
NeD: The Network Extensible Debugger
Paul Maybee - Solbourne Computer, Inc.

ABSTRACT

_ N9D is a debugging server with a programmable network interface. NeD is designed to
be flexible and extensible enough to support a wide range of debugging needs. Debugging
clients communicate with NeD by sending it programs to execute. The programming
language, NeDtcl, is tcl[l] extended with 30 debugging specifrc functions. NeD can be useã
as a traditional debugger with a textual interface, but the user would frnd the language
cumbersome. It is designed to be convenient for communication between programs, rather
than between program and user. As a demonstration of NeD's víability as a debugging server,
the pdb[2] debugger has been retargeted to use NeD as its server.

1.0 Introduction

The nature of UNIX software development con-
stantly changes. Over the past several years worksta-
tions with graphias displays have largely replaced
ascii terminals, resulting in ubiquitous windowing
systems, and the enormous growth in user interface
development. The increasing acceptance of object
oriented programming has resulted in the widespread
use of new programming languages to support it.
Multi-process programming has always been com-
mon on UNIX machines, but its use has taken on
new dimensions with networks and the ability to
easily create and communicate with remote
processes. Multi-th¡eaded programming is supported
now on many vendors' platforms, with more to come
in the near future. All of these developments have
resulted in a steady increase in the size and com-
plexity of software systems. Yet the scope of
changes in debugging technology over the same
period of time has been narrow, focusing primarily
on user interface issues. Several products, e.g.,
dbxtool [3] and SaberC (now CodeCenter) [4], have
placed window system interfaces over essentially
command driven debuggers. Pi [5] and pdb pushed
this technology further by completely eliminating the
command interface. SaberC made an initial attempt
at data structure visualization, ild FIELD t6l
advanced this technology by the addirion of layoui
methods and iconic structure representations.

FIELD also developed an inter-tool communi-
cation system (now available in commercial guise)
that allows various other softwa¡e development and
visualization tools to interact directlv with the
debugger [7]. Tool-interconnection appeæs to be the
next major step in softwa¡e development environ-
ments, with several vendors developing products
along the lines of the FIELD work.

Several debuggers now support debugging C++
programs, at various levels. One of the primary rea-
sons for less than complete support in the debuggers
has been inadequate compiler generated symbol
tables. This problem should gradually disappear as

better compilers become available.
The ability to debug multiple processes, even

on the same machine, has typically not been sup-
ported, and UNIX implementations often have
prevented debuggers from even attaching to newly
forked process. Large program debugging seems to
be an issue that is often ignored in the construction
of debugging systems (with the exceptions of pi [12]
and pdb). It is common for users go away and come
back later when a program has finished loading.

NeD addresses all of these issues. NeD does
not have a user interface to speak of; it is a server
designed to work with client user interface tools.
NeD was built speciûcally for the support of the
C++ language, although it is sr¡itable for use with
other languages. However, its capabilities to debug
C++ in a completely native mode still suffers some-
what for want of compiler support. NeD supports the
debugging of child processes as they fork from
debugged parents as well as debugging over the net-
work and debugging multithreaded proc€sses. NeD is
extensible; a client may customize NeD's remote
interface to more easily and efficiently provide
needed services. Thus NeD will continue to be use-
ful in the face of change by allowing clients to
expand the power of the debugging server at run
time. Finally, because of the use of lazy symbol
evaluation, NeD is very efficient, especially in its
use of memory.

In the following discussion, "NeD" will refer to
the NeD server, "client" will refer to a client of the
NeD server, "pdb/NeD" will refer to the version of
pdb implemented using NeD, and "subordinate pro-
gram" will refer to a program being debugged by
NeD.

2.0 Features

2.1 Client-Server Debugging
NeD implements the server side of a

client/server debugging system. The typical client
provides a user interface, the NeD server provides
debugging services. NeD executes on the same host

Summer '92 USEMX - June 8-June 12,lgg} - San Antonio, TX L45

NeD: The Network Extensible Debugger

as the subordinate program, and uses the operating
system provided interface to query and control the
process. NeD contains an extended tcl[l] command
interpreter. Tcl provides an embedded, list struc-
tured, command language that provides "mechanisms
for variable, procedures, expressions, etc."; the
extension consists of a set of additional embedded
functions that provide debugging capability. This
extended language is NeDtcl (see Appendix A). The
clients execute remote procedure calls that send
NeDtcl statements to the interpreter. For example, a
call may contain a direct invocation of an embedded
debugger function, or contain statements defining
new NeDtcl procedures, or it may contain code
invoking these previously defined procedures.

