allowing the Workshop to send only the small
[OID,Slot] messages, while making the Editor per-
form the lookup and copy of large Value data frelds
directly from the Workshop's memory.

Version I/3¡, reduced the number of messages
to only one per object. The Editor thus had a
greater responsibility to look up the Slot and Value
attributes of the desired object. The additional com-
putation needed to determine what slots of the given
OID needed updating was still much cheaper than
sending the list of [OID,Slot] via IPC messages.
Since most of the IPC messages are small, and the
cost of sending messages up to a certain size is con-
stant, the benefit is not ftrlly gained if we just
reduced the IPC bytes. For example, in our system,
the cost is the same for messages up to 8K bytes in
size, so it was not very beneficial to just reduce the
size of data packets since the payoff would stop after
the 8K-bytes packet size.

Table 3: Performance Profile,
small IPC messages

Scenario

IPC messages

On Migrating...

communication pattern is comprised of fewer but
larger messages, a comparable reduction of 85,23Vo
of IPC bytes and 82.95Vo of IPC messages led to a
much smaller reduction of.20.44Vo overall CPU time.

The performance data in Table 3 and Table 4
show that, in version Vru, we have reduced the
traffic volume by as much as 85Vo and CPU time by
28Vo over version V3". Comparing this performance
with the original version V1¡ wê have achieved
approximately 40Vo reduction in CPU time in run-
ning our set of test cases. This reduction means we
have virtually eliminated the original system over-
head related to IPC, which was 407o. Obviously,
there is still a trickle of IPC messages present in the
syslem since we have not completely eliminated it
yetõ , but the performance improvement resulting
from any secondary effects have already covered this
cost. In addition, the performance gained from these
secondary effects also covered the cost incurred from
the shared-memory read/write protoco!.
System Threads vs. User Threads

The concept of merging single-threaded
processes to gain shared-memory communication
capability can be applied to coroutine packages as
well. Such an approach does not require a migration
to an operating system with multi-threaded support,
but rather the reduction of processes to user threads
of a coroutine package. If the user already has a
coroutine package that manages the scheduling of
user threads, the merge can yield performance
improvement by the resulting user threads having
shared-memory IPC. An important difference
between user and kernel threads is that in a multi-
threaded multiprocessor environment, the system
threads can potentially be scheduled on several pro-
cessors, exploiting the real concurrency, while the
user threads in a coroutine package can be scheduled
and run one thread at a time, on only one processor
at a time.
Multiprocessor Implications

A logical next step would be to rehost Matßse
onto a multi-threaded, multiprocessor environment.
The migration to this type of environment would
require no additional work beyond that described. In
a multiprocessor environment, each thread is a can-
didate for scheduling on any processor. If two or
more threads sharing memory are run concunently
on different processors, the system transparently
manages the shared memory addressed by the

@cess migration, we decided to
only implement the sha¡ed memory IPC to replace
socket-based data t¡ansfer between the two th¡eads. Some
socket-based IPC messages are still used for control and
communication between the tb¡eads. These messages can
also be replaced by signals and condition variables
between tb¡eads, with control data t¡ansfer facilitated bv
common data buffers with locks.

Additional performance is gained by reducing
also the number of messages. This explains the
observation that, in test Scenario 1 where the com-
munication activities involve many small messages,
a reduction of 80.887o of IPC bytes and 80.50V0 of.
IPC messages reduced the overall CPU time by
28.50Vo. And in the test Scenario 2 where the

A,IPC bvtes L IPC msss A CPU
v t - V z
Vz-Vso
Vr+V"-

-3.807o
-37.25Vo
-3387%

U"/o
ÙVo
ÙVo

-5.3U7o
-1,7.71,Vo
-75.82Vo

-80.88Vo -80.5OVo :2ó.50To

Y t + V -87.35Vo -óU.50To -59.ó1"/o

L IPC bvtes L,IPC msss A CPU
v i - V z
Vz-Vso
VttVto

Vo-+Vo,

-1,ó t70
-40.86Vo
-41.97Vo
-85.23Vo

UYo
IVo
IVo

-82.95V0

-5.U57o
-1,5.3870
-17.1,1Vo
-20.44Vo

v , + v -97.42To -82.95Vo -34.057o

Table 4: Performance Profile, test Scenario 2: large

Summer '92 USENIX - June 8-June 12,lgg} - San Antonio, TX 51

On Migrating...

