
A Discipline of Error Handling
Doug Moen

ABSTRACT

In the UNIX world, exception handling mechanisms for eror handling are often discussed,
but seldom applied. This paper describes a disciplined approach to error handling thar was
refined over a !-year perioO during the development of a medium-large (200K line) toolkit
written in C under UNIX We describe both a portable exception handing system, written in
C, and a methodology for using it which encompasses coding style, doCumentation, and
testing issues.

Introduction There is more to good enor handling than sim-
The C language, as defined by Kemighan and O,]I t:.:g:.gt or lihrary support for raising and catch'

Richey and by it.-Ñst c standarä, i. t.tiri'*räk i1_g i:eptions. .-In this-paPer'.I will explain what
on eró, handing. The only standará,rror n*äñiË :11"t:^ar-e,.describe

the desi8n issues in representing
facilities provide"á .rc ttrr global variabfr .ttio ãnã andreporting errors, and discuss how our error han'
the convention thar certain íunctions (such as ..ff"., l$q^]fltotch

affects coding style, documentation
etc.) return a distinguished value wheà they fail, pos- ano ¡es¡mg'

sibly setting enno. Two Kinds of Errors
This is not a very good basis for eror handling.
It isn't good for application programmers,

because explicitly checking the return values of
functions that might fail, and propagating the enor,
is a lot of work, and clutters up code. Even con-
scientious programmers have been known to write
programs that fail to check the return value of every
call to printf. As a result, there are a non-trivial
number of C programs in existence which fail to
properly report error conditions [Danvin 85].

The standard approach to error handling isn,t
good for library implernentors, either. One pioblem
is that the existing set of effor numbers is not exten-
sible; thus, you can't use the standard functions per-
rorQ, strerrorQ, etc., with locally defined error codes.
Another problem is that a single integer (ermo) does
not really contain enough information to completely
describe an eror. Usually there is additional contex-
tual information (such as the na¡ire of the file that
couldn't be opened, the number of bytes that were
successfully written before an error occurred, the
line number on which the error was detected, etc.)
that needs to be associated with an error.

We faced these problems when we set out to
build the EMS image processing toolkit in 1989.
We were building a large library of fi¡nctions for
building image processing applications, and we
wanted our library to support the construction of
robust applications. We wanted our library to sup-
port good eror handling. So we defined a
comprehensive approach to good error handling, and
wrote a small library of functions to support our
eror handling discipline.

EMS distinguishes two kinds of errors that can
be detected by library functions: faults and failures.

A fault condition is the failure of an assertion
or sanity check. By definition, a fault always indi-
cates the presence of a bug in a program. Faults
checking is not part of the contract between the
function and its caller, and faults are reported by
aborting the program. Some kinds of fault checking
(e.g., comprehensive data structure integrity checks)
are expensive to perform, but are useful during
debugging. Because client code is not allowed to
depend on the existence of fault checks, expensive
fault checks can be conditionally compiled based on
a DEBUG option, without affecting the correctness
of any progam.

A failure is an abnormal but anticipated condi-
tion such as resource exhaustion, permission denied,
or a syntax error, which prevents the function from
carrying out its job. Failures differ from faults in
that failure reports are part of the contract between
the function and its caller. Failures are reported by
reporting an effor back to the caller. An out of
memory condition that causes mallocQ to return
NULL is a simple example of a failure.

Sometimes it is difficult to decide if a particu-
lar condition (e.g., an illegal argument valuef should
be classified as a fault or a failure. Mv rule of
thumb is that it should be possible, using the library,
to write programs that never generate fault condi-
tions under any circumstances. Suppose that the
exceptional condition is the detection of a syntax
error in an input file, or in a character string that
might have originated from outside of the program.
In this case, the condition should be classified as a
failure, rather than as a fault. If it were classified as

Summer '92 USENIX - June 8-June 12,lgg2 - San Antonlo, TX 123

A Disclpllne of Error Handling

a fault, then a program written to avoid generating
faults is obliged to scan the input beforehand to
ensure the absence of syntax errors.

Reporting Faults

In EMS, faults are reported by calling the func-
tion fatalQ with a printf-style argument list. fatalQ
aborts the program by calling a handler function
registered using at_fatalQ. If no handler function is
registered, or if the registered handler function
returns to its caller, then fatalQ prints a message to
stderr and calls abortQ to obtain a core dump.

The decision to report faults by terminating the
program was a controversial one. It was made for
the following reasons:

o During a development cycle, the best way for
a program to report a fault is to immediately
dump core. The core file can then be used for
post-mortem debugging.

o If a function signals a fault by reporting an
error to its caller, then this error report
becomes a de facto part of the fi¡nction's con-
tract with its caller, and it becomes possible
to write code that depends on intercepting
fault reports. We don't want fault reports to
be part of a function's interface, because
checking for faults can be expensive, and we
would like to have the option of tum off fault
checking using compile-time options, in order
to speed up the code. Tuming off fault
checking should not change the semantics of a
correct program.

¡ Assertions and sanity checks are easier to
code, and are more likely to be used, if
developers don't have to worry about cleaning
up after a failed assertion.

An unfortunate consequence of aborting a program
when a fault is detected is that we dõn't-support
fault tolerant programs of the sort that try to keep
running after a fault has been detected (e.g., see
[Meyer 88] and [Randell 75]). This isn't quite as
bad as it sounds, because EMS has two provisions
for supporting fault tolerance. First, programs can
register a handler to save their state when fatalQ is
called. Second, EMS has facilities for automatically
restarting crashed servers. Thus, an application that
consists of a network of processes can be made to
keep running even when individual components
crash.