The execution of the NeDtcl statements pro-
duces results that are forwarded back to the client as
the return value of the remote procedure call. In
addition , the execution of some statements causes
the subordinate to change state, for example to begin
execution. When an execution state change occurs
NeD generates an event. The event is passed to the
NeDtcl interpreter which may handle it, or send it on
in a message to the client. NeD generates several

Maybee

classes of events automatically. Clients can also
cause additional, user defined, events to be gen-
erated. A client handles the event when the message
is received, or it can download procedures to the
interpreter to catch and process events.

NeD supports a special kind of breakpoint that
is placed only on a fork system call. When this
breakpoint is hit, NeD modifies the program text fol-
lowing the fork call such that executing the new
code will cause the process to suspend. NeD then
allows the process to execute the fork. The new
child process that is created will immediately
suspend; NeD takes control of the parent again,
loads the pid of the child, and opens a new socket.
NeD then forks. The child copy of NeD attaches to
the new subordinate child and accepts connections
on the socket. The parent copy of NeD generates a
"new3roc" event containing the pid and socket id of
the child NeD. At this point the NeD client can con-
nect to the new NeD and debug the child subordi-
nate process (see Figure 1).

NeD clients can extend this picture by attach-
ing NeD servers to multiple processes, even when
those processes are on different machines. Pdb/Ì.{eD,

Figure 1: Debugging Processes that Fork

L46 Summer '92 USENIX - June t.June 12,lgg2 - San Antonio, TX

Maybee

for example, will allow any number of processes to
be debugged simultaneously through one set of win-
dows. The user can select the process to view via a
menu selection. In addition, a process being
debugged will automatically come into view when it
hits a breakpoint.

Using a client-server architecture has efficiency
drawbacks when more sophisticated tools such as
event stream recognizers or program monitors are
being used [14,15]. Network latency makes events
out-of-date by the time they arrive. Data collection
may take up a great deal of network and machine
resource. NeD alleviates these problems through its
extensiblity. Debugging tools can implement event
recognizers or data filters in the server itself (section
2.3) or link additional functionality into the subordi-
nate process(section 2.4).
2.2 Dlsplaying Data

All communication between NeD and its clients
is textual, including values returned by expression
evaluation requests. NeD supports displaying data
structure values through "templates". Templates
describe how fields are to be displayed, including
conditional display based upon the program state. If
an integer variable "i" with a current value of 10 is
evaluated the result returned by NeD would be
"SIMPLE NUMBER 10", indicating thar a simple
value was returned. A template for this expression
would have a form similar to this result. The tem-
plate "SIMPLE {hex tim}" would direct NeD to
return the value in hexidecimal and as a system time
value. Also allowed are octal, decimal, binary, ascii,

NeD: The Network Extensible Debugger

unsigned decimal, floating, and special formats. The
special option allows the user to customize the
display of values in a way that makes sense in the
context of the subordinate program. This option
requires that the name of a function to be found in
the subordinate be supplied, e.g., "SIMPLE {hex
{spl myfunctionll". When this value is to be
displayed, myfunction is invoked with the value as
input. It returns a pointer to a static text string
representing the value.

For aggregate values the format matches that of
the data structure. Given the following structure
definition:

struct s {
in t i ¡
struct s *ptr i

) ;
when a variable of this type is evaluated NeD
returns:

AGGREGATE S {
{ i {srMPr,E NUMBER 10}}
{p t r {S IMPLE PTR Oxf7 f f fbO0} }

)

Each field of an aggregate template contains a
three element list:: first the field name, then a condi-
tional expression, and then the field's template. The
template that matches "struct s", that displays "i" as
above, and displays "ptr" only when "i" is non-zero
looks like:

set_tenplate {unsigned int} {CLASS foo} {SrMpLE oct}

Figure 2: Displaying unsigned integers in class "foo"

O clo¡at O r¡ le I c lass O Funct ion

i i i : : : i (. i :) : i : yí. i i ì î : :
Û int type;
! XAnyEvent xany:
ú XKeyEvent xkei;
É XBut tonEventxbut ton;

Þ
Þ
Þ
Þ

Scope:0l-d-tech

Condit ion: n<>. tvpe : KeyPress | | <>. type El

i :ili: i i i:il i í i:i:::i i :ii:: ¡ í : i ir;i ! ïrii i í,,,,: ¡ í ii :, i i ri,i i
Í'u rr*tÍc n:

c@@
Figure 3: Pdb/NeD template editor

Summer '92 USENIX - June 8-June L2,lgg} - San Antonio, TX 147

NeD: The Network Extensible Debugger

AGGREGATE s {
{ i { } {S IMPLE {hex t Ín } } }
{ p t r { < > . i t = 0 } { s I M p L E h e x } }

)
Any boolean expression that can be evaluated in the
context of the original expression can be used as an
evaluation condition. The angle bracket pair (+) in
the example condition refers to the expression being
evaluated, "exp", the brackets will be replaced by
"(exp)" before evaluation. This is especially useful
when displaying union types with tag fields. Each
variant of the union can cafty a condition such as
"tag == mytag". Then when the union is evaluated
only the correct union variant appears.

