
Cheap Mutual Exclusion
William Moran, Jr. - Swiss Bank Corp Investment Banking/

Farnam Jahanian - IBM T. J. Watson Research Center

ABSTRACT

A new method of enforcing mutual exclusion among concurrent processes on uni-
processors running UNIX is presented in this paper. When a process attempts to obtain a
lock, no race condition will occur unless the process is preempted. The central idea is that a
process can avoid a race condition if preemption is made visible to the process when it is
rescheduled. Two possible implementations of this idea are discussed in depth. The
proposed solutions do not require special hardware support or disabling of interrupts during a
critical section.

1. Introduction

This paper presents an altemative approach to
mutual exclusion on a uni-processor UNIX system.
The motivation for this work arises from the Sxpense
frequently associated with achieving mutual exclu-
sion among concurrent processes. On many UNIX
systems, such protection requires several^ system
calls per lock access; the use of semaphoresz to pro-
tect shared resources is frequently impractical due to
the expense. A common use of shared memory is
for storage of data structures accessed by several
processes; the contention for these data structures is
infrequent enough that costly locking schemes are
wasteful. On many systems, the use of semaphores
requires a system call to lock the resource; another
system call is required to unlock the resource. Even
when there is no contention for the lock, both system
calls a¡e executed. These system calls may be very
expensive depending on how much support the
hardware provides, but even in the best case, system
calls are expensive due to the context switches and
the change from user mode to kemel mode. When
there is contention among processes in accessing
shared resources, it is often the case that the actual
code for manipulating shared data structures is only
a few lines. Hence, the expense associated with
obtaining a lock is disproportionate to the actual use
of the shared resource. The overhead of obtaining
and releasing a lock is particularly important if a
process accesses locks multiple times.

Some hardware provides support for a test and
set or any of a number of similar sorts of constructs;
on architectures which support such atomic opera-
tions, the Intel i486 for example, locking is trivial.
However, not all architectures provide support for
this sort of atomic operation; For example, the IBM
RS/6000 processor intentionally does not provide any

r\ryilliam Moran was with IBM T. J. Watson Research
Center when this work was performed.

zSemaphores means Systón V style semaphores in this
context.

such instruction. However, there is a special opera-
tion called CS. This implements the compare and
swap instruction as a pseudo system call; while this
avoids the overhead of a system call, it requires both
special hardware support and kpmel code. So, while
this is a compromise between having a special
atomic ha¡dware instruction (the hardware support
required for the CS instruction is somewhat more
general in nature, i.e., it is useful for other things)
and having no support, it is not possible to use this
technique on most other machines [7,6,8].

This paper presents a set of practical solutions
to this problem. The solutions presented here are
general enough that they could be used on many
machines running UNIX ; in particular, it will work
on any machine with POSIX signals or their ances-
tor, BSD signals. The proposed solutions do not
require special hardware support or disabling of the
interrupts while a lock is being acquired; the solu-
tions presented here do require that the Operating
System kernel be modified. The characteristics
desired of such solutions are that they should be
very inexpensive in the ordinary case (no conten-
tion), and they should be no more expensive than
semaphores in the presence of contention. Ideally,
the solution should require no more user code than
the standard semaphore example:r

int sem_id;

key2 = f tok(FTOK2_FILE, FTOK2_ID);
sem_id = semget(key2, 1,

IPC_CREÀT | 077' ' r)¡

: :T.. t (
sem_id, sEM, SErvAL, 1) ;

p(sem_id) ;
/ * c r i t i ca l sec t ion * /
v(sen_id) ;

Code that uses semaphores typically requires 3 sys-
tem calls to initialize the semaphore, and each

@tation of standard System v
IINIX IPC operations.

Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Cheap Mutual Exclusion

acquisition and subsequent freeing of the semaphore
requires 2 system calls. Since system calls typically
have path lengths of at least 3000 instructions, sys-
tem calls are considered expensive. In particular, if a
program makes many lock accesses, the cost associ-
ated with getting the locks becomes extremely
important.