Reportlng Failures

The EMS failure reporting system is based on
the following principles:

1. Enor propagation, In a typical application,
errors are detected at a low level (for exam-
ple, in a library function), and handled at a
higher level (for example, in an application
prog¡am which calls the library). Only the
higher level code knows how to handle the

Moen

error; this might be to print an error message
on the terminal, display an error window, or
terminate the program. It is inappropriate for
low level code to take these actions. There-
fore, when an error is detected, a description
of the eror is propagated from the low level
code, where it is detected, to the high level
code (higher in the call stack) where it is han-
dled.

2. Erro¡ values. In the traditional C approach to
error handling, enors are described by a single
small integer. This is inadequate; if the high
level error handler needs to display an error
message to the user, then it usually needs
more than just the type of error (e.g., "syntax
error"): it usually needs some information
about the context in which the error occurred
(e.g., file name + line number). In our sys-
tem, errors are described by an Error structure
which contains both an error id (which is an
integer) and character string data which can
be used to print an informative message.

3. Exception handling. In the traditional C
approach to error handling, a function returns
a distinguished value (such as NULL or -1)
when it gets an enor, and sets the global vari-
able erno with an error id. It is the responsi-
bility of the caller to check for an eror ietum
status, and either handle the eror, or pro-
pagate it up the call stack. Although this
approach is simple, it is also enor prone: it is
very easy for a programmer to be lazy, and
omit checks for error return codes. If these
checks are omitted, the program may go
wrong in a catastrophic way when an error
occurs. Our solution to this problem is to
raise an exception when an error occurs.
When a function raises an exception, it
immediately terminates, its caller terminates,
and so forth, until an exception handler is
found. If no exception handler can be found
anywhere on the call stack, the program ter-
minates with an error message. Under this
scheme, a programmer must take positive
action to prevent his function from being ter-
minated by an error. The worst that can hap-
pen if he forgets to check for errors is that, at
the library level, temporarily allocated
resources may not be freed, and at the appli-
cation level, the program may terminate with
a message.

Error IDs

The most important component of an error
description is an error 'id', which identifies the type
of error that occurred. Eror ids are used by error
handlers to distinguish different types of erors. If
the error id has a short string representation, then it
can also be printed out as paft of the error message,

L24 Summer '92 USENIX - June 8-June L2, L992 - San Antonio, TX

Moen

and used as a key by the end-user to look up a ver-
bose description of the error in extemal documenta-
tion.

A¡y system for defining error ids needs to deal
with nvo issues. First, it should be possible for pro-
grammers to define new enor ids without editing a
master table somewhere, and without conflicting
with error ids defined by other libraries. Second, it
should be possible to define sets of related error ids
so that eror handlers can check error ids for
membership in a group, as an alternative to
enumerating a long list of error ids that are to be
handled in the same way.

The UNIIVANSI C system of eror ids (as
defined by <errno.h> and sys_errlist) is not extensi-
ble, and provides no support for grouping.

Programming languages with builçin exception
handling systems provide the ability to define new
error ids as a matter of course, but not every such
language provides a way to define groups of errors.
In both ANSI C++ and in Common Lisp, it is possi-
ble to organize error types in trees or DAGs using
single and multiple inherirance [Ellis 90, Steele 90].

In the exception handling system devised by
Allman and Been [Allman 85], error ids are charac-
ter strings, and error handlers can use glob-style paf
tern matching on enor ids.

In EMS, we chose a system similar to that used
by ANSI C and UNIX. Error ids are represented by
integers, which means that error handlers can use
switch statements to distinguish between different
errors. When an error description is printed, the
eror id is used as an index into a table of message
strings.

In order to support extensibility, we support
multiple error tables. Each enor id is a 32 bit
integer with a L9 bit table id, and a 13 bit offset,
which is an index into the table. The table id is
computed from a table name: this is a string of
between one and four lowercase letters which is con-
verted to an integer using a variant of base 26
encoding.

Each error table is maintained as a text file that
defines 4 records for each error:

o An error name, which is a C identifier like
ENOENT or E SYNTAX. The error name is
used to #define-a constant. In addition. it is
printed by err3rint x for the benefit of both
users and programmers. Users can use the
error name to look up additional information
about. the error in extemally provided docu-
mentation.

o A severity level, which is one of the constants
ERR_FAULT, ERR_FAIL or ERR RETRY.
ERR:FAULT denotãs a fault in an- exrernal
program or subsystem, ERR_FAIL denotes a
permanent failure, and ERR RETRY indicates
a temporary condition that-will clear up by

A Discipllne of Error Handling

itself with no intervention.
o A short, one line message, analogous to the

messages in sys_errlist. This message is
printed by enjrint xQ.

a A verbose description of the error, typically
one paragraph in length. This is incorporated
into external documentation for errors.

This text file is processed to generate a .h file, a .c
file, and a documentation file. The .h file contains
one #defined constant for each error id, plus an
extemal declaration for a global variable of type
ErrTab_t[], representing the eror table. The .c file
contains the definition of the error table, which con-
tains, for each error id, the message string, the sever-
ity level, and the eror name, represented as a string.