A template can be specified on an individual
expression or for all expressions of a given type (in
various scopes). For example, all unsigned integers
in the scope of class "foo" can be displayed in octal
by executing the NeDtcl command shown in Figure
2, Variables of type "unsigned int" evaluated in
Iocations other than member functions of class "foo"
will not be affected. Scope designations can include
GLOBAL, FILE, CLASS, or FUNCTION scopes.
When an expression is evaluated the templates will
be searched for a matching type in the inner most
matching scope. If no custom ièmplate is found then
a default global template is used.

The set of custom templates that are in effect
can be retrieved from NeD and saved. NeD can then
be reloaded with these the next time that the oro-
gram is being debugged. Templates for entire claises
of debugging can be prepared a priori and used by
groups of programmers. For example, the X window
system [5] defines a union called an XEvent with
thirty-three variants. Thirty-one of the væiants are
the different X event types and one of the va¡iants is

Maybee

the tag field (i.e., the tag is an overlay of the first
field in each of the events), the remaining variant is
padding. A NeDtcl initialization file could be
prepæed for X progr¿rmmers that would include a
template for the XEvent; displaying rhe proper væi-
ant depending upon the tag field. Figure 3 shows the
pdb/Ì.{eD user interface for editing type templates
2.3 Extensibility

NeDtcl's embedded functions provide, more or
less, haditional debugger functionality. There æe
functions that, for example, set and delete break-
points, advance execution, and evaluate expressions,
The interface is stateless. There is no concept of a
current function, or current file, as a more traditional
debugger would supply, Commands tend to take
additional parameters with which to specify prog¡am
locations or options. For example, in dbx the user
can type "stop at 10" to set a breakpoint at line L0
of the current file. When using NeDtcl this operation
requires entering code as shown in Figure 4. This
makes the language unacceptably cumbersome for
human use, but not for computer use. The NeD
interface is designed for use by a NeD client that
presents an alternate, most likely graphical, user
interface, This is not to say that NeD cannot be used
as a textual debugger, only that the interface, by
default, does not support it well. Since NeDtcl is a
complete programming language a "dbx-like" user
interface could be written in NeDtcl and loaded into
the interpreter. In fact, to facilitate testing NeD, this
was done.

NeDtcl does not contain functions that are not
directly debugger related (e.g., dbx's "make") or
functions that produce information that can otherwise
be computed (e.9., dbx's "where"). Non-debugging
functionality, such as recompiling objects, is

se t_break [addr_of { th is f i le .c t0 { } }] { } { } s top

Figure 4: A breakpoint in NeDtcl

defínition of traceback(stack_num, max_depth)

proc Èraceback {{stack_nun 0} {nax_frames 100}} {
set d [min $max_frames tdepth stack_num] l
set t race " "
f o r { s e t i 0 } { S i < S d } { s e r Í [e x p r { $ i + r y ¡ y

set pc lget_pc $stack_nu¡n gi l
set loc I locat ion_of gpc]
concat the pc, l-ocatÍon, and evaluated
lappend trace [l Íst gpc gloc

Ieva?_Jjst $Ioc gstack_num gi

)
[l ist_of_params $loc¡ ¡ ¡

return Strace
)

compute traceback
}:.ot¡ many frames?
ini t ia l ize l ist

{ ### for each frame
get the pc
get source location

parameter l ist

return completed list

Figure 5: A traceback

Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX14t

Maybee

assumed to be provided, if necessary, by the NeD
client. Complex functionality, such as displaying a
stack traceback, can be loaded into the interpreter, In
the pdb/Ì.[eD implementation, the first operation pdb
directs NeD to do at start-up is load a file of NeDtcl
procedure definitions into the server's interpreter;
one of which is "traceback"; see Figure 5.

The information returned by traceback is a
list with the same information as is contained in a
stack traceback obtainable from any source level
debugger. Ttaceback Eaverses the execution stack
returning a desctiption of each stack frame. Each
description is a list containing the pc, source loca-
tion (including function name), and parameter list for
the frame. A parameter list contains the name and
curent value of each pæameter. In these examples
itialics aÍe used for names (e.g., traceback,
get_pc, eval_Jist, and 7is+_of_params)
defined in the pdb/Ì.{eD start-up file; names in bold
(e.g,, depth and location_of) are embedded
NeDtcl functions. The remainder is tcl code.

