Virtual Window Systems: A New
Approach to Supporting Concurrent
Heterogeneous Windowing Systems

Rita Pascale, Jeremy Epstein — TRW Systems Division

ABSTRACT

A “‘virtual window system’> (VWS) is a simple model of a window system which can be
used to host other more sophisticated window systems. The VWS allows the window
systems to share the physical display in a controlled fashion. A VWS is analogous to the
virtual machine monitor (VMM) [Madnick74] concept in operating systems, where a single
physical computer can run multiple operating systems, each in its own protection 'domain.
Unlike the' VMM concept, the window systems supported by the VWS need close
cooperation to perform tasks, such as cut and paste between windows of different window
systems.

This paper describes the VWS concept, discusses an architecture for a VWS, describes
limitations of the VWS concept, discusses some lessons learned from the design and
implementation of our prototype, and describes the use of VWSs for various application

domains.

Introduction

Users want to run more than one window sys-
tem (WS) simultaneously on a single platform. The
users are a very diverse set whose needs range from
debugging to teaching to running a variety of appli-
cations. The system developer needs an effective
debugging tool for window systems and their appli-
cations. The instructor needs a flexible system to
teach in as many environments as possible on one
machine. The every day user needs to run applica-
tions built for more than one window system, a tech-
nique which we call “‘mixed applications’’.

We propose a general solution to allow many
windowing environments to run cooperatively; we
refer to it as the “virtual window system’’ (VWS)
concept!, A VWS is a simple model of a window
system which can be used to host other more sophis-

ticated window systems. The more complicated WSs -

are considered ‘‘guests’’ on the VWS platform and
may be referred to as guest WS, The VWS allows
disparate WSs to share the physical display in a con-
trolled fashion and provides a mechanism for com-
munication across WSs.

When compared to similar systems, the VWS is
much more versatile. Hybrid WS environments
combine two particular systems and provide the abil-
ity to run applications from the two specified WSs
only. Examples of these hybrid systems are Xvision
from VisionWare which combines Microsoft Win-
dows and X; MacX from Macintosh which combines

IThis work is sponsored by the Defense Advanced
Research Projects Agency under Contract No. MDA 972-
89-C0029.

MacOS and X; X-under-NeXTstep from -Pencom
which combines NeXT and X; and Domain from
Apollo which combines Apollo’s native WS and X.
There are some systems which combine three win-
dowing environments together (i.e., X11/NeWS and
SunView), but three seems to be the maximum. By
being limited to two-or three environments, many of
the advantages of the VWS are not possible. The
one function these systems fulfill is the ability to run
mixed applications and this has been argued as not
being a great advantage.

Goals

To meet as many of the various needs of the
diverse user group, we need a small, but flexible
window system base. To avoid the temptation of
building an entire new window system, the size is to
be kept small and minimal, using as few primitives
as possible. Despite this minimality, we wish to
remain flexible. The set of primitives must provide
enough functionality to accommodate any window
system.

The primitives between the guest WSs and the
VWS system .can be grouped into connection
requests, startup information, input data, and output
data. The majority of the primitives deal with chang-
ing the display, such as requests to map and unmap
windows, update windows, and change the window
stacking order. Overall, there are fewer than 20
primitives which is significantly less than the 120
protocol requests in the X server [Scheifler90].

Summer *92 USENIX - June 8-June 12, 1992 - San Antonio, TX 117

Virtual Window Systems

Details of the Problem

There are a number of problems involved in
hosting many environments and protocols on a single
platform. The main areas to address are random dev-
ice accesses and overcoming different protocols.

Access to the keyboard, mouse, console and
framebuffer must be regulated. Allowing each WS
all input at all times would result in mass confusion
since each WS interprets data differently. A mouse
click in one environment may pop up a menu, while
in another it may cause an application to exit, and in
yet another, the data format may not even be valid.
Unlimited access to the screen will allow guest
WSs? to cause chaos by drawing on top of one
another’s windows, creating a confusing mesh of
partial windows.

Another difficulty is cut and paste across WSs.
‘Each system supports a different mechanism through
different protocols. A primitive method must be
developed that can cut across these various plat-
forms. One drawback of being generic is that unique
data formats are not supported. For example, in X
[Scheifler90], resource ids (instead of the actual
data) can be cut and pasted; this id is only useful
within that particular instantiation of the X server
and is not meaningful to any other WS process. At
the very least, ASCII text can be transferred between

2By guest window system, we mean a window system
environment that is supported and hosted by the virtual
window system.,

Pascale, Epstein

all supported WSs, and this is the most common
form of data transfer.