By convention, in an error table named ,,foo',,
each error id has the prefix "EFOO_", the error
table variable is called "foo_errs", and the header
file is called "foo-errs.h".

System error codes, as obtained from the
header file <erno.h> or the global variable errno,
can be converted into valid error ids by casting them
to type long. The corresponding error table is called
sys_errs. All system errors are arbitrarily assigned
the severity level ERR_FAIL.

The only provision that EMS has for defining
groups of error ids are the fixed set of error severity
levels. Although this has proven adequate for our
needs, it is not very flexible.

Error Values

When a function fails, it is responsible for con-
veying a description of the error to its caller. This
description can be used in several different ways: it
might be interpreted by an error handler which needs
to take different actions on different errors, it might
be used to construct an error message which will be
displayed to a human user, and it might be transmit-
ted to another process on the network (as when a
server notifies a client of an error).

Since the error description might be interpreted
by an error handler, it needs to contain an error id,
plus any additional contextual information that might
be needed by the enor handler, such as the number
of bytes that were successfully written before the
error, the line number on which the eror occurred.
etc. Since the error description might be used to
construct an error message, it needs to contain all of
the information necessary to make this possible.
Finally, since the error description might be
transmitted to another host on the network, it needs
to be represented in such a way that it can be
transformed into a machine-independent byte stream
for transmission purposes, then reconstituted by the
recipient.

Let's consider the case of constructing an error
message. Error messages are seen by two classes of
people: end users, who don't understand the

Summer '92 USENIX - June 8-June lZ,lgg2 - San Antonio, TX L25

A Discipline of Error Handling

internals of the program that failed, and
gurus/implementors who do.

For end users, the message should be phrased
in high level terms, and provide enough information
so that it is possible for the user to determine a
corrective course of action. In practice, this means a
one-line message containing a phrase describing the
problem, the context in which the error occuned
(e.g., file name, line number, etc.), and an error
name which can be used as a key to look up a more
complete description of the error in external docu-
mentation.

For gurus and implementors, the message
should contain additional information about what
went wrong at the implementation level of the pro-
gram, because this information might be needed for
debugging, or in order to fix a problem somewhere
in the system. This lower level information can be
generated naturally, as a consequence of the way
that error descriptions are generated. When an error
is detected, a description of the error is passed down
the call stack through one or more levels of function
calls until it is finally handled. Now, consider that
each function is obligated to present an error inter-
face which makes sense in terms of the abstraction
that it implements. When an error description is for-
warded through an abstraction boundary, it is some-
times necessary to reinterpret the error in terms of
the curent level of abstraction, which means supply-
ing a new error id, and new contextual information.
The lower level error description which is being sup-
planted need not be thrown away; this low level
description of the error might be of use to gurus and
implementors when it is presented in an error mes-
sage.

Putting all of these requirements together, we
find that an eror description should consist of a
stack of one or more error intemretations. The
interpretation on the top of the stack is a high-level
description of the error, while the interyretation at
the bottom of the stack describes the error in terms
of the function in which the error was first detected.
Each error interpretation contains an error id, plus
additional contextual information. We need opera-
tions on error descriptions for printing or displaying
them as human readable messages, and for transmit-
ting them across the network to other hosts (which
may have different byte ordering, different floating
point representations, etc.).

Moen

In EMS, error descriptions are representdd by
values of type Error-t. An Error¡ contains a stack
of error interpretations. Each interpretation contains
an error id, the error name represented as a string,
the short message associated with the error id, the
error severity level, and a chæacter string containing
contextual information which is generated at run
time, when the error is detected.

Note that the contextual information associated
with each interpretation is represented as a single
character string. This is a good representation for
printing effor messages and for transmitting error
descriptions across the network, but it is not a con-
venient representation for error handlers which wish
to access and interpret the contextual information.
In fact, the cunent implementation of EMS provides
no programmatic way to access the contextual infor-
mation at all! Although this limitation has not
caused any problems so far, I think it should be
fixed.

The stack within an Error t has a fixed max-
imum size of 6 entries, and the-re is a fixed amount
of space for storing character string information. If
you try to push more than 6 interpretations onto the
stack; then the bottom interpretations are thrown
away. If you try to store an oversize context string
in an interpretation, then it will be truncated. We
chose to use fixed sized arrays for representing
ErrorJ's because we wanted to avoid the use of
dynamically allocated storage. We did not want to
run out of heap space while attempting to report
errors in a low memory situation, and we did not
want the additional complication of having to expli-
citly free the storage associated with Error t's within
an error handler. Instead, we use automatic storage
for all Error t's. In practice, the stack size limita-
tion is not a problem, and neither is the occasional
truncation of context strings.

Operations On Error Values

When an error is first detected, an error value
is initialized with a single error interpretation, con-
sisting of an error id, the associated error name,
severity level and short message, and an optional
context string. If the error were printed at this point,
it would look like the tine in Figure L, below.

An error value can be initialized to contain a
single interpretation by calling er_set0 (see Figure
2, below).

context str ing: short message (errcir name)

Figure 1: Error message format

vo id e r r_se t (Er ro r_ t *e r r , Er rTab_t * tb l , long id , char * fmt , . . .)
Figure 2: Prototypical err_set call

L26 Summer '92 USENIX - June 8-June 12, L992 - San Antonlo, TX

Moen

The fmt argument is the beginning of a printf
argument list, which is used to construct the context
string. See Figure 3 for an example.