The remainder of this paper is organized as fol-
lows: The next section discusses an overview of the
proposed approach for achieving mutual exclusion in
UlÍlX systems. Section 3 and Section 4 present two
different implementations of this approach. Section 5
is a discussion of a few of the subtler implementa-
tion issues. The last section contains concluding
remarks.

2. Approach

Mutual exclusion is needed to avoid race condi-
tions associated with the modification of shared data
by concurrent processes f4,5,2,3,I'1.,'1.41 The problem
of avoiding a race condition can be formulated in an
abstract way as imposing a shared lock (e.g., shared
variable) on access of a critical section. In a uni-
proc€ssor UNIX system, obtaining ,a lock may be
non-atomic if the process attempting to obtain the
lock is preempted while it is obtaining the lock. For
example, suppose a process obtains a lock by writing
its process id into a shared variable, called
shared-Iock. This variable is initially set to
zero to denote that the lock is free.

i f (shared-lock == 0)
shared_lock = my3id;

e l s e . . .

If the process is preempted after testing
shared-lock but before writing its process id into
the shared variable, another process may obtain the
lock by executing the same sequence of instructions
(without preemption). When the first process is
rescheduled at the point of preemption, it will
acquire the lock while it is being held by the second
Process.

In a uni-processor system, if the sequence of
instructions to obtain a lock is executed without
preemption by the kernel, no race condition can
occur. This simple observation is very important: if a
proc.ess obtains a lock by writing its process id in
the lock, then if it is not preempted while so doing,
the lock can be held by only one process. However,
if the process is preempted while obtaining a lock,
the race condition may be avoided by informing the
process that it was preempted. The central idea here
is very simple: make preemption visible to processes
that require the service. If a process attempting to
lock a sha¡ed variable is preempted, it is notified
when rescheduled so that another attempt at acquir-
ing the lock is made, avoiding the race condition.
The two subsequent sections describe alternative
implementations of this concept n a UND(system.

Moran, Jahanian

3. First Version

The first solution is intended to show the via-
bility of achieving mutual exclusion by making pro-
cess preemption visible to the process after it is
rescheduled. The proposed solution involves asyn-
chronous notification of a user process when it has
been preempted. The signal facility, supported in all
UNIX-like systems, is used for asynchronous
notification. The process receives a signal when it is
rescheduled after the preemption; this signal indi-
cates that a preemption occurred. The key point is
that the process returns to the signal handler rather
than to the point at which the preemption occuned.
In the signal handler, the process can be forced to
resume execution at a point where another attempt at
acquiring the lock can be made. For example:

jmp_buf context;
i n.l- ra{- .
- . . v - v 9 ,

"åio " tn-handrer(int
num)

{
longjmp (context, 0) ;

)

setjmp(context) i - execution resumes here
statementl i
statement2;
statement3 i
statement4;

- preemption occurs here

åiå."*"r,.r,,
The above code segment invokes two library pro-
cedures: setjmp and longjmp. The setjmp call
saves the context of the process at the point of invo-
cation. The process context includes information
such as the values of the registers and the PC. The
Iongjmp call , when invoked inside the signal
handler, will cause the process to resume execution
at the point where the setjmp was called. If a signal
gets delivered to this code upon preemption, and the
signal is caught by sig_handler, then execution
will resume at the setjmp rather than where the code
was preempted.

The preceding paragraph illustrated how normal
execution of a process can be altered via the signal
facility. This forms that basis for the first solution
to making preemption visible to a process.
Specifically, the following code implements mutual
exclusion if the kernel has been modified to allow
the preemption signal; specifically, it is necessary
that the preemption signal handler be the first code
executed upon return from a preemption4,5. The

ffi3 implementation of poslx
sigpals and signal handlers.

rThis and subsequent examples assume that Bleep()
causes a proc€ss to be preempted automatically.