Getting a Eaceback requires only one remote
procedure call. The previous version of pdb required
one procedure call to get the location and parameter
narnes and then another call for the evaluation of
each parameter. An alternate way to decrease the
remote t¡affic would have been to modify the former
interface to include all the information returned by
this traceback function. However, the problem with a
fixed interface is that it does not provide enough
flexibility. It may be that a future graphical debugger
interface would require much less, or much more
information for each stack frame (e.g., no parameter
evaluation or values for all local variables). NeD
provides this flexibility.

NeD: The Network Extensible Debugger

NeDtcl also provides support for the intercep-
tion and generation of NeD events. Figure 6 imple-
ments a conditional step function. The procedure
step_untilJ takes an expression (and some con-
text information) and steps the program one source
line at a time until the expression evaluates to true.

Figure 6 implements a function similar to a
"watchpoint", i.e,, break execution on a memory
location content change rather than on a memory
location being executed. At each execution of etep
the process changes state twice; it stæts executing
and then it stops executing. Each of these state
changes will result in an event being sent to the
client. If the client normally processes these events
to update a display then this may result is a great
deal of unwanted screen painting and network traffic.
This procedure can be easily modified to intercept
the events.

When NeD generates an event it invokes the
NeDtcl function process_events,
Process_events cycles through a list of event
processor functions looking for one that has
expressed an interest in the event. If one is not
found, the event is sent to the client via the
evenÈ3ass function. So to intercept the process
state change messages, the "step until" procedure
must be modified to add an event processor. The
function on_event is used to post or remove an
event processor. The first parameter indicates the
event class to catch, the second parameter is a com-
mand to execute. If the command returns non-zero
then the event has been handled. Step_untíL2
installs a simple handler for all "proc_state" events
before invoking step_until-1, and then removes
it aftenvards. SËep_until2 also sends a
"proc-state running"

-Ivent
to the client before

###
###

proc

step_unt i I l (locat ion stacknum expression)
: no event interception

step_unÈiJJ {1oc stacknum exp} {
wh i le { l [p roc_eva l 91oc gs tacknum 0 $exp { } 0] } {

s tep 0 { }
)

Figure 6: A watchpoint

step_until2 (location stacknum expression)

proc step_untlt2 {1oc stacknum exp} {
event3ase {proc_state running}
on_event proc_state {return 1}
step_unt iJJ gloc gstacknum gexp
on_event proc_state
checketate 1

)

Figure 7: A more complex example

Summer '92 USENIX - June 8.June L2,1992 - San Antonio, TX

###
###

###
###

program set running
handle event

remove handler
generate final event

149

NeD: The Network Extensible Debugger

beginning execution and causes NeD to generate a
"proc_stateil event after stepping has completed.
This allows the client's normal event processing to
see the "step until' operation as it would a single
step; see Figure 7;

The previous examples demonstrate NeDls abil-
ity to display the state and control the execution of a
subordinate process, the following examples show
that NeD can also perform non-trivial data queries
on subordinates. Procedure LÍst_Tengtl¡J will
calculate the length of a linked list. It assumes that
the list structure contains a next field, by default
named "next", pointing to a structure of the same
type. Given the head of the list, the function iterates
until it discovers a next field with a special value, by
default 0x0. Each succeeding next value is computed
by adding ".next" onto the previous expression and
reevaluating. See Figure 8 for the listing.

This implementation will work, but the size of
the expression being evaluated grows with the length
of the list, making it a less than perfect solution. An
alternate implementation makes use of the expres-
sion evaluator's "typeof intrinsic function to keep
the length of the expression constant, Instead of
using the previous expression to get the next expres-
sion to evaluate, Tist_Tengtl¡2 uses the value of
the previous expression. The next expression is gen-
erated by casting the value to a pointer to the type of
the structure and then adding "->next". See Figure
9.

Queries such as this can be verv useful in
building advanced graphical user intórfaces, for
instance structure browsers. Network latencv can be
reduced by filtering data at the server rather than
requiring network transmission. As with the

Maybee

templates, groups of users working on similar prob-
lems can share modifications to enhance a project's
debugging envi¡onment.
2.4 Subordinate Extensibility

NeD allows the subordinate program to be
extended at run time. NeD will load dynamic
libraries into the executing subordinate and then
allow functions in the library to be invoked through
the debugger interface. This can be useful for sup-
porting debugging aids, such as tools that traverse
program data structures looking for inconsistencies,
or performance monitoring frrnctions. For example,
the list length function of section 2.3, ot a free
space analysis routine could be supplied by the user
in a shared library. One of the first uses this was put
to at Solbourne was to provide a file desøiptor
status utility. A function that 'stat's all the processes
file descriptors is linked in and invoked. The fr¡nc-
tion dumps a report to a file; the utility reads the
report and displays the information to the user.

