
VNS Retriever: Querying
MEDLINE over the Internet

Kevin Brook Long, Jerry Fowler, stan Barber - Baylor college of Medicine

ABSTRACT

Academic medical centers around the country are developing networking infrastructures
and connecting to the Internet. Baylor College of Medicine is developing VÌrlS Retriever, an
architecture for comprehensive handling of our institution's database requests. The first
implemented instance of this architecture is the MEDLINE Retriever, a tool to query the
considerable citation database of medical literature at the National Library of Medicine.
Response times that we have experienced with the MEDLINE Retriever have pleased us and
impressed our user community. The system will work for small sites, but is extensible for
use on large campuses as well. The MEDLINE Retriever uses the Corporation for National
Research Initiatives' ABIDE gateway. The principal user interface employs Motif and the X
Window System.

Introduction

The information consumer in the academic
medical center environment is faced with a modern
dilemma; as electronic, networked informatics
resources become more common, users are presented
with a disparate collection of interfaces, mostly
designed independently as islands of information
whose only integration with each othe¡ is the coin-
cidence of existing on the same network. Although
the presence of high-speed networks might appear to
bring this electronic information nearer the user, it is
instead often un¡eachable behind a wall of technical
detail. We are attempting to develop and apply infor-
matics architectures that more seamlessly integate
the information from certain classes of these
resources into the information user's environment.
Specifically, we have applied the concept of the lay-
ered architecture and the intelligent retrieval engine
to facilitate interaction with networked bibliographic
resources.

At Baylor College of Medicine, our participa-
tion in the National Library of Medicine's Integraied
Academic Information Management System (IAIMS)
program has involved exploring ways to apply
advancements in computing and informatics to the
problems of biomedicine. rrly'e have developed an
integrated networked environment for coord-inating
human, computer, and informatic resources. The
centerpiece of our work is the Virtual Notebook Sys-
tem (VNS), an electronic analogy to the traditional
paper notebook [1,2,3]. The VNS is the realization
of an architecture that supports the collaborative
research environment. The work described here is a
natural extension of this effort, a step closer to the
longer-range goal of establishing intelligent,
networked information clearinghouses.

Recognizing the growing demand in our
biomedical research community for rapid access to
remote electronic databases, both bibliographic and
otherwise, we have devised VNS Retriever, an archi-
tecture to facilitate user access to a variety of local
and remote electronic databases. The cornerstone of
VNS Retriever is a central resource server that acts
as an agent between the user and the NLM via asyn-
chronous electronic message passing. At the front-
end, we have implemented a user interface written
using the X-Window System and the OSF Motif
toolkit so that many users of a wide variety of plah
forms can acc€ss this new seryice [4,5]. As a bãck-
end connection to the MEDLINE database, our
resource server makes use of the ABIDE eatewav
and Knowbot Operating Environment develõped by
the Corporation for National Research Initiatives
(CNRD [6].

This paper discusses VNS Retriever, a layered
architecture for wide-area database query and
retrieval, and our fust implementation of VNS Retri-
ever, the MEDLINE Retriever. In the next section,
we amplify on the motivations for this project.
Thereafter, we describe the architecture of VNS
Retriever, including the communications interfaces
between components. Then we discuss the imple-
mentation of the MEDLINE Retriever in order to
clarify the structure of the central components of
VNS Retriever. We then discuss administration of
the MEDLINE Retriever, and present some simple
performance analysis, before discussing furure wõrk
and drawing conclusions.

Motivation for VNS Retriever

The MEDLINE Retriever began as an effort to
facilitate Internet acc¿ss from networked worksta-
tions to'the National Library of Medicine's MED-
LINE facility. It has become the embodiment of an
architecture to treat bibliographic information in a

Summer '92 USENIX - June 8-June 12,lgg? - San Antonio, TX 81

VNS Retriever: Querying MEDLINE over the Internet

consistent fashion, and to assist the user in overcom-
ing many of the technical details that often impede
bibliographic research. At a more general level,
VNS Retriever is an a¡chitecture that attempts to add
(among other things) systemized resource characte¡i-
zation, automated query generation, and intelligent
filtering mechanisms to the overall confines of the
VNS architecture, which by contrast deal more with
the integration, annotation, organization and dissemi-
nation of information.

We anticipate that VNS Retriever will be
applied to a variety of resource types, including
bibliographic (such as is addressed by the MED-
LINE Retriever), genetic (such as the GENBANK
Retriever), programmatic, textual, video, etc. The
MEDLINE Retriever is our fi¡st instantiation of this
architecture. The advantages that the MEDLINE
Retriever brings to MEDLINE access are multiple:

o Database access software can be maintained
c€ntrally and singly for all networked users at
a given site, allowing updates to search stra-
tegies, the MeSH vocabularies, access
methods, etc. to be implemented immedi-
ately. This greatly simplifres the distribution
of software and documentation updates.