diffe¡ent CPUs. Given that the operating system for
the multiprocessor machine is designed and imple-
mented properly, we would expect to see a multi-
threaded application run faster on a multiprocessor
machine than on a uniprocessor machine as a result
of the parallelism of the multiprocessor architecture.

To better take advantage of multiprocessor
machines, however, this work can be extended to
break up the code into many threads, hence "paral-
lelize" the application whenever possible. The
numerous threads can then be run in parallel across
the processors, thereby effectively utilizing the
hardware resources. For example, in Matßse, lhe
Workshop's garbage collector can be implemented as
a separate thread. Also, object updates or queries
can be done in parallel by forking a thread for each
job, rather then simply doing them serially.
Porting Effort

The port and re-architecture of this experiment
took about two man-months complete, since we had
no previous experience in porting a system this large
and complex. The effort was eased considerably by
the help and insight of people in the labs who had
ported the MACH operating system onto our
machines. Along the way, t¡/e carefully documented
our path, as reported above, so that future porting
efforts can be done much faster. Knowing what we
know now, this experiment can be repeated in a one
or two-weeks time frame. The approximate time we
spent on each part of this experiment is listed in
Table 5.

The Importance Of Threads
Earlier sections of this paper on the design and

porting effo¡t of Matisse describe at length the
threads mechanism. The performance charts, how-
ever, show that most of the performance gained is
from shared-memory, not threads. The importance
of threads cannot be under-estimated because it is
the mechanism which delivers shared-memory.
Without threads, there is no way to obtain the per-
formance improvement the way \rye had with
shared-memory and still keep the existing program
interface on IPC. Changing this interface to use sys-
tem V shared memory would require months of
¡ewrite for a software system this complex. Although
the system threads themselves do not contribute
much toward the performance gain in this particular
system, they are getting faster and lighter, as the
importance of threads increase now and in the

Pham, Garg

future, with the prevalent needs for multiprocessing
and fine-grained pæallelism.

Conclusion

The result of the experiment matched our initial
expectations and we have formulated a rough guide-
line for the migration process. By laying out the
steps and identifying the potential problems associ-
ated with each step, we hope future migrations can
be done quickly and painlessly. However, not all
components of a multi-process application should be
merged as concurrent threads. Although migrating
single-threaded processes to concurrent threads
within a multi-threaded task enables the threads to
communicate cheaply via shared-memory, the trade-
off is that we lose the machine-independent property
of the original processes. By porting and merging
processes as concurrent threads, they must now be
executed on the same machine, whereas they previ-
ously could be run on different machines. Thus, can-
didates of this re-architecture process should be
those that have a large IPC overhead, and always
reside on the same machine. Many existing applica-
tions fit this requirement, and are good candidates
for migration.

Acknowledgments

The authors would like to thank professor
Jerome H. Saltzer of MIT for the insightful advice,
questions, and comments about the project.

Our colleagues Scott Marovích and Debbie
Caswell provided enormous help and technical
expertise with the UNIX and MACIVOSF1 operating
systems. Brian Beach assisted with the memory
management issues of the C and LISP environments.
Many thanks to Debbie, Kevin Wentzel, and Profes-
sor Saltzer for their suggestions on improving the
paper.

We thank Dan Fishman, Martin Griss, and
Paula Hawthorn for thei¡ continuous support of the
Matisse project under which the experiment v/as
conducted.

References

[A88+86] M. J. Acetta, R. V. Baron, W. Bolosky,
D. B. Golub, R. F. Rashid, A. Tevanian, and
M. W. Young. Mach: A new Kernel Founda-
tion for UNIX Development. Proceedings of
Summer Usenix, page 5, July 1986.