Method

Our solution provides a mechanism to control
device access and regulate inter-environment (and
intra-environment) communication. The VWS per-
forms these actions through three logical servers: an
input manager, an output manager, and a control
server, The input manager routes the input to a sin-
gle designated window system. The output manager
displays each window system’s output on the screen
while handling window overlapping and clipping.
The control server is inactive, except for administra-
tive duties. Figure 1 shows the interactions between
the VWS and the guest WSs.

Each guest WS must be modified to virtualize
its device access. Imput is received from the input
manager instead of reading the devices directly and
drawing is performed in a virtual framebuffer and
then sent to the output manager for display. These
modifications are necessary since there is no direct
access to the hardware devices. The guest WS must
also request services of the three VWS servers using
minimal primitives. A possible drawback to the vir-
tualized output is that there is no advantage of using
intelligent graphics boards unless they can utilize the
virtual framebuffers.

In the VWS environment, there is always one
active WS which receives all input from the input
manager. Any other running system is passive,
meaning it can send updates to the screen, but does

X Window System
Instantiation

~ Input
Manager

Control
Server

Virtual Window System Base

'MGR Window
System Instantiation

Output
Manager

Figure 1: VWS Interactions

118 Summer ’92 USENIX - June 8-June 12, 1992 ~ San Antonio, TX

Pascale, Epstein

not receive any input, 'Interpretation of the input is
the responsibility of the active window system,
meaning it is up to the guest WS to send the input

events to the appropriate clients and process them as

dictated by its own internal protocol. The input
manager’s only interaction with the input is scanning
for the attention sequence which activates the control
server. The control server is activated strictly on
certain keyboard input, not clicking on an icon. This
is because mouse position (at the time of the click)
is up to interpretation per guest WS,

The only primitives from the guest WS to the
input manager are connection requests and requests
to ring the bell>. Input manager primitives to the
guest WS provide keyboard and mouse input, initial-
ization data, and notification of selection and
deselection by the user. :

The output server controls the mapping and
unmapping of windows from the various WSs as
well as handling stacking order, screen updates and
cursor imaging. Because no sophisticated graphics
operations are provided, the output manager is much
simpler than the output component of an ordinary
window system. Performance is the cost of this sim-
plicity, but having such base primitives makes the
output manager more adoptive of other WSs. A
disadvantage of this scheme is that the screen back-
ground is not for use by any guest window system.
A mechanism is provided to draw helping lines for
placing, moving ‘and resizing windows, but other
applications that draw directly on the screen back-
ground, such as vine and xroach in the X Window
System are simply not supported. These applications
are generally decorative and were considered
expendable.

The following primitives are supported from
the guest WS to the output server:
connection request
window map and unmap requests
cursor position change
cursor image change
window update
raise and lower window requests
draw dashed box request (for placing, moving
and resizing windows)
® load a colormap

The output server primitives to the guests WSs
provide - initialization data and window map ack-
nowledgements; other requests do not require replies.

The control server starts new WSs, switches
between WSs, and provides cut and paste operations
between WSs. Cut and paste is the only interaction
between windowing environments. The control
server provides no interpretation of the data to be

3Bell ringing is of course an output function, but on our
Sun system the bell is part of the keyboard, so we put this
function in the input manager.

Virtual Window Systems

pasted. At a minimum, guest WSs must support a
canonical text format for interoperability. -Additional
formats may be supported, but their interoperability
is less likely. This may be a disadvantage to sys-
tems that have unique data forms, such as resource
ids in X.

The primitives sent from the guest WS to the
control server are connection requests, cut data and
paste requests. The control server responds to the
paste requests with the most recent cut data that
meets the criteria specified by the guest WS.

With minimal changes, existing WSs can be
modified to work within the VWS environment. How
closely the window system’s implementation is tied
to the hardware dictates the amount of change. X is
very modular and encapsulates its device usage;
therefore, it was quite simple to change. We
modified the MIT X11R4 server for Sun hardware to

- accept input from the input server and display output

through the output manager with a few hundred lines
of code. Modifying the Macintosh WS would be
much more complicated because of its close relation-
ship with its hardware, but we believe that even this
can be overcome,

Details on VWS Uses

The VWS exhibits great versatility in its ability
to handle a wide variety of needs in a minimal
amount of code. VWS neither enhances nor detracts
from the given graphical user interface; if the guest
WS is poor, it will remain that way. Below we
further explain the uses of the VWS,