. Users need only an X-capable display and a
connection to the network to begin using VNS
Retriever. It is no longer necessary for a user
to procure a modem, a copy of the access
software itself (such as Grateful Med [7]), a
list of network access numbers, and perhaps
even a personal NLM account.

o Users of hundreds of other presently unsup-
ported computing confrgurations would be
able to gain access to MEDLINE.

o This centrally-maintained, globally-available
access to the NLM's resources could help to
eliminate an institution's need to acquire a
local version of MEDLINE.

o Users who travel frequently can maintain
access to their queries and citations from any-
where on the network. This is consistent with
a model that allows the entire network to
become a support mechanism for the user, not
just one machine.

o Institutional database usage patterns could be
monitored centrally with the goal of under-
standing and providing better for the needs of
the institution's research community and pos-
sibly optimÞing access methods for the most
used resources.

o Frequently in the academic environment, only
by enriching the nehvorked environment will
users be attracted to a more distributed com-
puting model; we feel that the MEDLINE
Retriever adds value to institutionalized neþ
working.

Long, Fowler, ...

Architectur¡ Of VNS Retriever

The architecture created to accomplish this task
is not simply a MEDLTNE-specifrc interface. Logi-
cally speaking, the VNS Retriever architecture has 4
layers, as depicted in Figure 1. User interfaces com-
municate through an application program interface
with a user agent called the query manager. The
query manager maintains the user's environment,
storing queries and presenting thefu results in the
manner desired by the user. The user agent, in turn,
submits queries to a server agent called the resourc¿
server. The resource server selects the appropriate
resources for each query, translates the query
appropriately for the resource, and initiates a
resource query engine to communicate with the
resource. At the bottom layer are the query engines
themselves, which are specialized to communicate
with the individual resources.

Communication within the architecture necessi-
tates the use of a standard format for queries. We
use what we refer to as our canonical qüery form to
define the logical structure of a query and its
response. The purpose of the canonical form is to
provide a common internal structure for use in map-
ping terms as displayed by a user interface into
terms appropriate to diverse databases. For example,
where MEDLINE's Elhill query language uses the
indication "(AU)" to identify queries on author
names, another local database in common use uses
".au" and the ANSI standard 239.50 specification
uses "ua". On the other hand, since there is no rea-
son to be cryptic in displaying this information to
the user, we display the term as "Author" (the substi-
tution of some language other than English for these
terms would be straightforward).

Figure 1: Logical Layout of VNS Retriever

82 Summer '92 USENIX - June 8-June 12, L992 - San Antonio, TX

Long, Fowler, ...

The canonical form also considers the type of
data to be retrieved. Among the types that we
intend to provide in addition to ASCII text are
images (of numerous types) and possibly structured
data such as those from gene sequence databases.
The data recoverable by the MEDLINE Retriever are
all textual data, so the only type currently supported
is ASCII strings.

The query and presentation terms we use are
based on the 23950 standard.

A physical view of the VNS Retriever architec-
ture is found in Figure 2. Numerous invocations of
the various user interfac¿s communicate one-to-one
with one of several query managers running at the
institution. Each query manager serves a specific
work group of users related to some administrative
entity within the institution; such an entity would

. typically be a grant-funded research group.

VNS Retriever: Querying MEDLINE over the Internet

to address a pet peeve in our user community; that
is, the need to enter a user id and password for every
invocation of a controlled-access program. Access
to the resource server is restricted to a set of author-
ized machines. Access to individual machines is
controlled by the machine's protection mechanisms.
Accesses from specified machines can be further res-
tricted to a subset of the available resources by
means of a resource management table. Our design
anticipates that installation on our campus would
have a single resource server providing service to the
entfue organization.

The resource server's role in database retrieval
is to provide a common interface to the diverse set
of resources that it can support, allowing a single
user interface to access all the supported resourcés.
To this end, it supports requests to enumerate the
databases it serves and to list the query and presen-
tation terms valid for each. When the resource
server receives a search request, it stores the request
in its internal database, which is a simple tree with
branches for each work group. The server then
analyzes the request to determine which database to
query. At this point it performs whatever accounting
and access control are appropriate to the database,
and then translates authorized requests into the
appropriate terms for that database. Finally, the
query engine for that database is invoked through a
set of library routines that launch the query engine in
a synchronous exchange, and then retrieve its results
when they return asynchronously some time later.

