
Virtual Window Systems: A New
Approach to Suppoiting Concurrent
Heterogeneous Windowing Systems

Rita Pascale, Jeremy Epstein - TRW Systems Division

ABSTRACT
A "virtual window systeml' (VIWS) is a simple model of a window system which can be
used to host other more sophisticated window systems. The VWS allows the window
systems to share the.phys_ical 9ppl.y in a controlled fashion. A VWS is analogous to the
virtual machine monitor (vMM) [MadnickT4] concept in operating systems, where a single
ghysical compr¡ter-can run multiple operating systems, each in itõ o-*n protection domain.
Unlike the VMM concept, the window iysiems supported by the VWS need close
cooperation to perform'tasks, such as cut and paste between wináows of different window
systems.

-- . This paper describes the VWS concept, discusses an architecture for a VWS, describes
limitations of the \l[VS concept, discusies some lessons learned from the design and
implementation of our prototype, and describes the use of WVSs for various application
domains.

Introduction MacOS and X; X-under-NeXTstep from pencom

Users want to run more than one window svs_ which combines NeXT and X; and Domain from
tem (WS) simultaneously on a single platiãi.. ínr f¡to,llo_which

combines Apollols native WS and X.
users are a very diverse set whose-neeãs range from 1Ti:-*.

some systems which combine three win-
debugging to téaching to running a variety oiuppn *Y,tlq "."lironments

together (i.e., X11/l.IeWS and
catiolL ihe systeni developer needs an r¡f;ãii* fu.nvi3¡v), but three seems to be.the maximum. By
debugging tool ior window syrte*s an¿ tfreir áppfi- being limited to two or three environments,- many of
cationl. lhe instructor needé a flexible .yrì"iñ'ìà llt^ :jli,.ges

of the vWS are .not possible. The
teach in as many environmenrs as possiUié-;-;;; 1l_tjln"rigl

these systems fulfill js the ability to run
machine. The every day user needs'to *" .ppfU: mixed applications and this has been argued as not
tions built for more than one window system, ä'tr.h- being a great advantage.
nique which we call "mixed applications". Goals

We propose a general solution to allow many
windowing eìvironnients to run cooperativetyf-iä ,,-.^_^t^o.meet

as many of the various needs of the
refer to iias the "virtual window system,'iVWSj :1-1t::-.user

group' we need a small, but flexible
conceprt. A wVS is a simple model of . ìinàoí ÏÎ1?:

system base. To avoid the temptation of
system which can be used to host ott

"t
*orr-.ootrjr- buildÍng an entire new window system' the size is to

titated window systems. Tltr ñ;t;ñtt..r.d'W'ú :: fj:,:tttl
and minimal, using as few primitives

are considered "'guests" on the vws prærotit'åiã 1l_l,o_ttlblt'.
Deslte this minimality, we wish to

may be referred îo as gue.t WS. The Vws'.ir"*. i:T1iT
flexible. The set of primitives must provide

disparate WSs to share úe physical display i" ;;;;: :::.T*
functionality to accommodate any window

trolled fashion and provideì ã mecnanism for com- system'
munication across Vy'Ss. The primitives between the guest WSs and the

When compared to similar systems, the VWS is YYI-.^tyt"m
c.al be .grouped into connection

much more veisatile. Hybrid ws ånuironrJni, ilglt:lll
startup information, input data, and output

combine two parricular systäms and provide ,ltr'.uii: Í-1t:Jn:
'$ority of the primitives deal with chang-

ity ro run apitications fiom the t*ó ;Ñifiä wö, 11åjÏ.^ditptav,
such as requests lo map and unmãp

onty. nxampies of these hybrid systemi utr ñiriãn T1i1-?:t'
update windows, and change the window

trom Visior¡Vare which óombinós f"ficro.ofi'.äi-n_ stacking order. Overall, there are fewer than 20
dows and X; MacX from Macintosh which co, '-'

',' primitives which.is -significantly less than the 120

@ b y t h e D e f e n s e ^ - - " . i r o t o c o l r e q u e s t s i " t r ' " î ' ' * ' i [S c h e i f l e r 9 0] .
Research Projects Agency under Contract No. MDA 972-
89-C0029.

Summer '92 USENIX - June 8-Junþ LZ, Lggz - San Antonio. TX LL7

Virtual l{indow Systems

Detalls of the Problem

There are a number of problems involved in
hosting many environments and protocols on a single
platform. The main areas to address are random dev-
ice accesses and overcoming different protocols.

Access to the keyboard, mouse, console and
framebuffer must be regulated. Allowing each WS
all input at all times would result in mass confusion
since each WS interprets data differently. A mouse
click in one environment may pop up a menu, while
in another it may cause an application to exit, and in
yet another, the data format may not even be valid.
Unlimited access to the screen will allow guest
WSs2 to cause chaos by drawing on top of one
another's windows, creating a confusing mesh of
partial windows.