When an error value passes through an abstrac-
tion boundary, it may be appropriate to push a new
interpretation onto the stack which describes the
error in higher level terms. This is done by calling
en3ushQ. Alternatively, instead of pushing a new
interpretation onto the stacþ you can choose to push
an annotation by calling err_noteQ. An annotatión is
a character string which is added to the top level
enor interpretation without changing the error id.
Annotations are used to add information to to the
enor message seen by a user, without changing the
enor description from the point of view of an error
handler. For example, the sequence of calls in Fig-
ure 4 would create an error description which would
be printed as shown in Figure 5.

For completeness, we also supply err_clearQ,
which initializes an error description to an empty
stack, and en3opQ, which pops the top level
interpretation, so that the error id underneath can be
accessed.

An error handler which needs to distinguish
between different types of errors can query an error
using the functions err_idQ and en_lévelQ. These
functions return the 32 bit enor id and the error
severity level, respectively, of the top level interpre-
tation within an error. The severitv level is onè of
the following three constants:

#define ERR RETRY 1
#define ERR FAIT, 2
#define ERR-TAULT 3

These constants are ordered by severity so that < and
> tests can be used on them.

_ . 4" error can be printed by calling en3rint_xQ.
This function prefixes each line of output Uy ttre pró-
gram name and a colon. If it is desired to display
an error message within a dialog box, then you can

A Dlscipline of Error Handling

call en_string_xQ to obtain a character string
representation of the error message, with embedded
newlines, but without the program name prefixes.

Enors can be written to and read from a net-
work connection in machine independent binary for-
mat by calling en_write_x0 and err_read_xQ. An
unresolved problem with these functions is that
UNIX error numbers change their interpretation from
one machine to another.

Internationalization

In multilingual environments, it is necessary to
ensure that enor messages are displayed in the
correct natural language. Of course, error message
strings are not the only strings that need to be
translated, and it is appropriate to regard enor han-
dling and intemationalization as orthogonal problems
that deserve separate and independent solutions.

Different operating environments provide dif-
ferent solutions to the problem of internationaliza-
tion. In the Macintosh and lffindows environments,
character strings that need to be translated are stored
in resource files which are shipped with the applica-
tion; the buyer must purchase a copy of the aþplica-
tion which has been translated to the ãésired
language. In the OSF environment, the NLS pack-
age supports a run-time choice of several different
natural languages by setting the I¿.NG environment
variable; once again, strings containing natural
language a¡e stored separate from the programs
themselves.

In the EMS toolkit, we have a high-level
. abstraction for string translation which can map

cleanly onto the facilities provided by all of tnè
above environments. The construct

XSD (str ing-J. i teraI)
is replaced by string-literal on systems that don't
lupport internationalization, and is replaced by a
function call which returns a pointer to the transláted

Error_t erri
err_set (&err, sys_er rs , (long)ENOMEM, "Cou ldn , t a l loca te td by tes , ' , s ize) ;

Figure 3: Creating an error value

Error_t err;
err_set (&err,
err3ush (&err,
err_note (&err,

u t i l_er rs , E_EOF, "F i le descr ip to r td " ; fd) ;
ut i l_errs, E_CORRUPT, "") i
"Er ro r wh i le readÍng f i le \ , ' t s \ , , " , f i l ename¡ ;

Figure 4: Creating another error value

Error whi le reading f í Ie , , foo"
> corrupted data file (E_CoRRUPT)
> Fi le descr iptor 3: Unexpected end of f i le (E_EOF)

Figure 5: A printed error value

Summer '92 USEMX - June 8-June l2r lgg2 - San Antonio, TX t27

A Discipline of Error Handling

string on systems that do. In other words,

x s D (" H e I I o ")
returns a pointer to the string "Bonjour" if compiled
in an environment that supports internationalization;
and the current language is French. The construct

XSI (str ing- l i teraI)
returns a static initializer for a structure of type
XS_t. The function xs3getsQ takes a pointer to an
XS-t, and retums a pointer to the translated string.
The XS package is implemented using a modified C
preprocessor which maps string literals onto the
appropriate magic incantations for fetching the
translated version of that string from the appropriate
resource file or database.

Thus, internationalization of error messages
within the EMS environment becomes a trivial prob-
lem. The short error messages within each statically
initialized EnTab_t variable have type XS_t, and are
initialized using tñ'e XSI macro; thii'is tran-sparent to
the programmer. Programmers must be careful to
use the XSD macro to translate printfQ style format
strings that contain natural language. That's it.

Throwing and Catching Errors

In the early days of EMS, functions reported
failures by returning a special error value. This
approach was abandoned because of the code clutter
caused by checking nearly every function call. It
was replaced by a portable exception handling
mechanism using the termination model.

A function signals failure by building an error
value, then throwing it to its caller as shown in Fig-
ure 6. As a shorthand, we supply the function
throw_err_xQ which allows the above code to be
written in a single line (see Figure 7). The effect of
throw_xQ or throw_err_xQ is to raise an exception:
this causes a non-local jump down through the call

Moen

stack to the nearest exception handler. If no excep-
tion handlers are active, then the error is printed to
stderr, and the program exits with status 255. As a
result of this default behaviour, simple utility pro-
grams that exit with an error message when any
enor occurs are very easy to write.