56 Summer '92 USENIX - June 8.June 12,1992 - San Antonlo, TX

Moran, Jahanian

following code uses a new system call,
preempt_sig which takes as an argument, the
number of the signal which is to be senf to the pro-
cess when it returns after being preempted. The õub-
sequent examples in this paper will use signal
ngmbei 43. A system without the extended signals
added by POSIX could simply use one of the signals
not normally used anymore. See Figure 1..

This code works as follows: it gets the process
id of this process (1). The process id is an integer
that uniquely identifres every process. The next two
lines (2 & 3) defrne two signal handlers used for the
preemption signal. The first of these will simply
ignore the signal; as the result of. IJNIX semantics,
ignored signals are never delivered [9,10], so while
a is the specified handler, preemption will have no
extra cost. While the handler bound to b is in effect,
sig_handler will be called upon delivery of the
preemption signal. (4) simply causes the preemption
signal to be ignored. (5) is a new system caf that
tells the kernel that this process should have the
specified signal, in this case 43, delivered upon
preemption. The critical section follows this; the

Cheap Mutual Exclusion

setjmp call saves the state of the process at this
point. The longjnp in the signal handler will
cause execution to be resumed here. (7) rebinds the
preemption signal to sig_handlerì so oncp this
statement has been executed, the process, upon being
preempted, will resume execution in sig_handlei
rathe¡ than at the point of preemption. (A-f f¡ are the
standard method of acquíring a shared lock. Finally,
(12) tums off the preemption signal. Figure 2 shows
what happens upon preemption. The ldea here is
that if, on a uniprocessor, the statements (8-11) exe-
cute atomically, then we are assured that the lock
has been acquired by only one proc€ss. However, if
preemption occurs anywhere in these statements,
then it is possible that another process has come in
and acquired the lock, so we need to check the lock
to see if this has happened. If it has, we force
preemption with the nsleep call (nsleep() does
the same thing as usleep except in nano-ìeconds).
There is one important assumption in this code; (1í)
must not be capable of leaving the variable
ehared_lock in a corrupt state, but on every
architecture of which tve are aware, preemption

#define SIG_NUM 43
jmp_buf contexti
in t re t ;
pid_t ourpid;
s t rucÈ s igac t ion arb¡

void sig_handler l int num¡
{

longjmplcontextr 0) ;
)

ourpÍd = getpid() ;
a .sa hand ler = S IG_IGN;

:: :"_nunoler
= sis_handter;

sigact ion (SIG_NUM, &a, NULL) i
/* The fol lowing instruct ions get the 1ock */
preempt_s ig (SIG_NUM) ;
se t jmp(contex t) i
sigaction (S IG_NUM, &b, NULL) ¡
i f ((shared_ lock t= 0) && (shared_ lock t= ourp id))

n s l e e p (1) ;
e l s e

. shared_Iock = ourpid;
l t we have the lock, so we turn off the signal r , /
s igact ion (SIG_NUM, ea, NULL) i
/ * c r i t i ca l sec t ion * /

/* Free the lock */
shared-lock = 0i

Figure 1: Locking

Summer '92 USENIX - June B-June lZ,lgg} - San Antonio, TX

(1)
(2' , ,
(3)

(4)

(s)
(6)
(7 1
(8)
(e)

(1 0)
(1 1)

(1 2)

57

Cheap Mutual Exclusion

during this statement either results in
shared_Iock being unchanged, or in the assign-
ment'actually succeeding. On an architecture where
this assignment could result in shared lock
changing to something other than ourpid, this
method of mutual exclusion will not work.

The performance of this code is abolt 25Vo
better than the comparable code using semaphores
when run on an RS/6000; based on the performance
of semaphore operations and signal operations, it
seems as if this code would be 50Vo as costlv as the
equivalent semaphore code on a Sun 4 running
SunOS 4.0.3.