Another difficulty is cut and paste across WSs.
Each system supports a different mechanism through
different protocols. A primitive method must be
developed that can cut across these various plat-
forms. One drawback of being generic is that unique
data formats are not supported. For example, h X
[Scheifler90], resource ids (instead of the actual
data) can be cut and pasted; this id is only useful
within that particular instantiation of the X server
and is not meaningful to any other WS process. At
the very least, ASCII text can be transferred between

2By guest window system, we mean a window system
environment that is supported and hosted by the vi¡tual
window system.

Pascale, Epstein

all supported WSs, and this is the most common
form of data transfer.

Method

Our solution provides a mechanism to control
device access and regulate inter-environment (and
intra-environment) communication. The VWS per-
forms these actions through three logical servers: an
input manager, an ouÞut manager, and a control
server. The input manager routes the input to a sin-
gle designated window system. The output manager
displays each window system's output on the screen
while handling window overlapping and clipping.
The control server is inactive, except for administra-
tive duties. Figure 1 shows the interactions between
the VWS and the guest WSs.

Each guest WS must be modified to virtualize
its device access. Input is received from the input
manager instead of reading the devices directly and
drawing is performed in a virtual framebuffer and
then sent to the output manager for display. These
modifications are necessary since there is no direct
access to the hardware devices. The guest WS must
also request services of the three VWS servers using
minimal primitives. A possible drawback to the vi¡-
tualized ouÞut is that there is no advantage of using
intelligent graphics boa¡ds unless they can utilize the
virtual framebuffers.

In the WVS environment, there is always one
active WS which receives all input from the input
manager. Any other running system is passive,
meaning it can send updates to the screen, but does

o a a a a

Figure 1: VWS Interactions

Summer '92 USENIX - June 8-June 12,lgg2- San Antonio, TX118

Pascale, Epstein

not receive any input. Interpretation of the input is
the responsibility of the active window system,
meaning it is up to the guest \VS to send the input
events to the appropriate clients and process them as
dictated by its own internal protocol. The input
manager's only interaction with the input is scanning
for the attention sequence which activátes the control
server. The control server is activated strictlv on
certain keyboard input, not clicking on an icon.'This
is because mouse position (at thelime of the click)
is up to interpretation per guest WS.

The only primitives f¡om the guest WS to the
input manager are connection requeits and requests
to ring the bellr. lnput manager primitives to the
guest \ryS provide keyboard and mouse input, initial-
ization data, and notification of selection and
deselection by the user.

The output server controls the mapping and
unmapping of windows from the various rffSs as
well as handling stacking order, screen updates and
cursor_ imaging. Because no sophisticated graphics
operations are provided, the output manager is much
simpler than the output component of ãn ordinary
window system. Performance is the cost of this sim-
plicity, but having such base primitives makes the
ouÞut .manager more adoptive of other WSs. A
disadvantage of this scheme is that the screen back-
ground is not for use by any guest window system.
A mechanism is provided to draw helping lines for
placing, moving 'and

resizing windows, but other
applications that draw directly on the screen back-
ground, such as vine and xroach in the X Window
System are simply not supported. These applications
are generally decorative and were considered
expendable.

- The following primitives are supported from
the guest WS to the output server:

o connection request
¡ window map and unmap requests
o cursor position change
o cursor image change
o window update
o raise and lower window requests
o draw dashed box request (for placing, moving

and resizing windows)
o load a colormap

The output server primitives to the guests WSs
provide initialization data and window- map ack-
nowledgements; other requests do not require ieplies.

The control server starts new WSs. switches
between WSs, and provides cut and paste'operations
between rWSs. Cut and paste is the

-only
inieraction

between windowing environments. Íne control
server provides no interpretation of the data to be

ffi output function, but on our
Sun system the bçll is part of the leyboard, so we put this
function in the input manager.

VÍrtual Window Systems

pasted. At a minimum, guest WSs must support a
canonical text format for interoperability. Additional
formats-may be supported, but their interoperability
is less. likely. This may be a disadvantagè to sys-
tems that have unique data forms, such as resource
ids in X.

The primitives sent from the guest \VS to the
control server are connection requests, cut data and
paste requests. The control server responds to the
paste requests with the most recent cut data that
meets the criteria specified by the guest WS.

With minimal changes, existing WSs can be
modified to work within the VIVS environment. How
closely the window system's implementation is tied
to the hardware dictates the amount of chanee. X is
very modular and encapsulates its device- usage;
therefore, it was quite simple to change. We
modified the MIT X11R4 server for Sun ha¡ãware rc
accept input from the input server and display output
through the output manager with a few hundied lines
of code. Modifying the Macintosh WS would be
much more complicated because of its close relation-
ship with its hardware, but we believe that even this
can be overcome.