Exceptions may be caught using the control
structure shown in Figure 8. The "THEN-TRY ..."
clause may be repeated zero or more times. The
identifrer argument to CATCH is used to declare a
variable of type Enor_tt which is local to the excep-
tion handler. A TRY .. END_TRY block is syntacti-
cally a compound statement, and may be written
anywhere a statement is legal in C. They may even
be nested.

A TRY .. END_TRY block is evaluated in the
following manner. First, each body is executed in
sequence. If an exception is raised during the exe-
cution of a body, then control is immediately
transferred to the beginning of the next body. After
all of the bodies have been executed, one of two
things happens. If an exception occurred during the
execution of any body, then the handler is executed
with the Enor_t* variable pointing to the frrst error
that occurred. If none of the bodies raised an excep-
tion, then the handler is skipped.

For example, the following code:

TRY
foo_x()

CATCH (err)
err3r int_x(err, stderr) ;

END-TRY

calls foo_xQ; if it raises an exception, then the
exception is caught, and the error is printed to stderr.

If you use break, continue, goto or return to
break out of the body of a TRY or THEN_TRY
clause, then you must call TPOPQ before

Error_t erri
e r r_se t (&er r , sys_er rs , (Iong)ENOMEM, "Cou ldn , t aL loca te td by tes" , s ize) ;
throw_x(eerr) t

Figure 6: Creating an error value and throwing it to its caller

th row_er r_x(sys_er rs , (long)ENOMEM, "Cou ldn , t a l loca te td by tes" , s ize) ;
Figure 7: Combined set and throw functions

TRY
bodyl: statements that

THEN-IRY
body2: more statements

CATCH (ident i f ier¡
. . except ion hand ler . .

END TRY

may raise an exception

that may raise an except ion

Figure 8: Exception catching

Summer '92 USEI\IX - June 8-June L2,1992 - San Antonio, TXtzE

Moen

transferring control. Otherwise, the stack maintained
by the exception handling system will be damaged.
TPOPQ can only be used to break out of a single
TRY statement; it cannot be used to break out of
several nested TRY statements at once. For exam-
ple:

TRY
i f (bar -x1) == 0) {

r P o P () ;
returni

)
CATCH (err)

err3r int_x(err, stderr) ;
END-TRY

The exception handling system described in this sec-
tion is written in portable C, with the help of
setjmpQ, longimpQ and the C preprocessor.
Although its genesis is independent, the implementa-
tion is similar to that used by Roberts [Roberts 89].
The need for the TPOPQ macro is regrettable, and is
an occasional source of bugs, A purpose built
preprocessor could eliminate the need for TPOPQ,
and could also generate slightly better quality C
code for the TRY statement.

Cleaning Up After Errors

It is the responsibility of every library function
to clean up properly after detecting an error. There
must be no memory leaks, file descriptor leaks, or
data structures left in an invalid state after an earlv
enor exit.

Consider this function (note that mem_alloc_xQ
is a wrapper for mallocQ that raises exceptions, and
mem_freeQ is a wrapper for freeQ):

void
foo_x ()
{

F O O _ t * f l , t t 2 ì

. f l = mem_aI loc_x(s izeof (foo_t)) t
f2 = mem_al loc_x(sizeof (Foo_t)) ¡
. . . b o d y o f f o o _ x . . .
m e m _ f r e e (f 1) ;
mem_free (f2l ¡

)
If the first call to mem_alloc_xQ fails, then foo_x
will be immediately terminated by an exception.
This is the desired effect, and no error handling code
is required within foo_x to make this happen. How-
ever, if the second call to mem_alloc_xQ fails, then
there will be a storage leak, because foo_x will exit
without freeing f1.. Similarly, if the body of foo_x
(as represented by the ellipsis) is capable of failing,
then neither fl and f2 will be freed. Our solution to
this problem is to use the coding style in Figure 9.

The TRY clause contains resource allocation
and the body of foo_x. The THEN_TRY clause
frees resources; it is executed whether or not the

A Discipline of Error Handling

body fails. The reason that we initialize f1 and f2 to
NULL is so that the calls to mem_freeQ in the
THEN_TRY clause will work even if an exception is
raised in one of the calls to mem_alloc_xQ.
mem-freeQ is guaranteed to ignore a NÛLL argu-
ment, unlike freeQ on some UNIX systems.

void
foo_x ()
{

Foo_t * f1 . , * f .2 ì

f l = NULL;
f2 = NULL;
TRY

f l = mem_al loc_x(s izeof (Foo t)) ;
f2 = mem_al loc_x(sizeof (Foo_t)) t

b o d y o f f o o x . . .
THEN-TRY

m e m _ f r e e (f 1) ;
mem_free (f2l ¡

CATCH (err)
throw_x(err) t

END-TRY
)

Figure 9: Cleaning up after an error

This kind of analysis (for resource leaks) has to
be performed every time a library fr¡nction is writ-
ten. In order to make the analysis and coding easier
to perform, we strictly enforce two conventions.
First, all library functions that are capable of raising
exceptions have names suffixed by _x. Second, all
deallocation routines are required to ignore a NULL
argument. The _x convention has proven to be quite
useful, because it is otherwise very difficult to tell
whether or not a particular stretch of code is capable
of raising exceptions, and this is critical for resource
leak analysis. It is not convenient to assume that
every function call could raise an exception, because
we make heavy use of access macros to replace
direct access to structure members, and these usuallv
don't raise exceptions.