Moran, Jahanian

the lock, the variable should_jump is reset. This
is an effective solution since returning from a
preemption into a signal handler does not slow the
code down excessively. This code should be substan-
tially faster than the equivalent semaphore code; it
saves two system calls per critical section, i.e., both
sigaction calls, but it has not been tested enough
to state this definitivelv.

#def ine SIc NUM 43
jmp_buf conãext;
int ret i
pid_t ourpid;
struct s igact ion a, bì
int should_junp = g;

void sig_handler l int nun)
{

i f (shoul. l_ jump)
l o n g j n p (c o n t e x t r 0) ;

e lse
returni

t . .
ourpid = getpid() ;
a.sa_handler = SIG_IGN;
b.sa_handler = sig_handler;

sigaction (SIG_NUM, &a, NULL) ;
preempt_sig (SIG_NUM) ;
se t jmp(contex t) i
s igact ion (SIG_NUM, eb rNULL) ;
should_jump = 1i
i f ((shared_Iock t= 0) &&

(shared_lock t= ourpid))
ns leep(1) ;

e lse
share.l_lock = ourpidi

shoul. l_ jump = 0i

se t jmp(contex t) i
shoul¿l_jump = 1i

/* acquire lock
should_jump = 0i

se t jmp(contex t) i
should_jump = 1i

/* acquire lock
shoulr{ jump = 0i
sigact ion (SIG_NUM, &a, NULL) i

Figure 3: Obtaining and releasing locks

This section has presented code that uses the
visibility of preemption as a way of ensuring mutual
exclusion. The code presented here uses this feature
in a rather naive fashion, but it shows the power of
this idea. The final example in this section demon-
strates one of the most important aspects of this
idea: by making locks very cheap to obtain, this
code makes it possible to write code that shares
many resources. Sinc¿ serial access to these

Sequence of Events Upon Preemption

Proæss

ætjmpO

e

tcniln b

Signrl llandlcr plocrsswhcu dbpatchcd
rotÉß sigl¡l h¡¡dhr

Prærnption

lignsl hndl¿r junF

toætjnp læation

Figure 2: Preemption Events

Significant performance improvement can be
obtained when several locks are being acquired and
freed in one section of code. Specifically, it is pos-
sible to leave the signal delivery turned on and sim-
ply check in the signal handler whether it is neces-
sary to perform the longjmp. Afrer the fust lock
access, the cost of obtaining the subsequent locks is
reduced to the cost of invoking set jmp to save the
process context. The cost of releasing a lock is a
single assignment. However, there is a small over-
head in invoking the signal handler after the process
is rescheduled. The code for obtaining and releasing
several locks looks something like Figure 3.

The code segment enables the preempt signal
before an attempt to acquire any lock is made. The
process context is saved and a local variable
should_jump is set prior to each lock access. If
the process is preempted while acquiring the lock,
the variable should jump is tested inside the sig-
nal handler and thi process is forced to malie
another attempt to obtain the lock. After obtaining

L /

t /

Dispatcher

58 Summer '92 USENIX - June E.June 12,1992 - San Antonlo, TX

Moran, Jahanlan

resources can be insured cheaply, the cost of sharing
resources can be dramatically reduced.

4. Second Version

In the previous section we presented a solution
that uses the preempt signal in the obvious way.
While acquiring a lock, the process enables the
preempt signal so that it is notified of a preemption
after being rescheduled. The preempt signal is dis-
abled after the lock is obtained. As illustrated in the
preceding section, the cost of enabling/disabling the
signal can be amortized among multiple lock
accesses. However, a solution which reduces this
overhead is desirable. In this section, we present a
solution that uses the signal in a slightly more subtle
fashion. If we modify the system call

preempt_sig, that we presented in the previ-
ous section, so that it takes the address of a flag in
user space, then the kernel can check this flag to
determine whether to send a signal. In this case, pro-
tecting the acquisition of the lock will be the cosl of
setting this variable. For example:

#def ine SIG NUM 43
jmp_buf conEext;
in t f lag = g ;
in t re t ;
pid_t ourpid;
s t ruc t s igac t ion arb ;

void sig_handler(int num)
{

i f (f r a g)
Iong jmp(contex t r 0) ;