Details on Vl{S Uses

The VWS exhibits great versatility in its ability
to handle a wide variety of needs in a minimãl
amount of code. WVS neither enhances nor detracts
from the given graphical user interface; if the guest
WS is poor, it will remain that way. Below we
further explain rhe uses of the VWS.

Debugging Tool

The VWS can be applied to paradigms such as
debugging WSs and applications. New versions of
the same window system can be tested under the
VìVS environment. For example, X11R4 can be run
at the same time as X11R5 and differences in capa-
bilities of both can be monitored simultaneously. In
the same light, the same WS can be run while test-
ing different versions of client applications. For
example, one could start three X11R4 servers, and
test a different window manager on each. We a¡e
able to run the OSFMotif mwm, OpEN LOOK
olwm, and MIT twm window managers simultane-
ously; each is connected to a different instance of
the X server.

Another advantage of the VWS testing envi¡on-
ment is that resource grabs are limited to the
environment that they were initiated in. In X, a
client can "grab" exclusive access to any and all
devices, including the server itself. In the VIVS sys-
tem, these grabs are limited to the instantiation of
the server that requested the lock. This allows the
developer an easier way out of a potential deadlock
situation.

Summer '92 USENIX - June 8-June 12,lgg2 - San Antonio, TX 119

Virtual l{indow Systems

The VWS is an effective way to test graphical
user interfaces; however, performance benchmarking
results have no meaning in this environment since
all processes are ultimately sharing the same CPU
and job scheduler. The main testing advantage is
varying visual results due to different configurations
and avoidance of detrimental server hangs.

Teaching Tool

Because of its ability to run va¡ious envi¡on-
ments and configurations, the VWS can be used as a
teaching tool for all of those environments rather
than requiring one machine for each platform. For
comparisons, the VWS can display X11R4 and
X11R5 seryers and thei¡ various applications.
Differences are manifested in a more memorable
way when they are captured on a single display. The
same goes for varying window managers.

Currently, only three window systems are run-
ning on our prototype VWS. They are X11R4,
X11R5 and Bellcore's MGRr With the addition of
Macintosh windows, Microsoft Windows and Presen-
tation Manager, this system would be a very useful
and inexpensive teaching system. Rather than buying
three or four machines, one platform would suffice
for all requirements.

Mixed Applications

In today's computing environment there are a
half-dozen competing "standard" window systems;
X, Macintosh, Microsoft Windows, Presentation
Manager, and SunView chief among them. \/lVS
allows users to run applications built for more than
one window system simultañeously. \ile can run edi-
tres on X11R5, Motif on X11R4, and spot (a pointer
tracking program) on MGR. These programs do not
run as well (if at all) on the other systems men-
tioned. X11R4 did not have editres at the time of its
release; X11R5 does not support Motif unless it was
compiled with the backward compatibility flag; spot
is an MGR specific application which does not exist
for X11R4 or X11R5.

Again, once other WSs are integrated, the sys-
tem will become much more useful. For example,
with Macintosh and SunView integrated, a softwæe
developer could use a document processing program
developed for a Macintosh while using development
tools designed for the X Window System and Sun-
View system.

Secure lVindow Systems

Our specific implementation of the VWS is for
a highly-secure multi-level window system
[Epstein9l]. It was developed on a Sun 3/60 run-
ning TMach, a prototype trusted operating system

aMGR [Uhler88] is a freely available window system. It
is far less flexible than K but it is faster and smalle¡.

Pascale, Epstein

based on Mach 2.5. A secure environment is
achieved by running multiple instantiations of the X
ItrS and the MGR WS; one at each security level to
be displayed on the screen (e.g., one seryer controls
all secret windows on the screen, a different server
handles top secret windows). The VWS keeps the
workspaces separate and allows cut and paste
according to the security policy implemented. This
architecture gives us a high degee of trust without
relying on the correct functioning of a large and
complex window system such as X.

Another advantage of this highly flexible secure
VIWS base is that the guest WS is entirely untrusted.
This means that any window system that can be run
on the VWS can be used in a secure environment
without having to go through the extensive process
of accreditation.

Multi-Processor Environments

Because the VWS consists of several cooperat-
ing processes (input managçr, output manager, con-
trol server, and guest WSs), it is able to use multiple
processors without additional investment. For exam-
ple, the X server could run on one processor while
the MGR server runs on a different processor.