After a query engine returns a response, the
resource server notifies the appropriate client query
manager. When the client has acquired the result
data and acknowledged its receipt, the query and the
response are deleted from the local database. Any
cost accounting to be done for a given database is
performed at this point.
The Query Manager

The user agent is called the query manager. Its
administrative role is to provide middle- to long-
term storage of queries and results for its work
group, thus placing the responsibility for disk utiliza-
tion on each work group, whích runs its own query
manager.

The query manager provides the user interface
with a set of mappings to translate queries from user
display form into canonical form, and to translate
results from canonical form to the user-prefered
display. It also provides the user interface with the
list of available database resources and their query
terms. The query manager connects to the resóurce
server to submit queries. The query manager holds
responses it receives from the resource server until
they are deleted by request of the end user via what-
ever front end the user may use.

Figure 2: Physical View of the VNS Retriever

Each query manager in turn communicates with
the single institution-wide resource\ server; the
resource server is then able to invoke onÞ or more of
several resource query engines, each of which may
serve more than one database.

The resource server and query manager are the
two central pieces of the architecture. W{ shall
describe them first, and then discuss interotocess
communication within the system. Since túeluser
interface and resource query engines are implefun-
tatio-n dependent, we defer discussion of them to \r
detailed description of the implementation of thè
MEDLINE Retriever.
The Resource Server

The server agent is called the resource server.
Its administrative role is to centralize institution-
wide access control and accounting. This permits us

Summer '92 USENIX - June 8-June 12,1rgg} - San Antonio, TX 83

VNS Retriever: Querylng MEDLINE over the Internet

In addition to its intermediary role in database
retrieval, the query manager maintains the user
profiles for its clientele. These profiles describe
what information the user wishes to retrieve as a
default, and how it should appear. They also
describe translations, as well as the filters and desti-
nations to be used for exporting results to other
places.

The query manager maintains little state con-
cerning on-demand search requests. The query
manager knows when it has issued a search request
to the resource server, and provides a means to
delete outstanding requests It depends on the
resource server to maintain other information about
the state of an on-demand search. The query
manager does, however, keep track of scheduled
queries in more detail. Selective Dissemination of
Information (SDI) is the name that the NLM gives to
searches that are stored c¿ntrallv at the NLM data-
base for incremental execution on a regular basis, for
example, monthly when the database is updated.
The fact that the query manager permits query
scheduling makes the storage of SDI queries at the
query manager possible, reducing the burden on the
central database and opening the door for regular
scheduling of intelligent wide-area database searches
when such searches become viable. It is the query
manager's job to queue scheduled queries and sub-
mit them to the resource server at the appropriate
time.

Interprocess Communication

There are several levels of interprocess com-
munication within VNS Retriever. Communication
between the upper levels of the system relies on the
use of a canonical form for the description of query
terms and results. We shall discuss in turn the com-
munications between the query manager and its user
interfaces, between the query manager and the
resource server, and between the resource server and
its query engines.
The Query Manager Interface

The query manager communicates with its user
interfaces through an application program interface
whose standard queries include user profile handlers,
search manipulation, and administration, as well as a
search-result callback.

The functions Query-Profile and Modify-Profile
allow the user to list and alter default settings for the
23950 terms Large-SeþLower-Bound and Small-
Set-Upper-Bound (the maximum number of matching
records for which the user deems it is worth return-
ing any data, and the largest number of records to be
returned from a successful search, respectively) as
well as desired presentation terms to be returned by
a search, such as author, title, journal name, etc.
This is also the place in which the cost center for
charge accounting is specified. To facilitate

Long, Fowler, ...

exporting result data from VNS Retriever to other
programs, in particular the VNS, the query manager
supports the functions Query-Export and Modify-
Export, These functions allow the user to manipu-
late defaults for data export from VNS Retriever.
Groups also carry default settings for profile and
export defaults, so that a new user automatically
adopts the standards of the group to which it is
added.

The function List-Searches returns a list of
searches currently maintained for the user by the
query manager, and List-Results returns the results
for a given search, if they are available. Searches
can also be renamed or deleted. A "force" flag in
the delete function allows a search to be deleted
irrespective of whether it is currently outstanding at
the resource server.

The function SubmiþSearch has th¡ee options,
submit on demand, submit scheduled, and submit to
save. Saving a search simply records the contents of
the query at the query manager so that it may be
retrieved for later modification and submittal. A
search may be scheduled for a one-time search at a
later time, or for regular submittal at a restricted set
of intervals such as hourly, daily or monthly
(although there is no point at the current time in
searching daily or more frequently, because updates
to MEDLINE are not that frequent, it is our inten-
tion to incorporate local databases such as collo-
quium notices, for which more frequent regular
search would be appropriate).