[Bir89] Andrew D. Birrell. An Introduction to Pro-
gramming with Threads. Technical report,
Digital SRC, January 1989.

[CD88] E. C. Cooper and R. P. Draves. C Threads.
Technical Report CMU-CS-88-1.54, Carnegie-
Mellon University, School of Computer Sci-
ence, pages 1-10, June 1988.

[Cle88] Geoff Clemm. The Workshop System: A
practical Knowledge-Based Software

Portins Task Time Taken
UNI)(+M,{UH POrt
Single-threaded - Multi-threaded
I/O contention problems
Unexec dump problems
Shared-memory IPC irrrplementation

z weeKs
L week
L week
2 weeks
2 weeks

Table 5: Experiment time table

52 Summer '92 USENIX - June 8-June 12, L992 - San Antonio, TX

Pham, Garg

Environment. Proceedings of the 3rd ACM
Softwæe Engineering Environments Confer-
ence, Pages 55-64, December 1988.

[CM89]D.L. Caswell and S. Marovich. STL
MACH Project Retrospective. Technical
Report STL89-20, Hewlett-Packard Labora-
tories, Software Systems Lab, August 1989.

[FR86] R. Fitzgerald and R. F. Rashid. The Integra-
tion of Virtual Memory Management and Inter-
process Communication in Accent. ACM Tran-
sactions on Computer Systems, 4(2):L47-t49,
May 1986.

[JRG+87] A. Tevanian Jr., R. F. Rashid, D. B.
Golub, D. L. Black, E. Cooper, and M. W.
Young. Mach Threads and the UNIX Kernel:
The Battle for Control. Technical Report
CMU-CS-87 -L49, Carnegie-Mellon University,
School of Computer Science, August 1987.

[Mar90] Scott B. Marovich. Intraprocess Con-
currency under UNIX. Technical Report HPL-
97-02, Hewlett-Packard Laboratories, March
1990.

[Sal66] Jerome H. Saltzer. Traffic Control in a Mul-
tiplexed Computer System. PhD thesis, Depart-
ment of Electrical Engineering, Massachusetts
Institute of Technology, page 2, June 1966.

[Sta84] R. Stallman. EMACS: The Extensible, Cus-
tomizable, Self-Documenting Display Editor.
In D. R. Barstow, H. E. Shrobe, and E. San-
delwall, editor, Interactive Programming
Environments, pages 300-325. McGraw-Hill
Book Company, 1.984.

[TR87] A. Tevanian and R. F. Rashid. Mach: A
Basis for Future UNIX Development. Techni-
cal Report CMU-CS-87-139, Carnegie-Mellon
University, School of Computer Science, pages
l-2, June 1987.

Author Information

Thuan Pham is a Member of Technical Staff at
Hewlett-Packard Laboratories, Software Technology
Lab. He received his M.S. in Electrical Engineeriñg
and Computer Science and the B.S. in Computer
Science and Engineering from the Massachusetts
Institute of Technology. His research interests
include software engineering, operating systems, and
user interface. Contact him at pham@hplabs.hp.com.

Pankaj Garg is a Project Leader at Hewlett-
Packard laboratories, Software Technology Lab. He
got his Ph.D in Computer Science at the University
of Southern California, in February 1.989. Pankaj
was an All-University-Pre-Doctoral-Merit fellow of
the graduate school, USC, for the years 1984 through
1987. He was a research associate in the Computer
Science Department, USC, from 1987 through Febru-
^ry 1989. He got his Bachelor of Technology
degree in Computer Science, from Indian Institute of
Technology, Kanpur (INDIA). His research interests

On Migrating...

are in artificial intelligence, hypertext systems, and
software engineering. Contact him at
garg@hplabs.hp.com.

Summer '92 USENIX - June 8-June lZ,lgg? - San Antonio, TX 53