Documenting Exceptions

One of the rules that we have tried to enforcÊ
is that the enor interface provided by each function
must be fully documented. After all, this error inter-
face is part of the contract that the function makes
with its callers, just as surely as the result and argu-
ment types are.

We have run into several problems trying to
achieve this goal.

The first problem arises from the fact that it is
difficult to document the error interface of high-level
functions if the low-level functions that they call
don't have well:defined error interfaces. Unfor-
tunately, we have this problem with the UNIX sys-
tem calls. On many UNIX systems, the set of enors

Summer '92 USEMX - June 8-June 12,lgg2 - San Antonio, TX t29

A Discipline of Error Handling

generated by each system call (and the semantics of
system calls when an error is detected) is only par-
tially documented, Furthermore, the enor interface
for system calls is not portable: it changes from one
system to the next. Consequently, EMS library
functions that perform I/O currently have a poorly
documented, system dependent enor interface, and
writing error handlers for code that does I/O some-
times involves experimentation to find out the names
of the error numbers of interest, combined with
#ifdefs to check for different enor numbers on dif-
ferent machines. The obvious solution to this prob-
lem, which we haven't had time to pursue, is to
define a portable error interface for each system call,
then to work out the mapping from system enor ids
to portable enor ids for each system call and
machine type.

The second problem arises from the fact that
the error interface for a function tends to be defined
æ the union of the enor interfaces for all of the
functions that it calls. Not only does this lead to
large, cluttered enor interfaces, but it also means
that error interfaces tend to change over time as a
result of maintenance, and thus the documentation
for error interfaces tends to drift out of sync with
reality. This can be viewed as a documentation and
maintenance problem, in which case the solution
might be to attempt to generate the documentation
for error interfaces automatically, using a code
analysis tool. However, this problem can also be
viewed æ a design problem: in some cases, pro-
grammers are not making the effort to design a
high-level, abstract error interface that matches the
abstraction provided by the function; instead, they
are letting the enor interface default to whatever
their code does.

Many strongly typed languages with built-in
exception mechanisms either permit or require you
to declare the error interface of a function as part of
its type. (C++ and Modula-3 are examples.) This
declaration consists of a fixed list of error ids. In
our experíence, life is not that simple. If you are
doing object oriented programming (as we do), then
what you will find is that different subclasses of a
base class A will implement different error interfaces
for the virtual function inherited from A. For exam-
ple, we have a class called Stream (similar to a stdio
FILE). The set of enors that c¿n occur in (eg) the
write-x virtual function depends on which subclass
of Stream you are writing to. As a result, the error
interface for a function that takes a Stream as an
argument depends on which subclass of Stream is
actually passed in. I-anguage designers might wish
to consider polymorphic exception sets within func-
tion signatures to deal with this issue.

Moen

Testing

An important part of our error handling pack-
age (and a topic rarely discussed in the literature on
exception handling) is testing. Full adherence to the
enor handling discipline described here adds a
noticeable amount of complexity to our code, mostly
in the form of exception handlers withín library
functions which deallocate resources and restore data
structure invariants before forwarding an exception.
These exception handlers are rarely executed in pro-
duction code, and are therefore a fertile breeding
ground for bugs. Fortunately, we have developed a
simple, yet powerful mechanism for testing these
exception handlers. This mechanism works by
triggering fake exceptions in lowJevel functions
under the control of command line arguments. These
fake exceptions set off a cascade of intermediate
exception handlers, thereby exercising them. When
used in conjunction with a library regression test
program, this mechanism can be made to exercise all
of the exception handling code in a library.

A control point for triggering a fake exception
is placed by calling the macro xtrap_x0, which takes
an error id as an argument. These control points are
placed in low level library functions, at points where
an exception could potentially be raised by natural
means. Only a handful of calls to xtrap_x are
needed in EMS; the single call to xtrap_x in
mem_alloc_x (our wrapper for malloc0) is sufficient
to test 75-80Vo of our exception handling code.

EMS has a mechanism for passing debug
options into a program for use by library routines.
These debug options can either be placed in an
environment variable, or they can be supplied as
arguments to the command line flag -V, which all
EMS programs support. The xtrap mechanism is
triggered using the command line argument -V xt=i,
which causes the i-th dynamic invocation of xtrap x
to raise an exception. The command line argument
-V xc causes a program to run to completion, then
print out the number of times the xtrap x macro was
executed. To exercise a library, we write a test pro-
gram which exercises all of the functions in the
library. Then we run the program with -V xc, which
gives us the. number n. Finally, we run the program
n times (from a shell script), supplying the i-th invo-
cation with the argument -V xt=i. This is usually
sufficient to exercise 99Vo of the exception handling
code in the library (assuming that the test program is
written to provide full coverage of the library).
rWhen this testing technique is combined with the
debugging version of our storage allocator (which
detects bad calls to free and storage leaks), we can
detect most problems involving improper releasing
of resources in exception handlers.

130 Summer '92 USENIX - June t.June 12,1992 - San Antonlo, TX

Moen

Evaluation

The EMS approach to error handling is a suc-
cess. Our code is robust, well behaved, and testable,
and programmer acceptance of the approach is high.
There is an initial cost in learning how to use the
error handling system, especially for junior program-
mers, who can be a little uncomfortable with the fact
that most functions they call are liable to perform a
non-local jump upon encountering an error. How-
ever, once programmers get past the initial learning
hump, they seem to like the system, since using it
leads to cleaner looking code that is less obscured by
enor handling than equivalent code which checks
each ñ¡nction call for error return values.