Status queries provide information on the
current state and availability of results for the named
search. Administration requests include the ability
to add or delete users or groups, to request that the
query manager quit gracefully, and to request
changes in the type of information recorded in the
log file.

Since the return.of results from the resource
server to the query manager is an asynchronous
event, a user interface can register a result callback
so that it can be informed in a timely fashion of the
return of a search, without the need to poll the query
manager.
The Resource Serser Interface

The query manager behaves as a client of the
resource server, sending synchronous requests. The
resource server recognizes three basic types of
request: search, status, and administration.

The resource server's search protocol is based
loosely on the 2,39.50 standard. The Init and Init-
Response Application Protocol Data Units (APDU's)
are used to establish a connection between a query
manager and the resource server. The Search APDU
is used to initiate a search, and a Search-Response
APDU is used to acknowledge the succ¿ssful receipt
and launch of the search, using a return code not
specifred by the 23950 standard to indicare this

84 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Lnng, Fowler, ...

initial success. Because the initial response to the
search APDU is effectively an acknowledgment of
the request, the query manager is free to carry on
with other tasks instead of blocking synchronously
on the search. This deviation from 23950 protocol
enables the query manager to multiplex on several
clients potentially issuing multiple requests per
client.

Upon receipt of search results from the query
engine, the resource server issues an announcement
to the client query manager by means of an asyn-
ch'¡onous Search-Response APDU. A fixed-size por-
tion of the result data is piggy-backed wirh this
announcement. This piggy-back packet is sufficient
to return the enti¡e response in many cases. Should
the response contain more data than will fit in this
announcement, an indicator is set to show that more
data remain to be retrieved. It is then up to the query
manager to request and retrieve the remainder of the
data by means of Present and Present-Response
APDU's.

There are certain resource server functions that
lie outside the 23950 protocol. These include
administrative functions, including addition and dele-
tion of users and groups (although the identification
of a user is not strictly necessary to the resourc¿
server's function, it provides a parallel structure to
that found in the query manager's internals).

Status queries return information on the state of
the server, as well as specific information about
groups users, or queries. An additional status query
returns the list of resources supported by the
resource server. In our initial implementation, this is
a trivial response, since the MEDLINE Retriever
supports only one database.
The Query Engine Interface

Communication between resource server and
query engine is by means of library calls. It is the
query engine's responsibility to provide all commun-
ication with the database(s) it serves. Each query
engine interface requires a set of translations from
the canonical form to the query engine's native
query language (although the query engine's
language may simply be the query language of the
database it supports, this need not be the case for a
more general query engine, such as the Knowbot
query engine), as well as the routines to initialize
and launch a query engine instance; to initialize a
response retrieval and to drive data retrieval; and to
destroy the query engine instance.

The MEDLINE Retr.iever

The fust instantiation of VNS Retriever has
been the MEDLINE Retriever. This svstem has
been tested and used by members of the Baylor
research community since February, 1992. The
MEDLINE Retriever takes advantage of the ABIDE
gateway and Knowbot Operating Environment

VNS Retrlever: Querying MEDLINE over the Internet

developed by David Ely of CNRI [8]. The Knowbor
query engine is used to provide access to
MEDLARS, the host for the National Library of
Medicine's on-line bibliographic database. We shall
first briefly describe the user interfaces for the sys-
tem: Then we shall discuss the internals of the
resource server and query manager and briefly
describe the behavior of the Knowbot query engine.
User Interface

The user interface for the MEDLINE retriever
does not reflect all of the generality described for the
VNS Retriever architecture, but it provides a basis
from which to understand the system, as well as a
fully functional MEDLINE query tool that is easily
integrable into other environments such as the VNS.

At the top layer we have demonstrated several
user interfaces. There is a command-line interface
that reads queries from files created by the user, and
then formats the results to standard output. Another
interface uses a simple form-driven X-Windows
front end to the command-line interface, and formats
the results into another window that permits simple
user browsing through the returned citations.

The interface to which we have paid the most
attention is a menu-driven X-Windows interface
written using the Motif toolkit. This front end facili-
tates more sophisticated handling of queries and
results, including creating queries using MeSH,
querying for the status of outstanding searches and
exporting selected citations to the Virtual Notebook
System, as well as to order photocopies of desired
citations direct from the Houston Academy of
Medicine-Texas Medical Center Library. This inter-
face is described in more detail elsewhere [9].
Server Structure

Both the resource server and the query manager
maintain a mirror of their internal trees on stable
storage. This allows both servers to maintain their
state across invocations by reading their respective
storage trees found on disk to build their internal
trees at start-up. When the resource server initial-
izes, it examines this tree for searches that have not
yet received a reply from their query engines; it
resubmits such searches, since the return address for
the query engine instance associated with the old
request is now invalid. When the query manager
initializes, it builds a queue of scheduled and regular
searches that it finds on disk, and sets a time-out for
the shortest interval found among those queued.