Debugging Tool

The VWS can be applied to paradigms such as
debugging WSs and applications.” New versions of
the same window system can be tested under the
VWS environment. For example, X11R4 can be run
at the same time as X11RS and differences in capa-
bilities of both can be monitored simultaneously. In
the same light, the same WS can be run while test-
ing different versions of client applications. For
example, one could start threee X11R4 servers, and
test a different window manager on each. We are
able to run the OSF/Motif mwm, OPEN LOOK
olwm, and MIT twm window managers simultane-
ously; each is connected to a different instance of
the X server. ' '

Another advantage of the VWS testing environ-
ment is that resource grabs are limited to the
environment that they were initiated in. In X, a
client can ‘‘grab’’ exclusive access to any and all
devices, including the server itself. In the VWS sys-
tem, these grabs are limited to the instantiation of
the server that requested the lock. This allows the
developer an easier way out of a potential deadlock
situation. ' '

Summer ’92 USENIX - June 8-June 12, 1992 — San Antonio, TX 119

'Virtual Window Systems

The VWS is an effective way to test graphical
user interfaces; however, performance benchmarking
results have no meaning in this environment since
all processes are ultimately sharing the same CPU
and]ob scheduler. The main testing advantage is
varying visual results due to different configurations
and avoidance of detrimental server hangs.

Teaching Tool

Because of its ability to run various environ-
ments and configurations, the VWS can be used as a
teaching tool for all of those environments rather
than requiring one machine for each platform. For
comparisons, the VWS can display X11R4 and
X11RS5 servers and their various applications.
Differences are manifested in a more memorable
way when they are captured on a single display. The
same goes for varying window managers.

Currently, only three window systems are run-
ning on our prototype VWS, They are X11R4,
X11RS5 and Bellcore’s MGR# With the addition of
Macintosh windows, Microsoft Windows and Presen-
tation Manager, this system would be a very useful
and inexpensive teaching system. Rather than buying
three or four machines, one platform would suffice
for all requirements.

Mixed Applications

In today’s computmg environment there are a
half-dozen competing ‘‘standard’’ window systems;
X, Macintosh, Microsoft Windows, Presentation
Manager, and SunView chief among them. VWS
_allows users to run applications built for more than
one window system simultaneously. We can run edi-
tres on X11R5, Motif on X11R4, and spot (a pointer
tracking program) on MGR. These programs do not
run as well (if at all) on the other systems men-
tioned. X11R4 did not have editres at the time of its
-release; X11RS does not support Motif unless it was
complled with the backward compatibility flag; spot
is an MGR specific application which does not exist
for X11R4 or X11RS5.

Again, once other WSs are integrated, the sys-
tem will become much more useful. For example,
with Macintosh and SunView integrated, a software
developer could use a document processing program
developed for a Macintosh while using development
tools designed for the X Window System and Sun-
View system.

Secure Window Systems

Our specific implementation of the VWS is for.

a highly-secure multi-level window system
[Epstein91]. It was developed on a Sun 3/60 run-
ning TMach, a prototype trusted operating system

4MGR [Uhler88] is a freely available window system. It
is far less flexible than X, but it is faster and smaller.

Pascale, Epstein

based on Mach 2.5. A secure environment is
achieved by running multiple instantiations of the X
WS and the MGR WS; one at each security level to
be displayed on the screen (e.g., one server controls
all secret windows on the screen, a different server
handles top secret windows). The VWS keeps the
workspaces separate and allows cut and paste
according to the security policy implemented. This
architecture gives us a high degree of trust without
relying on the correct functioning of a large and

. complex window system such as X,

Another advantage of this highly flexible secure
VWS base is that the guest WS is entirely untrusted.
This means that any window system that can be run
on the VWS can be used in a secure environment
without having to go through the extensive process
of accreditation.

Multi-Processor Environments

Because the VWS consists of several cooperat-
ing processes (input manager, output manager, con-
trol server, and guest WSs), it is able to use multiple
processors without additional investment, For exam-
ple, the X server could run on one processor while
the MGR server runs on a different processor.

Results

The design and implementation of the VWS
took two man years. Modification of the X11R4
server required less than four months for a junior
programmer to incorporate the necessary changes.
Upon the release of X11RS5, modifications were
adapted in less than a week. We adopted Bellcore’s
MGR window system to the VWS with less than a
month, Using ports and multi-threading, fundamen-
tal aspects of Mach-like operating systems, attributed
to the bulk of the modified code. Much of the low
level communication code in the X WS had to be
rewritten to use ports; using an operating system that
supported sockets would have saved implementation
time.