Under the old regime of sígnalling enors by
return codes, the most comrnon bug is failing to
check the return code. This can lead to nasty
behaviour, like core dumps. Under the new regimê
of using exceptions to signal enors, the most com-
mon bug is failing to catch exceptions for the pur-
pose.of freeing resources, and this leads to resource
leaksr. The new style of bug has fewer harmful
effects on the overall robustness of the code.

There is still room for improvement. A more
flexible method for organizing eiro. ids into a híerar-
chy, so that programmers can test an enor for
membership in a group, and a way of associating
integer and string parameters with an error, would bé
welcome improvements. So would a lint-like tool
for- detecting common bugs in exception-handling
code, and a tool to automate the documentation oi
enor interfaces by scanning source code.

The EMS enor handling system compares quite
favourably to other C exception handling packages.
Its greatest strength is the Enor_t structuie, which
incorporates the novel idea of a stack of error
interpretations, and provides standard ways to print
arbitrary error descriptions, and to transmit them
across an IPC connection. Roberts' system [Roberts
89] provides a mechanism for raising and handlíng
exceptions very similar to the EMS system, but
erors are represented by a pair consisting of an error
id and an integer parameter. Allman's ðystem [All-
man 85] provides a flexible way to organize enor ids
into groups, has character string parameters which
are accessible to error handlers, and integrates UNIX
signals with the exception system. On the minus
side, his system requires assembly language support,
and has a much less convenient syntax for excéption
handlers. Allman also supports the more general
resumption model of exception handling. My feeling

A Discipline of Error Handling

is that terminate and resume style exceptions should
be signalled and handled by different mechanisms;
see the appendix.

A Plea For Standardization

The benefits of an exception handling sysrem
are strongest when it is used everywhere. Accord-
ingly, the EMS utilities library contains exception-
raisíng replacements or wrappers for many of the
most commonly used C library functions. We even
went so far as to implement a complete replacement
for stdio with bettef error handlin!2 (ana of course
better performance). Unfortunately, we don't get the
full benefit of our enor handling system when we
use libraries, such as those for the X Window Sys-
tem, that were written by other people. Bec¿use the
C enor system (errno, perror, etc.) is not extensible,
every library implementor is forced to create their
own enor handling system, and application program-
mers are stuck with the job of knitting these dif-
ferent enor handling systems together.

We think the world would be a better place if
the C community had a standard, extensibie, and
well designed system for fault and failure handling
which all library implementors used. This probably
won't happen in the C community, but there is still
hope for new languages such as C++. Implementa-
tions of C++ that support exception handling are just
now starting to appear. Unfortunately, syntax for
raising and handling exceptions is not enough: there
should also be standard conventions for using it, a
standard way to print errors, and exceptions raised in
all standard library routines upon failure.

. References

[Allman 85] Eric Allman and David Been. "An
Exception Handler for C, " Proceedings of the
Summer 1985 USENIX Conference. Portland.
Oregon, 1985.

[Darwin 85] I. Darwin and G. Collyer. "Can't hap-
pen -or- /* NOTREACHED *l -or- Real Pro-
grams Dump Core," Proceedings of the Winter
1985 USENIX Conference. Dallas, Texas, Janu-
ary 1985.

[Ellis 90] Margaret A. Ellis and Bjarne Srroustrup.
The Annotated C++ Reference Manual.
Addison Wesley, 1990.

[Goodenough 75] John B. Goodenough. "Exception
Handling: issues and a proposed notation,"
Communications of the ACM. Vol. 18, no. 12,
December 1975.

[Liskov 79] Barbara A. Liskov and Alan Snyder.
"Exception Handling in CLU," IEEE Transac-
tions on Software Engineering. Vol. SE-5, no.

@t went wrong when an enor
occurs, We discovered the ha¡d way that the contents of
e¡rno ¿ue trot to be trusted afte¡ a stdio error,

/Using the debug version of the EMS memory allocator,
resource leaks a¡e not diffrcult to diagnose, since we
provide a facility for listing the memory blocls which are
still allocated at program exit time; this list gives the file
name and line numbe¡ of the call to mem alloc x for each
allocated block.

Summer '92 USENIX - June 8-June L2,l99Z - San Antonio, TX 131

A Discipline of Error Handling

6, November 1979.
[Meyer 88] Bertrand Meyer. Object-Oriented

Software Construction. Prentice Hall, 1988.
[Nelson 91] Greg Nelson. Systems Programming

with Modula-3. Prentice Hall, 1991.
[Randell 75] Brian Randell. "system Structure for

Software Fault Tolerance," IEEE Transactions
on Software Engineering. Vol. SE-l, no. Z,
June 1975.

[Roberts 89] Eric S. Roberts. "Implementing Excep-
tions in C," Research Report 40, Digital Sys-
tems Research Center, March 21, 1989,

[Steele 90] Guy L. Steele Jr. Common Lisp. Digital
Press, 1990.

[Yemeni 85] Shaula Yemeni and Daniel Beny. ,,4
modular verifiable exception-handling mechan-
ism," Transactions on Programming l:nguages
and Systems. Vol. 7, no. 2, April 1985.