Results

The design and implementation of the VWS
took two man years. Modification of the X11R4
server required less than four months for a junior
programmer to incorporate the necessary changes.
Upon the release of X11R5, modifications were
adapted in less than a week, We adopted Bellcore's
MGR window system to the VIWS with less than a
month. Using ports and multi-threading, fundamen-
tal aspects of Mach-like operating systems, attributed
to the bulk of the modified code. Much of the low
level communication code in the X S/S had to be
rewritten to use ports; using an operating system that
supported sockets would have saved implementation
time.

Runtime improvements can be made by using
faster hardware and implementing the VWS in an
environment that supported sockets (rather than ports
as in TMach) and shared memory. Other benefits to
using sockets over ports is that sockets can be priori-
tized. Without this ability, previously simple
processes had to become multi-threaded to force
prioritization on port message retrieval. For exam-
ple, our X server has one thread per client in addi-
tion to several control threads. While multi-threading
has its benefits in allowing many activities to occur
at once, there is a performance cost in context
switching, and a general overhead burden. Despite
our poor ha¡dware configuration, the system is not
intolerable. With some enhancements, including
those mentioned above, performance would be
greatly improved.

t20 Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX

Pascale, Epstein

Running benchmarks on the VWS for com-
parisons with unchanged WSs has proven to be
much more difficult than expected. Currently we
have some preliminary results from xllperf that
show the X11R4 server running under VWS yields
50 to 75 percent of the runtime speeds compared to
the X11R4 server running directly on the hãrdware.
Window manipulations (such as raises, lowers, circu-
lates, maps, and unmaps) performed comparably
whereas graphics operations did not perform as well.
In the graphics area, the VIVS system compared best
on tests of direct copies rather than stippled pat-
,terns5. Also, simpler ìequests like lines ani tectan-
gles performed significantly better than more com-
plex shapes like circles and ellipses.

Our VWS implementation is less than 20,000
lines of heavily commented C code (about 6,000
statements). A significant fraction of that is due to
security requirements. By contrast, an X11.R4 server
and Motif window manager total about 400,000 lines
of code, including support libraries.

Our implementation can be improved with fas-
ter machines, hardware that can handle manv frame-
buffers, tuned operating systems as well as a number
of other things. Despite the added overhead, the per-
formance is acceptable for the typical user. The
more intensive the load, the more the -performance
will downgrade.

Conclusion

The a¡chitecture and implementation of the
VWS system has achieved our goals of minimality
and flexibility. As a proof of concept experiment, the
notion of a VIVS has proven itself useful for build-
ing trusted window systems. We feel it is applicable
in other problem domains as well, and offers
significant advantages over alternate architectures.
There are limitations to our implementation, but may
be acceptable, given the payoffs of being able tô
operate in a heterogeneous environment. Also, some
of our limitations âre specific to security. If shared
data between WSs is allowed, as is the case in
unsecure systems, the memory usage and perfor-
mance would improve immensely.

Future work includes research into different
hardware, different operating systems and more
guest window systems.

References

[MadnickT4] Operating Systems, Stuart Madnick and
John Donovan, McGraw Hill,1.974.

[Scheifler90] X Window System, Second
Robert Scheifler and James Gettys,

Edition,
Digital

Virtual \{indow Systems

Application Interface,'Bell Communications
Research, 1988.

[Epstein9l] Jeremy Epstein, et. al., ',4 prototype 83
Trusted X Window System", published in
P_roceedings of the Seventh Annual Computer
Securíty Applications Conference, San Anlonio
TX, December 1991.

Availabitity

A series of technical papers are available from
the authors on our VMS implementation to suppof a
highly trusted version of X. The sofrware iisèlf is
not available at this time.

Author Information

Rita Pascale is a Programmer on TRW's
Advanced Computing Systems project building a
lighly trusted version of the X Window Systèm.
She holds a B.S. in Computer Science from Virginia
Tech. Her U.S, Mail address is L Federal Svstems
Park Drive, Fairfax VA 22033. She can be rãached
electronically at pascale@trwacs.fp.tnv.com .

Jeremy Epstein is the Lead Engineer on TRW's
Advanced Computing Systems project building. In
his previous life, he was a lead engineer with
Addamax developing trusted UNIX systems. Jeremy
has been working with UNIX since Version 6, and
still refuses to use "csh". He holds a B.S, in Com-
puter Science from New Mexico Tech, M.S. in
Computer Sciences from Purdue University, and is
working on a Ph.D. in Information Technology at
George Mason University. His U,S. Mail addrèss is
1 Federal Systems Park Drive, Fairfax VA 22033.
He can be reached electronicallv at
epstein@trwacs.fp.trw.com

Press, 1990.
[Uhler88] Stephen Uhler, MGR C Language

SStippleO patterns a¡e as stencils to indicate where to
d¡aw and where not to draw.

Summer '92 USENIX - June 8-June LZ,1rgg? - San Antonio, TX t2L