Newly linked library code can also be directly
called by the subordinate process by inserting calls
into the program text. This feature provides the facil-
ities needed for less intrusive debugging and moni-
toring tools, such as Parasight [13]. The Parasight
paradigm involves inserting new functions into a
running process to collect performance and trace
data. It is orders of magnitude faster to have the pro-
gram collect its own data, than to have the debugger
stop it continually to do so.

NeD causes the subordinate proc€ss to execute
dynamic linker calls in order to load new libraries.
Under SunOS, dynamic linker routines are always
resident with any dynamically linked process. NeD
exposes the 4 dynamic library routines necessary

l ist_Iength1(loc stacknum head f Íeld 1end): length of t ist

proc Jist_Length7 {Ioc sracknum head {f ietd next} { Iend OxO}} {
set next IsimpJevalof [proc_eval gloc gstacknum 0
$head { i 0 l l se t exp ghead fo r {se t i 0 } {gnexr ¡= g lend} {se t i lexpr
$ i + 1 1) {

se t exp ($exp¡ .$ f ie ld se t nex t l s inp leva lo f
[proc_eval $loc gstacknum 0 $exp {} 0] I } return $i }

Figure 8: Calculating length of a list

r ist- length2(Ioc stacknum head type f iel .d lend): length of r ist

proc l ist_Length2 { loc stacknum head {f ie ld next} { lend Ox0}} {
set next I sinplevaTof [¡lroc_eval gloc gstacknum 0
$head {} 0l l set type ls jmp-Uevalof [proc_eval gloc
$s tacknum 0 typeof ($head¡ { } 0 l l fo r {se t i 0 } {$nexr t= $ lend} {ser Í
l e x p r $ i + 1 1) {

se t exp (($ type *)$nex t) ->$ f ie ld se t nex t as inp levaTof
[proc_eval $Ioc gstacknum 0 $exp t] 011] return $i]

Figure 9: An alternate list length calculator

150 Summer '92 USENIX - June 8.June 12, L992 - San Antonio, TX

Maybee

(dlopen, dlclose, dlsym, and dlerror) by placing sym-
bols for them into the symbol table. Expressions can
then reference the symbols to access the functional-
ity they provide. On systems where the dynamic
libraries are not always present in the subordinate
the debugger must either use an altemate mechanism
or require the image to be linked specially. Figure
10 is a sample NeDtcl function that invokes an arbi-
trary function in an arbitrary shared library.

NeD: The Network Extensible Debugger

3.0 Implementation

NeD is more than a demonstration of concept;
it will form the basis for the next generation of
Solbourne's debugger products. As such, it must be
efficient and provide a full range of debugging
features. NeD is still under development but is
already robust enough and fi¡nctional enough to sup-
port the pdb debugger. NeD is implemented for the
SPARC architecture under SunOS 4.1.1. It can

proc dyncalT I library func args) {
set 1 simplevaLueof

[proc_evaf {{} 0
set f simplevalueof

lproc_evaf {{} 0
proc_eval {{} 0 {}} 0
proc_eva l { t } 0 { } } 0

{ } } 0 0 d l o p e n l $ I i b r a r y , l) { } 0 l

0 0 d l s y m ($ 1 , $ f u n c) { } 0 l
((i n t ()) $ f) ($ a r s s) { } 0
d l c l o s e ($ 1) { } 0

Figure 10: An arbitræy function evaluator

{ } }
0
0

Figure 11: pdb/Ì.{eD architecture

Summer '92 USEMX - June 8-June LZ,lgg2 - San Antonio, TX 151

NeD: The Network Extensible Debugger

debug C, C++, and Fortran progmms at the source
level, understanding proper target language syntax.
Initial tests indicate that NeD uses considerably
fewer resources than conventional debuggers such as
dbx and gdb. Table 1 shows a comparison of the
time and memory required to load a C++ prog¡am
containing approximately 144,000 symbols. The
tests generating these results were run on a Sol-
bourne 54000 with 40 meg of memory.

resource NeD edb dbx
real time (sec) 33 29 t40
memorv (mess) 4 t6 39

Table 1: Comparison of NeD, gdb, and dbx

4.0 Futures

4.1 Pdb/NeD Architecture
Pdb/NeD clients currently communicates

directly with NeD seryers. However they will even-
tually communicate through a FIELD-like message
server [7,9]. Pdb/Ì.[eD is currently a single client,
and that too will change. The pdb user will be able
to invoke multiple, independent clients that commun-
icate through the message server. Clients will be
specialized, for example to display and edit anno-
tated source, to evaluate expressions, to graph data
structures, or to monitor communications. NeD
servers will respond to queries from any client.
Clients will extend the servers by downloading pro-
cedure definitions, or by having the servers load ini-
tialization files, or by mapping shared libraries that
provide additional functionality into the
subordinate's address space (see Figure 11).
4.2 Multi-threaded Process Debugging