Runtime improvements can be made by using
faster hardware and implementing the VWS in an
environment that supported sockets (rather than ports
as in TMach) and shared memory. Other benefits to
using sockets over ports is that sockets can be priori-
tized. Without this ability, previously simple
processes had to become multi-threaded to force
prioritization on port message retrieval. For exam-
ple, our X server has one thread per client in addi-
tion to several control threads. While multi-threading
has its benefits in allowing many activities to occur
at once, there is a performance cost in context
switching, and a general overhead burden. Despite
our poor hardware configuration, the system is not
intolerable. With some enhancements, including
those mentioned above, performance would be
greatly improved.

120 Summer ’92 USENIX ~ June 8-June 12, 1992 - San Antonio, TX

Pascale, Epstein

Running benchmarks on the VWS for com-
parisons with unchanged WSs has proven to be
much more difficult than expected. Currently we
have some preliminary results from x1lperf that
show the X11R4 server running under VWS yields
50 to 75 percent of the runtime speeds compared to
the X11R4 server running directly on the hardware.
Window manipulations (such as raises, lowers, circu-
lates, maps, and unmaps) performed comparably

whereas graphics operations did not perform as well. -

In the graphics area, the VWS system compared best
on tests of direct copies rather than stippled pat-
‘terns®. Also, simpler requests like lines and rectan-
gles performed significantly better than more com-
plex shapes like circles and ellipses.

Our VWS implementation is less than 20,000
lines of heavily commented C code (about 6,000
statements). A significant fraction of that is due to
_security requirements. By contrast, an X11R4 server
and Motif window manager total about 400,000 lines
of code, including support libraries.

Our implementation can be improved with fas-
ter machines, hardware that can handle many frame-
buffers, tuned operating systems as well as a number
of other things. Despite the added overhead, the per-
formance is acceptable for the typical user. The
more intensive the load, the more the -performance
will downgrade.

Conclusion

The architecture and implementation of the
VWS system has achieved our goals of minimality
and flexibility. As a proof of concept experiment, the
notion of a VWS has proven itself useful for build-
ing trusted window systems. We feel it is applicable

in other problem domains as well, and offers

significant advantages over alternate architectures.
There are limitations to our implementation, but may
be acceptable, given the payoffs of being able to
- operate in a heterogeneous environment. Also, some
of our limitations are specific to security, If shared
data between WSs is allowed, as is the case in
. unsecure systems, the memory usage and perfor-
.mance would improve immensely. .

Future work includes research into -different
hardware, different operating systems and more
guest window systems,

_ References

[Madnick74] Operating Systems, Stuart Madnick and
John Donovan, McGraw Hill, 1974, _
[Scheifler90] X Window System, Second Edition,

Robert Scheifler and James Gettys, Digital
Press, 1990.
[Uhler88] Stephen Uhler, MGR - C Language

SStippled patterns are as stencils to indicate where to
draw and where not to draw,

Virtual Window Systems

Application Interface, -Bell Communications
Research, 1988.

[Epstein91] Jeremy Epstein, et. al., ‘A Prototype B3
Trusted X Window System’’, published in
Proceedings of the Seventh Annual Computer
Security Applications Conference, San Antonio
TX, December 1991.

Availability

A series of technical papers are available from
the authors on our VMS implementation to support a
highly trusted version of X. The' software itself is
not available at this time.

Author Information

Rita Pascale is a Programmer on TRW’s
Advanced Computing Systems project building a
highly trusted version of the X Window System.
She holds a B.S. in Computer Science from Virginia
Tech. Her U.S. Mail address is 1 Federal Systems
Park Drive, Fairfax VA 22033, She can be reached
electronically at pascale@trwacs.fp.trw.com .

Jeremy Epstein is the Lead Engineer on TRW’s

‘Advanced Computing Systems project building. In

his previous life, he was a lead engineer with
Addamax developing trusted UNIX systems. Jeremy
has been working with UNIX since Version 6, and
still refuses to use ‘‘csh’’. He holds a B.S. in Com-
puter Science from New Mexico Tech, M.S. in
Computer Sciences from Purdue University, and is
working on a Ph.D. in Information Technology at
George Mason University, His U.S. Mail address is
1 Federal Systems Park Drive, Fairfax VA 22033.
He can be reached electronically at
epstein@trwacs.fp.trw.com .

Summer ’92 USENIX ~ June 8-June 12, 1992 - San Antonio, TX 121