)

ourp id = ge tp id () ;
b.sa_handler = sÍg_handler;

sigact ion (SfG_NUM, &b, NULL) ;
p reempt_s ig (SIG_NUM,ef lag) , (1)
/* Code to get a lock */
se t jmp(contex t) i
f l a g = 1 ' Q l
i f ((s h a r e d _ I o c k t = 0) & &

(shared_ lock t= ourp id))
n s l e e p (1) ;

e lse
shared_ lock = ourp id ; (3)

/* we have lock;
tu rn o f f

f l a g = g ;
/ * c r i t i ca l sec t ion

shared_lock = 0i / r ,

the s igna l * /

r . /

Free the lock */

Cheap Mutual Exclusion

(the code between (2) and (3) with that above. Two
system calls have been eliminated. As a result, we
are not using any system calls to achieve the neces-
sary protection. There are only two costs here; the
fust is the setjmp and the longjmp if preemption
occurs, but this is very small. The other cost is
slightly harder to quantify, since it is incurred in the
kernel. Understanding this cost requires that the code
in the kernel be understood. These costs compare
favorably to the semaphore code. The cost incumed
when a process blocks on a semaphore is fairly high.

Kernel code is required in two places, the fust
is the system call preempt_sig. This code needs
to set a flag associated with the process that indi-
cates that the process should be signalled when
preempted; this code also needs to store the number
of the signal to send. These two quantities require 7
bits (1 for the flag and 6 for the signal number); the
pointer to the flag requires 32 bits, so 39 bits are
associated with the process. Finally, because the
flag, which resides in the users adãress space, is
going to be checked in the kernel, the page èontain-
ing this flag must be pinned into real memory; since
this flag will be checked in the dispatcher, and the
9od,e in this part of the kernel is not allowed to page
fault, the memory access to check this flag must not
page fault. This page is pinned with the pinu ker-
nel service. Unless the system is swapping (as
opposed to paging), this appears to have minimal
impact. Thus, the process will have one page that is
always in memory.

The second place where kemel code is required
is in the dispatcher; after the dispatcher has deter-
mined which process will be run next, it is necessary
!o check the flag that indicates whether the process
should be signalled. The code to do this is some-
thing like:

i f (p ->pres ig)
i f (* (p ->s ig f lagaddr))

pidsig (p->pid, p->sigtosend) ;
where the first if checks to see whether this process
should ever receive the preempt signal; the second
if checks whether the process should have the sig-
nal delivered at present (sigf lagaddr is a pointér
to user address space), and the pidsig call sends
the apprcipriate signal to the process.

This approach is clearly superior to the first
approach presented. It saves two system calls per
lock, and the code the user needs to understand is
considerably simpler. This code compares very
favorably with that required in the semaphore case;
it is much faster (obtaining the lock is very inexpen-
sìve), and the number of system calls required for
the setup is the same (3 in each case). Ttrese system
calls are also slightly cheaper than those used for
semaphores. The mechanism required by this
approach has been implemented and tested on an
RS/6000 running AIX 3.1, and the added cost in the

This version uses the new system call (1) that takes
the address of f lag, and it simply sets f tag to 1
when the preempt signal should be delivered. When
the signal is not necessary, all that is needed is to
set the flag to 0. Compare the critical section here

Summer '92 USENIX - June 8-June LZ, LggZ - San Antonio, TX 59

Cheap Mutual Exclusion

kernel is not measurable. This code also has the
property that the complexity (as the user sees it), is
no rvorse than for semaphores. This solution attains
all the qualities that were originally hoped for. The
complexity of use is slightly better than for sema-
phores. The performance when there is no contention
for the lock is substantially better than equivalent
code that uses semaphores. Finally, the performance
is no worse when the lock is already held by another
process; in both cases, the process blocks. The only
extra cost for this code occurs when the process is
preempted while obtaining the lock; this extra cost is
dwarfed by the reduced cost in the ordinary case.
Due to these advantages, this method of achieving
mutual exclusion seems preferable to the use of
semaphores.