We have chosen to store the data on disk in
ASCII frles, although we could substantially reduce
storage by use of binary data. This permits visual
inspection of the storage tree to help detect system
problems, and simplifies debugging. Duplicating the
information on disk requires frequent file writes that
certainly have some impact on performance. We
could improve this performance in at least one
respect: Our current implementation employs a

Summer '92 USENIX - June 8-June L2,IggZ - San Antonlo, TX 85

VNS Retriever: Querying MEDLINE over the fnternet

UNIX file system, creating a directory for each
group, user, and query. Replacing this mechanism
with a common database manager such as ndbm
would probably signifrcantly improve our perfor-
mance, at the expense of losing the ability to inspect
the storage tree visually. This is a problem that we
will address again when scaling becomes a greater
issue than it is now.
Communlcation Protocols

Figure 3 shows the interprocess communication
paths within the MEDLINE Retriever. Each level of
the system employs a conventional client-server
model for most transactions. At each level, an
upcall or callback is also necessary to provide asyn-
ch¡onous notification. The query manager uses
SunRPC [10]. Below that, TCP/IP network sockets
are used.

L]ser Interface

E /
ã,

ë /€
ð

Query Manager

Ë Ë t

\ È /
.Èt

ð

Resor¡rce Server

- Ê r I

Ëg=
\ + { ¡¿É€

c5

Query Engine

Figure 3: MEDLINE Retriever Interprocess Com-
munication

The Resource Server
The connection between query manager and

resource server employs BSD network sockets, using
TCP/IP. The resource server opens listening sockets
on one front end port and one back end port. The
driving loop maintains one global socket, as well as
one socket per active client, one initiator socket per
query engine, plus one socket per active query.

When a query manager initializes a connection
to the resource server, the resource server sets a
short time-out after replying. When the time-out
expires, the resource server examines its internal tree
for outstanding responses belonging to the newly

Long, Fowler, ...

connected query manager. Any such responses have
never before been successfully reported to the query
manager, so at this point they are dispatched to the
query manager with the asynchronous Send-
ResponseAPDU. This greatly simplifies connection
initialization.

The Query Manager
The query manager's internal structure has

much in common with the resource server. In fact,
thei¡ executable code links a common library for
manipulating the internal storage tree.

Connections between the query manager and
the user interfaces utilize SunRPC for interprocess
communication. To some extent the use of two dif-
ferent implementations for our communicatíons pro-
tocols represents an experiment. We chose to use
SunRPC in order to reduce the overhead caused bv
the use of TCP/P, but let SunRPC simplify the han'-
dling of UDP connections. As a serendipitous effect,
this permits us transport independent communication.

Although other RPC mechanisms are available,
we chose SunRPC without examining other alterna-
tives simply because it was freely available on our
initial target platforms. We have found SunRPC to
be congenial, although development \¡/as more
difficult than it might have been because there is no
checking for null string pointers in the external data
representation library.

Because the query manager is effectively in the
middle of a pipe, acting as a server on one side and
as a client on the other, it cannot use the SunRPC
svc_runQ call to drive its loop. The query manager
opens its front end by means of SunRPC initializa-
tion, and also opens a back end socket with which to
connect to the resource server. The driving loop
simply deals with the SunRPC communications frrst,
thereafter responding to any asynchronous responses
from the resource server.

Because of the differences in treatment of
SUnRPC between the procedural model of a 'rnor-
mal'r UNIX program and the event-driven model of
an X Windows application, there are two slightly
different application program interfaces available
that handle the two cases.

To handle regularly scheduled SDI searches,
the query manager builds a queue, and sets an alarm
for the shortest interval found among the scheduled
searches. The action taken at alarm time is simply
to set a flag to indicate the elapse of the interval.
When the query manager falls to the bottom of its
driving loop, it tests this flag and invokes the queue
handler if set. This avoids the possibility of incon-
sistency in the internal tree, because there is no
access to internal data structures during the execu-
tion of the asynchronous alarm handler.

86 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Long, Fowler, ...

Help Server
Additionally, the system provides a help ser-

vice. On-line help is available for most objects in
the graphic user interface. In order to provide max-
imum flexibility and host independence, this help is
provided by remote procedure calls to a help service.
Help requests are keyed by program and function
name. The contents of the file corresponding to the
key are retumed to the requester as an ASCII text
object. The requesting interface can display the
information as it sees fit (button-specific helpfiles
probably make sense for only one interface, of
course). This service is isolated from the query
manager in order to permit the support of multiple
related programs out of the same help service.