Author Information

After 7 years of hacking UNIX, C, Macintosh,
and graphical user interfaces, Doug Moen received
his B.I.S. from the University of Warerloo in 1982.
His bachelor's thesis was the design of a program-
ming language (Goal) with powerful abstraction
mechanisms and a polymorphic type system based
on dependent types. In 1988, after graduating, Doug
joined Interactive Image Technologies wliere he
made major contributions to an object-oriented, plat-
form independent graphical user interface libiary,
and was the principle designer and architect for
HyperCase, a multi-media authoring tool. In 1989,
Doug moved to Nixdorf, where he has made sub-
stantial contributions to the design and implementa-
tion of EMS, a programmers toolkit for building
document image processing systems. Doug is now
available for employment. Reach him at
doug@sni.ca, or at (416) 977-490'1, or at 77 Carlton
Sheet #1504, Toronto, Ontario, MsBZJ7.

Appendix: Notify and Signat Conditions

This paper has dealt with 2 kinds of excep-
tional conditions which can be detected bv a librarv
function: faults and failures. Both of theie kinds of
conditions result in the termination of a function call
once they are detected. But there is a third class of
exceptional conditions: these are conditions which
need not prevent the function from completing its
task, but which may nevertheless need to be reported
to the caller before the function has completed its
task. Goodenough [Goodenough 75] distinguishes
two types of exceptional conditions which fall into
this category, which he calls notify and signøl condi-
tions. A handler for a notify condition is prohibited
from terminating the operation. A handler for a sþ-
z¿l condition is given the choice of terminating the
operation, or fixing the problem and resuming it.

Moen

For an example of a notify condition, consider
pclose(3), which repeatedly calls wait(Z) until rhe
process associated with the argument stream has
exited. The exit statuses of child processes which
are different from the process that pclose0 is
attempting to wait for are simply thrown away, and
programs that cåll pclose0 have no way of obtaining
this information. This is a design flaw in pclose0
which could be rectified through the use of a
mechanism for reporting notify conditions.

For an example of a signal condition, consider
a function which is communicating with a remote
process over a network connection. If the remote
process has apparently stopped talking, then the
function has two choices: it can report a failure, or it
can keep trying to communicate with its peer, on the
assumption that the peer might resume communica-
tion in a few seconds. In practice, timeouts are
often used in this kind of situation. A better
approach might be to report a signal condition, and
let the caller attempt to fix the problem, or obtain
advice from the user on whether to retry or abort.

A second example of a signal condition is a
memory alloc¿tor which gives the caller an oppor-
tunity to free cached memory blocks before reporting
a failure.

As I have tried to show, signal and notify con-
ditions a¡e real. The question is, what combination
of language features and programming conventions
are most appropriate for dealing with them?

One approach is to incorporate the reporting of
signal and notify conditions into the same exception
handling mechanism that is used to report failures.
This leads to the retry model of exception handling.
In this model, when an exception is raised, the con-
text raising the exception is not immediately ter-
minated. Instead, the exception handler is given the
choice of terminating the function that raised the
exception, or resuming it. The Mesa programming
language supported this model of exception han-
dling; so does Common Lisp [Steele 90]; and so
does Allman and Been's exception handler for C
[Allman 85].

An evident disadvantage of implementing the
retry model of exceptíon handling in C is that it is
necessary to make exception handlers into separate
functions. Not only is this grossly inconvenient, but
the exception handlers do not have access to the
local variables associated with the statement block
that they are associated with.

The retry model of exception handling provides
dynamically scoped handlers for signal and notify
conditions that are associated with specific blocks of
code. It is not clear that this is the best scoping
regimen. Alternatives are to associate exceplioñ
handlers with modules, or to associate them with
objects. Handlers with module scope can be imple-
mented by registering a callback fi¡nction with the

t32 Summer '92 USENIX - June E.June 12,1992 - San Antonio, TX

Moen

appropriate module. Handlers with object scope can
be implemented using object oriented programming,
by oveniding a virtual function in the class of the
object.

I have not yet developed a personal philosophy
concerning the proper freatrnent of signal and notífy
conditions. However, I would like to show how
dynamically scoped handlers for these conditions
could be added to the EMS enor handling system.
The technique could probably be adopted to work
with any C-based termination-model exception han-
dling system.

The function

int not i fy(Error_t *)

is used by a function to notify its client of an abnor-
mal condition; it is used to implement both "signal"
and "notify" exceptions as described above. The
Enor-t structure is used to describe the abnormal
condition. The value returned by noti$0 is one of
the values:
N_ABORT The client wishes the function to abort

by raising an exception.
N_RETRY The client wishes the function to keep

trying.
N_IGNORE The client ignored the notification.
A client can catch a notification using the following
control structure:

NOTIFY (fun)
code which may raise
a not i f icat ion

END-NOTTFY

The argument to NOTIFY is a function pointer with
type

in t (* fun) (Er ro r_ t *)

This function should examine the Error structure
(and in particular, the error id), and return
N_ABORT, N_RETRY or N_IGNORE. The return
value N_IGNORE means that the notification
handler function did not recognize this particular
notification.

NOTIFY END_NOTIFY blocks can b€
nested in the same way that TRY ... END_TRY
blocks can. When a notiflcation is raised, notifyQ
searches the stack of NOTIFY blocks, calling each
notification handler function in turn until one of
them returns a value different from N IGNORE. If
no handlers are present, or no handler- is willing to
handle the condition, then notifyQ returns
N-IGNORE.

A Discipline of Error Handling

Summer '92 USENIX - June 8-June L2, L992 - San Antonio, TX 133