5. Implementation Notes

The astute reader will have noticed several
potential problems with the solutions presented
above; this section attempts to address these. In par-
ticular, the following might be seen as potential
problems: nesting of signal handlers, starvation as a
result of repeated preemption, and hidden assump-
tions as to atomicity of operations. This section will
show why each of these fails to be a problem, and a
brief explanation of each is included.

UlflX makes few guarantees about what can
safely be executed within a signal handler. In partic-
ular, in the case of nested signal handlers, it is the
case that almost anything executed can cause prob-
lems. However, POSIX 1003.1 [9] makes the guaran-
tee that longjmp can be executed from a non-
nested signal handler. Since it is the case, that the
signal handlers here will not be nested, the
Iongjmp() should be safe. It will also be noted
that this code assumes that nsLeep(1) will force
preemption. It is certain that nsleep with some
value will force preemption, and an incremental
backoff could be implemented as nsleep(i*=2)
where i had some suitable initial value.

The above code contains the possibilty of star-
vation if the process has few enough pages. If, upon
return from the signal handler, the process page
faults, then the process will immediately return to
the signal handler. As a result, it might be necessary
that the process have two pages available to it; one
might be used to hold the signal handler code, and
the other would hold the code where the setjmp
\¡/as executed. If the code to obtain the lock spans
multiple pages, a similar problem may arise; it
should be noted that this is only a problem if the
process can obtain only one page. However, a pro-
cess that cannot acquire tr'¡/o pages is likely to have
many other problems as well, so this seems like a
fairly minor drawback.

An interesting example arises when a process is
preempted twice while trying to get the same lock.
In particular, a problem might be thought to arise if

Moran, Jahanian

a process is preempted in the signal handler for the
preemption signal; the potential problem occurs
since the second instance of the signal might not be
delivered until the next trip through the kernel. Con-
sider a process in the preempt signal handler that is
preempted. When the process resumes, the new
instance of the signal will not be delivered since the
signal is cunently being handled; the second
instance of the signal will be pending. The second
instance of the signal will not be received until the
next time the kernel gets control. In the ûrst exam-
ple, since the instruction executed after thé setjmp
is a system call eg sigaction, the signal will be
delivered immediately, the process will jump back to
the same place, and it will continue. ln the second
example, since no system call is executed, the signal
will be delivered some arbitrary time later. How-
ever, the long jmp will only occur if the flag is still
set, and the conect semantics are preserved because
the lock cannot be comrpted. Further, since the order
of operations is: set jmp, flag = 1, even if the sig-
nal gets delivered at the time of the next lock use,
the conect context would be used. Of course, this
sequence of events is the least favorable, but it is
handled conectly.

Finally, as noted above, the assumption is made
that an assignment of a wordsize quantity to a word
size location cannot be preempted in such a way as
to leave the location with a value other than either
its initial value or the value being assigned. Simply
put, if the statemenl a = 7 is executed with a hav-
ing an initial value of zero, a cannot have a value
other than zero or seven no matter what the operat-
ing system may do (other than crash the machine
possibly). The reason for this restriction should be
obvious, and we know of no machines that do not
obey this restriction. A failure to provide this facility
would make the solutions presented here invalid;
however, a machine that acted this way would need
to have a multi instruction assignment, and this
seems untenable.