Query Engines

Although we anticipate several distinct query
engines, we currently support only the Knowbot
Operating Environment.
The Knowbot Operating Environment

In the specific case of the MEDLINE Retriever,
the query engine is provided by the pioneering work
done by David Ely at CNRI in crearing the ABIDE
gateway to MEDLARS and the Knowbot Operating
Environment. This gateway receives appropriately
constructed Knowbot queries, validates and executes
them and return the results to the Kno'ffbot construc-
tor that sent them.

Our collaboration
"'rith

CNRI on the VNS
Retriever project has provided CNRI with an oppor-
tunity to shake down the concepts involved in the
Knowbot Operating Environment. At the same time,
it has allowed us to work directly on creating an
environment for campus use that could be replicated
in other campus environments where access to cen-
tralized databases is important.

The ABIDE gateway was originally created by
CNRI as a demonstration project for the NLM. Its
user interface closely duplicated the functionality of
the MS/DOS version of Grateful Med, but provided
no query management features or asynchronous
access. Through this cooperative effort, we were
able to make use of the back end functionality while
enhancing the power of the user interface.

The ABIDE gateway n¡ns on a Sun-4 machine
located at the NLM. .It serves to connect the IBM
environment on which the MEDLINE database is
operated to the Internet.

The transactions between the resource server
(via the Knowbot library) and the ABIDE Gareway
use TCP/P. As described above, the Knowbot query
engine is launched in one synchronous action. The
launch of the Knowbot query includes a return
address to which the ABIDE gateway will subse-
quently respond asynchronously. Each query from a
given MEDLINE account is queued at rhe ABIDE
gateway and performed sequentially.

YNS Retriever: Querying MEDLINE over the Internet

Our use of the Knowbot Operating Envi¡on-
ment does not exploit its ability tõ return data to a
receiver on a different host from the launcher. This
design decision is based on our desire to control
access and perform accounting centrally.
Other Query Engines

In the case of our first implementation, which
involves internet communication, initialization and
launch comprise the first step of the search process,
and at this point the resource server reports a suc-
cessful launch to its client. Thereafter, the server
responds to activity on the retrieval socket by invok-
ing the query engine's data-retrieval function. Anti-
cipated future query engines that involve local area
access may have essentially null query retrieval
functions, since it is believed that data response will
be quick enough to incorporate in the launch phase.
Such queries will also bypass the stage involving
recording on stable storage for the sake of speed.

Among the query engines that we are consider-
ing for addition are a Wide A¡ea Information Service
(WAIS) engine, and an RPC-based Unifred Medical
Language System (UMLS) engine [11].

Administration

Administration of this system occurs at two
levels. The Query Manager and the Resource Server
each have separate administrative requirements and
can be administrated sepatately as needed. The
architecture provides for one Resource Server per
site and one or more Query Managers.
Resource Server Administration

Administration of the Resource Server involves
checking accounting information for each request
submitted. In order to give system managers at dif-
ferent sites local control over how the resource
server does accounting, we provide a hook for a
remote procedure call to an external server. This
server simply returns zero for access accepted and
non-zero for access rejected. The server does its per-
mission checking by reading a script written by the
system manager to suit the needs of the individual
institution.

Additionally, the Resource Server verifies infor-
mation supplied by the Query Manager about the
group or the user submitting the query to insure that
the group or user is authorized to make use of the
resource to which the query is directed. If the user or
group is authorized, the query is processed. If not,
the Resource Server returns an ACCESS DENIED
reply in response to the query. Password manage-
ment and all other resource access information is
stored in the Resource Server access database.
Query Manager Administration

Management of the Query Manager centers on
the disposition and storage of queries and query
responses. Most of the management of the euery

Summer '92 USENIX - June 8-June t2, L9g2 - San Antonio, TX 87

VNS Retriever: Querying MEDLINE over the Internet

Manager occurs with each user authorized to make
use of it. Individual users enter queries and deter-
mine how to store responses.

However, there are certaín matters that require
an administrator. Authorizing users to make use of a
particular query manager, removing old users
(including purging any queries or query responses
created by those users) and providing a default user
profile must be done by the Query Manager
Administrator.

Performance and Evaluation

The performance of the MEDLINE Retriever
hcs impressed our user group. Response times are
good from half a continent a\¡/ay. Although the sys-
tem has many good qualities, there is ample room
for improvement.