NeD contains support for debugging multi-
threaded programs, but the current implementation
base (i.e., SunOS 4.1.1) does not implement multi-
threaded processes, thus there is never more than
one thread per process. NeD will be ported to a
multi-threaded version of the SVR4 operating system
in the near future. The port will also result in a
switch from using the ptrace debugging interface to
using the /proc interface [10]. A benefit of the move
to the /proc interface is that it greatly simplifies
debugging forked processes.
4.3 Grafting NeDtcl to Other Debuggers

A debugger for a modern software development
environment cannot succeed without associated tools
providing graphical user interfaces. In fact, mosr
debuggers offer very similar underlying capabilities,
with the main distinction between them coming in
the interface or higher level analysis capabilities.
User interface software written for the X window
system, in our experience, has been easy to port
between platforms. Porting debuggers is a much
more difficult task slnce the debugger is dependent
upon the operating system's debugging interface, the

Maybee

compiler-debugger interface, and machine architec-
ture. Projects to standardize UNIX and to standard-
ize the symbols generated by compilers, ê.8,
DWARF [11], will help make the task easier if
adopted. But the task will not become as easy as
porting X library dependent code, or other applica-
tion software, in the foreseeable future.

The NeD viewpoint is that the investment in
graphical tools can be most easily capitalized on if
the debugger doesn't have to be ported. If the graph-
ical tools are written to use a defined debugger inter-
face such as NeDtcl, then only the interface must be
ported to a new debugger. There are debuggers
available, e.g., the Free Software Foundation's gdb,
that have already been ported to many platforms. If
such a debugger were to understand the NeDtcl
interface then new tools could more rapidly be avail-
able across different platforms.

The NeDtcl portion of the NeD server amounts
to about 1600 lines of C++ code, most of which is a
straightforward translation of the parameters to, and
results generated by, the embedded functions from
character to internal format. The special formats
required for expression value output (see "value" in
Appendix A, Data Types) is not such a large change
to the traditional value display procedure in any
debugger. This would typically be a recursive rou-
tine that traversed an internal structure and prints out
the contents of each field. The modifications consist
mainly of printing some additional brackets and typ-
ing information that must already be available to
such a module.

5.0 Acknowledgments and Availability

Andrew Gerber implemented the graphical user
interface for NeD, making sophisticated testing pos-
sible. The members of the OI group sewed as guinea
pigs for early versions of pdbAIeD. Their sugges-
tions and comments have helped enormously.

NeD is still under development but will be
available from Solbourne Computer's software busi-
ness unit later this year. The initial version will be
targeted for SPARC compatible computers running
UNIX SVR4.

References

[1] Ousterhout, J. K. Tcl: An Embeddable Com-
mand Language, Proceedings of the Winter
1990 USENIX Conference, Washington D. C.
(January 22-26,7990)

[2] Maybee, P. pdb: A Network Oriented Symbolic
Debugger, Proceedings of the Winter 1990
USENIX Conference, \ilashington D. C. (Janu-
ary 22-26,7990)

[3]Adams, E. and Muchnick, S. S. Dbxtool: A
Window-Based Symbolic Debugger for Sun
Workstations. Software - Practice and Experi-
ence, V16 N7, July 1986, pp.653-669

tsz Summer '92 USENIX - June 8.June 12,1992 - San Antonio, TX

Maybee

[4] Kafer, S. Lopex, R. and Pratap S. Saber-C An
Interpreter-based Programmíng Environment
for the C Language, Proceedings of the Sum-
mer 1988 USENIX Conference, San Francisco,
CA (June 20-24, L988)

[5] Cargill, T. A. The Feel of Pi, Proceedings of
the Winter 1986 USF,NIX Conference, Denver,
CO (January 15-17, 1986)

[6] Reiss, S. P. Interøcting with the FIELD
Environment Brown University DeparEnent of
Computer Science Technical Report CS-89-51
(May, 1989)

[7] Reiss, S. P. Integratìon Mechønßms ín the
FIELD Environment, Brown University Depart-
ment of Computer Science Technical Report
CS-88-18 (October, 1.988)