6. Conclusion

The cost of obtaining and releasing a lock is
particularly important when concurrent processes
require mutual exclusion for accessing shared data
structures stored in memory. ln such cases, the
duration of a critical section is often very short, and
expensive methods for acquiring locks impose
unnecessary overhead on those processes which
manipulate the shared data structures. The charac-
teristics desired of a method of achieving mutual
exclusion on a UNIX system are that it should be
simple for a program to use, it should be extremely
inexpensive to use when there is no contention, and
it should be as cheap as possible when contention
exists. The two solutions presented here can be made
as simple to use as semaphores, so they meet the
first criteria. When there is no contention for the

60 Summer '92 USENIX - June 8-June 12, L992 - San Antonio, TX

Moran, Jahanian

lock, and the process does not get preempted, the
second method presented is essentially free. Even in
the presence of contention, the second method
presented is extremely inexpensive. Since much of
the cost of using a semaphore is due to the overhead
of making a system call, the proposed solution is
considerably less expensive than semaphores on
machines without hardware support. Furthermore, it
is not too much more expensive, in the worst case,
than semaphores even with hardware support. Com-
bining ease of use and inexpensive operation as it
does, this method of achieving mutual exclusion
should make shared resources practical in many
cases where they have been considered too expen-
sive.

7. Bibliography

[1] Maurice J. Bach.The Design of the UNX
O_peryting System. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[2] P.Brinch Hansen. Operating Systern Priciples.
Prentice-Hall, Englewood Cliffs, N.J., 1973

[3] P.Brinch Hansen. The programming language
concurrent pascal. IEEE Transactions on SE,
SE-1(2): 199-207, Jlune 197 5,

[4] E. lV. Dijkstra. Co-operating sequential
processes. In F.Genuys, editor, Programming
Languages. Academic Press, London, 1968.

[5] C. A. R. Hoare. Monitors: An operating system
concept. Cornmunications of the ACM, pages
549-557, October 1974.

[6] IBM Corp. AIX Version 3 for the RSl6000
Calls and Subroutines Reference: Base
Operating System Volume 2, first edition,
March 1990.

[7] IBM Corp. AIX Versiott 3 for the Rgl6000
Calls and Subroutines Reþrence: Base Operat-
ing System Volume f , first edition, March 1990.

[8] IBM Corp. AIX Version 3 for the RSl6000
Calls and Subroutìnes Reþrence: Kernel
Volume 5, first edition, March 1990.

[9] IEEE, New York, New York. POSß 1003.1,
1989.

[10] Samuel Iæffler, Marshall Kirk McKusick,
Michael Karels, and John Quarterman. Iåe
Design and Implementation of the 4.3BSD
UNIX Operating System. Addison Wesley,
Reading, Massachusets, 1989.

[11] G. Peterson. Myths about the mutual exclusion
problem. Inþrmation Processing Letters, pages
115-116, June 1981.

[12] Marc J. Rochkind. Advanced UNIX Program-
míng. Prentice-Hall, Englewood Cliffs, New
Jersey, 1985.

[13] SUN Microsystems Inc. SU¡l OS 4 System
Services Overview, revision a of 9 mav 1988
edition.

Cheap Mutual Exclusion

[14] Andrew S. Tanenbaum. Operating Systems
Design and Implementation Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

Author Information

William Moran has BS and MS degrees in CS
from Union College. He joined IBM Research in
1988 after having been a PhD student at yale. At
IBM Research he worked on real-time and distri-
buted programming langrages, real-time systems,
distributed and fault-tolerant systems, and a juggling
robot. He left IBM Research in 1992 to join a new
proprietary _trading group at Swiss Bank Corp.
Investment Banking as a Senior Computer ScientisJ.
Reach him via US Mail at SBCI; 4th Floor; 222
Broadway; NY, NY 10038. Reach him electronicallv
at wlm@panix.com.

Farnam Jahanian received a Ph.D, in Computer
Science from the University of Texas at Austin in
1989. He is cunently a Research Staff Member at
the IBM T.J. Watson Research Center. His
reasearch interests include specification and analysis
o_f. real-time systems and fault-tolerant computing.
His address is: IBM T.J. Watson Research Centei;
P.O. Box 704; Yorktown Heights, Ny 1059g. Con-
taet him by e-mail at farnam@WATSON.IBM.COM.

Summer '92 USENIX - June 8-June 12,lgg2 - San Antonio, TX 6l