System Performance
In a battery of timing tests we ran using the

command-line user interface, we measured both the
time required by the resource server, and the round
trip time from command-line user interface to
MEDLARS and back. At the resource server, the
average response time (from initialization of query
engine instance to completion of data retrieval) was
11.7 seconds for a seæch that returned 10 citations
(author, title, and source only) from a query involv-
ing text search of two words. The average response
time wæ 18.5 seconds for the same search to return
200 citations, which required transmission of about
70 Kilobytes of data (we impose a limit of 200 on
Small-Set-Upper-Bound, the maximum number of
records to return, which is a compromise between
the belief that we share with some librarians that one
generally does not wish to examine any results at all
until one has pared the result set down to a large
handful, and the use-patterns and desires of many of
our scientific users, who do not mind browsing even
hundreds of titles in search of relevant citations).

The round-trip times at the command line inter-
face were less satisfying. The average response time
in the case of returning 10 citations was 15.9
seconds, an average four second overhead for the
system architecture. Returning 200 citations took an
average of. n.4 seconds, an average 9 second over-
head. Naturally, virtually all of this overhead is
clock time, not CPU; unfortunately that is what the
user perceives. Command line response time is
affected by the times incured by both query
manager and resource server in polling their sockets
during selectQ calls, as well as time required to
update status files. We intend to eliminate the
causes of this excessive overhead in the near future.

During normal use, the average response time
for a successful search was 16 seconds. Most
searches Q92 of.324) required less rhan 30 seconds

Long, Fowler, ...

to return. Of those, the average was 9.6 seconds.
The longest successful search required 5 minutes 23
seconds.

The average time required to initialize a query
engine instance was 1.2 seconds, which involves
opening a socket on the local host and establishing a
connection to the ABIDE gateway. The maximum
initialization time was 9.9 seconds.

The average cost of these searches as reported
by the ABIDE gateway was $2.30. A simple search
that returns little or no data costs around a dime, but
any attempt to retrieve larger amounts of data, either
to retrieve abstracts, at around 3 Kilobytes apiece, or
to retrieve numerous citations, causes the charge to
increase rapidly. This has raised the issue of how to
account for MEDLINE searches. The cost schedule
that is currently used by the NLM is perceived as
prohibitive by our users.
Evaluation of the System

Overall, we are pleased with the results of our
design. One question that remains to be resolved is
whether a single resource server will scale well for
full-scale use at a large institution. Baylor has about
forty specialized research centers comprising around
eight hundred laboratories with several thousand
scientists participating in research, and another
several hund¡ed involved primarily in education. A
more detailed analysis of response time under a
heavy load is needed to determine whether a single
resource server can in fact support the whole com-
munity at Baylor.

Another potential problem with respect to
MEDLINE specifically is that queries issued on a
single account are queued. Since our c-urrent prac-
tice is to issue all queries on one account, this can
adversely affect users' response times. Although our
actual deployment policy is as yet undetermined, we
may choose to employ multiple MEDLINE accounts
to circumvent this situation if it actually causes
difficulty.

With regard to our decision to logically isolate
our resource server from the query engines, there are
advantages and disadvantages. On the one hand,
much of the knowledge necessary to access diverse
databases exists already in the Knowbot Operating
Envi¡onment, and our logical separation from that
environment represents some duplication of effort.
On the other hand, use of our own canonical query
form permits us to translate to and employ other
query engines with minimal effort; it also permits us
to consider the use of lighter weight mechanisms for
inherently small local databases, such as
"bcm.seminars", the college's electronic colloquíum
bulletin board. Overall, this logical isolation pro-
vides ,a flexibility that is a greater boon than a hin-
drance.

88 Summer '92 USENIX - June t.June 12,1992 - San Antonio, TX

Long, Fowler, ...

We chose to use our own canonical form in
preference to SQL partly from convenience, and
because many resources which we wish to access are
not in a relational form for which SQL is well-
suited. Similarly, we do not simply employ a free-
text-searching algorithm in order to take advantage
of the structured nature of many common resources.

As for ow implementation, there are several
things we will likely change in a future release of
the system. First, we would like to replace the exist-
ing socket-based transport used in the resource
server with an RPC model. This would take advan-
tage of the RPC-based communication protocol that
already exists in the query manager. Most of the fun-
damental requests in both servers are identical in
structure, if not in effect, so the parallelism of
design would be reflected in reuse of code (the origi-
nal specification of the query manager used socket-
based communications for that reason).

We had chosen the socket model for the
resource server's communications in part to take
advantage of the 23950 library available from
Jhinking Machines Corporation's WAIS project
[12]. Since the 239.50 prorocol does nor handle the
problem of asynchrony we have mentioned earlier,
there is some disadvantage to adhering to that
model. There is, however, substantial benefit to the
natural way in which the SunRPC package wraps
around our canonical forms.