[8] Scheifler, R. W., Gettys, J., and Newman, R. X
Windaw System C Library ønd Protocol Refer-
ence, Digital Press, 1988

l9l ToolTalk Programmers Guide, SunSoft, Inc.
Revision A of September 1991

[10] Faulkner, R., and Gomes, R, The Process File
System and Process Model in UND(System V,
Proceedings of the Winter 1991 USENIX
Conference, Dallas, TX (Jan. 2l-25,lggt)

[1,1] DWARF Debugging Information Format, IJNIX
International Programming Languages Special
Interest Group, October 21,1,99i,, DRAFT

[12] Cargill, T. A. Pi; A Case Study in Object-
Oriented Programming, C++ Workihop
Proceedings, Santa Fe, NM, USENIX Assoc.
(Nov 9-10, 1987)

[13] Aral, Z. and Gertrer, 1., High-Level Debuggíng
in Parasight, Proceeding of Workshop on
Parallel and Distributed Debugging, published
as SIGPLAN Notices, V24, No. l, ppt51.-1.62,
January 1989.

[14] Bates, P., Debugging Heterogeneous Dßtri-
buted Systems Using Event-BAsed Models of
Behavior, Proceeding of Workshop on parallel
and Distributed Debugging, May 5-6, 1988,
published as ACM SIGPLAN Norices, V24,
No. 1., pp 1.1-22, January 1989.

[15] Spezialetti, M. An Approach to Reducíng
De.lays in Recognizing Distributed Event
Occurrences, Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debug-
ging, May 20-21, 1991., published as ACM
SIGPLAN Notices, V26, No. 12, December
799L.

Author Information

Paul Maybee is a software engineer with Sol-
b9u_rne Computer, Inc. He is the principle designer
of Solbourne's debugger products including pdbìnd
NeD. Prior to joining Solboume, Paul attended the
University of Colorado where he received a Masters
degree in Computer Science. Reach him via U.S.

NeD: The Network Extensible Debugger

Mail at Solbourne Computer, Inc., 1900 pike
Longmont, CO 80501, or electronically
paulm@solbourne.com.

Rd.
at

Summer '92 USENIX - June 8-June lZ,1rgg? - San Antonio, TX 153

NeD: The Network Extensible Debugger Maybee

Appendix A: NeDtcl grammar

This grammar defines the NeDtcl extensions to tcl. All non-chain rule productions correspond to tcl lists.
Thus a production with n terms on the right hand side refers to a tcl list of length n (unless n = 1). Terminals
appear in uppercase, non-terminals in lowercase. All non-terminals ending in "_name" are chained to STRING,
these productions do not appear. Functions can complete successfully or fail. Functions are listed with ttre
parameters types each expects. Each function is followed, optionally, by the type of value each returns when it
completes successfully and the type of event it generates.
Embedded Functions

command=proc-cmd I scope-cmd I obj_cmd I expr_cmd I sig_cmd I inst_cmd
I exec_cmd I info_cmd

proc_cmd =
"s tacks"
"depth" stackÍd
" locat ion_of" ADDRESS
"addr-of" focation

scope_cmd =
"l ist_of_variables" context
" l ist_of_types" context
" l ist-of_funcs" context
" l ist_of_f i les "
" I i s t o f c l a s s e s "

obj_cmd =
" load_obj " fíIe_name

process/stack commands
returns stackid l ist
returns INT
returns location
returns ADDRESS

scope query commands
returns var_list
returns type_Iist
returns func_l ist
returns f i le_l ist
returns class_l ist

object command
generates object load

= ### expression evaluation co¡nmands
"proc_eval" Iocation stackid stackdepth expression template async

returns va1ue, generates expr_eval
"set_template" type_name context template # returns BOOLEAN
"get_template" type_name context # returns template

expr_cmd

I
sig-cmd

inst cmd

exec cmct

info

coref i le_name

ihandle" signal-name sighow
"signal" s ignal_name
" s igs ta te"

"s-et-break"

" set vtatch"

"catchfork"
"delete_break" break_id
"get_breaks"

" l t tach" pid
"coreattach"
" detach "
¡ "s tep Í " I

insLrumentation commands
ADDRESS condÍtion expression break_action

returns break_id
ADDRESS size condition expression break_action

returns break id
returns Urea¡<-id
#
returns break_list

ptocess execution commands
#

objectfite_name# returns INT
#

signal processing commands
#
#
returns signal l ist

infornational commands
returns conf ig_l ist
returns proc_desc,
generates proc_state
#

n_b # returns interp_Iist
param_value

"Next i " | "s tep" | "Nex t " | "con t " | "F in ish" ¡
stackid signal_name# generates proc_state

_cmd
"conf ig" conf ig_kind
"checkstate" async

"eventSass" event
"interp" Ínterp_kind address n_a

param_name

154

" set3aram"

Summer '92 USENIX - June 8-June 12,1992 - San Antonlo, TX

Events
event=object_load I expr_evaluated I proc_state I trace
object_load = "obj load" t j_me
expr_evaluated =

"expreval" Locat ion stackid

Maybee

stackdepth
proc-state = ###

["stopped" | "running" | " terminated"
nevtjrocess = "ne\,rproc" pid host_name port ###
trace = ###

"tracemsg" locat ion stackid stackdepth

normal_break desc =
ADDRESS condition expressj.on

pid = INT
port = INT
print_condÍtion = expression

NeD: The Network Extensibte Debugger

object loading is complete
exptession eval is complete

Data Types
aggregate_temp = "AGGREGATE" field_temp ### struct/union template
aggregate_value = ### struct/union expression value

"AGGREGATE" agg_na¡ne fÍel¿l_value*
async = BooLEAN ### asynchronous notifÍcation flag
break_action = "STOPU | "GO" ### stopr==breakpoiDt, go==lracepoint
break desc =

['BREAI(PoINT" normal break desc |
-

"WATCHPOINT" watch ãesc l -
"FORKPOTNT" ¡ breaE_Íd

break_id'= rNT ### Ínstrumentat ion ident i f ier
break_Iist = break desc* ### breakpoint description 1ist
crass- l ist = crass-n*.* ### crass name l ist
condiEion = expresãion ### condltional expression
conf ig kind = "regj-sters" | "s ignals" ### confígurat ion Lyp""
context ### scope descriptiòn

scope_type scope_n€rme l "l,ocATroN" Iocation
expr-value = expression value ### result of evaluating an expression
expression = STRING ### C/C++/Fortran expreãsion

-

field-temp = ### struct/union tiela template
f ield_name print_condition template

fÍeId-value = field- name-value
-

struct/union fieLd expr value
tile_Íist = source_File* ### :J.isl- of source files
func-l Íst = ### Iist of functions in source

function_name file_name path_name lj.ne-num ADDRESS
Ínterp-desc = inTruction-dãsc ###iemory interpretation
interprkind = "INSTR" ### how mämory sÈould be interpreted
interp_list = j-nterp_desc* ### J,isl- of mãmory interpretations
instruction_desc - ### instruction däscriptÍon

location instr_tranlation symbolic name
instr_tranlation = SfnÏuC

-###
ínstruction disassembly

Iíne number = INT ### source line number
location = ### source location

f ile_name line_number function_name
n-a = INT ### number of translations

af|-et address
n_b = INT ### number of translations

before address

expr_value type_name
process state change
| "unattached" I
neÌ¡r process to debug
tracepoint executed
expr_va1ue type_name

breakpoint description
break_action

print_kind =
" d e c " | " h e x " | " o c t , ' | " u n s , ' I
" t i m " | " a s c " | " i n s " | " f I t , , i

proc-desc = STRING

UNIX process íd
inet port number
conditional expression for
templates
simple print formats

" b i n " I
" s p e "

description of process being

Summer '92 USENIX - June 8-June 12,lgg2 - San Antonio, TX 155

NeD: The Network Extensible Debugger Maybee

regclass- l ist = register_crass_name* ### rLsE of register classes
regnarne_Iist = register name* ### l-isl" of register names
sig-state = signal-name sighow ### how signal wilr be handled
sighow - "IGNoRE" | "CATCH" ### aignal handling types
signal_Iist = sig_state* ### l.ist of signal handlÍngs
simple_temp = "SIMPLE" print_kind* ### simple type template
simple_value = "SfMpLE" ### simple type value

["NUMBER" | "prR" I
UMSG"

| "ERROR" I
"vorD" | "ENUM" | "coMpLEx" | "srRrNG"l srRrNG

size = INT ### number of bytes
scope_type = ### kinds of scopes

t "GLOBAL" | "CLASS" | "FrLE" | "FUNCTTON', I
source-fÍle - fi le_name path_name ### source file description
stackdepth - rNT ### number of frames on call stack
stackid = INT ### identifier for cal1 stack
storase-crass =,,1ocal, ,

l "grobar, ' l , ," tut iËf i l" ï : :*1 i t?::g;":*:" i"
"resparam" | "register" | "regparam" | "unknown" I
"classmem" l "common"

template = simple_temp I aggregate_temp ### value print templates
time = rNT ### object file time stamp
type_list = type_na¡ne* ### LLsE of program types
value = simpl,e_value I aggregate_value ### exptession value
var-list = variable* ### list of progr¿rm variables
variable = variable_nane storage_class ### vatiable name and class
watch_desc = ### description of a watchpoint

ADDRESS síze condition expression break_actj.on

156 Summer '92 USENIX - June 8.June L2,1992 - San Antonio, TX