Finally, it might behoove us to take responsibil-
ities away from the user interface. Many of the
functions that it performs would be better performed
by small utility routines that it might invoke in rhe
course of its execution.

We are pleased with the use of SunRpC,
although more gracious handling of null string
pointers in the external data representation codé
would be welcome.

Although we considered the use of the Sun
lightweight process library, the benefit that it would
have provided us in terms of imposing a logically
multi-threaded design was rendered null by the prob-
lems to be overcome in compensating for the fact
that a single lighrweight thread blocking on I/O
blocks the entire process. We also had difficulties
with incompatibility in rhe memory allocation.

Related lVork

The NLM has recently promulgated an
Internet-capable version of Grateful Med. This is an
excelle¡t system for its purpose, which is to provide
user-frìendly support for MEDLINE accessl how-
ever, it exists oi itself, and does not integrate welt
with the goals of IAIMS at Baylor.

We also wish to reiterate our respect_ for the
work of CNRI, whose Knowbot Operating Envi¡on-
ment is the foundation of our link to MEDLARS at
NLM. Their coop- eration has contributed markedly

VNS Retriever: Querying MEDLINE over the Internet

to our success. The Knowbot query language pro-
vides a single 239.50-like query inrerface to eacñ of
the databases supported by ABIDE. It is an ideal
back end for our work, because there is great poten-
tial for the expansion of its powers in order to
expand ours.

MCC's Carnot project is a vastly more ambi-
tious system that incorporates both database retrieval
and update, employing a transaction shell called
Rosette that uses the Actor model for organizing
asynchronous distributed database accesses [13].
The development of a Camot query engine could
significantly extend the power of our system.

The V/AIS project takes a different view of
wide area data retriðval, employing full-text search
instead of keyword indexing. This is a technology
ideally suited to the parallelism of the Connection
Machine for which it was originally designed. The
user interface to a WAIS service could be subsumed
by our existing user interface.

The University of Minnesota's internet
gopher project implements a document delivery ser-
vice. It allows users access to various types of infor-
mation residing on multiple computers in a seamless
fashion. The interfaces for gopher use a hierarchy of
menus. Each menu item may provide access to other
menus, files, or gateways to other types of informa-
tion servers includes the WAIS environment
described above.

Future Work

The design of MEDLINE Retriever has laid the
foundation for several further development efforts.
These include the augmentation of the powers of the
back end, closer integration with the VNS, and
expanding support for alternative data types.
Back End Support

We intend to expand both the number of query
engines available to the resource server, as well as
to include support for several other resources.
Among the resources we hope to add are Current
Contents, as well as a service to index colloquium
announcements and other institutional events. Stand-
ing queries for these latter resources can be esta-
blished to report upcoming events of interest to each
user. We hope to deploy a local ABIDE gateway in
order to experiment with the use of Knowbot scripts
for access to these resources.

Other resources that we wish to add suggest the
construction of new query engines. One of these is
a UMLS server to enhance the power of the user
interface to the MEDLINE Retriever. Another
would be a WAIS query engine
Closer Integration with VNS

With the ongoing development of version 3.0
of the VNS, we have the opportunity to incorporate
wide area hypermedia into the VNS. We have
dubbed this new model VNS-STAR. The VNS-

Summer '92 USENIX - June 8-June lZ,lgg2 - San Antonio, TX 89

VNS Retriever: Querying MEDLINE over the Internet

STAR model distinguishes between the page, VNS's
traditional vehicle for data organization, and the
STAR-PAGE. Objects on a STAR-PAGE contain
not data, but the reference information necessary to
recover a specific dataset from anywhere on the
internet, thus trading bandwidth for storage, and
increasing the timeliness of data displayed through
the VNS.

Another a¡ea of interest is adapting VNS Retri-
ever for the retrieval and display of alternative data
types. This is closely tied to the object orientation
in VNS 3.0. VNS Retriever will initially recognize
the types defined by the VNS, particularly images.
Any further expansion of VNS Retriever's type set
can be done thròugh the user-definable objecté bf the
VNS. Because of VNS Retriever's use of high-speed
networking, it is well suited to take advantage of
imagery and other higher-volume data that will inev-
itably become part of the typical bibliographic
resource.

Conclusion

The VNS Retriever has served a useful role in
helping us develop an architecture to systemize
access to bibliographic and other resources. It is a
necessary step towards developing more intelligent
networked data retrieval tools. As a tool in its own
right, it is performing satisfactorily for the BCM
user community, while at the same time, it is serving
to illuminate the challenges that lie ahead in our
development of more useful tools for the typical
researcher.

VNS Retriever is representative of many of our
efforts. Even as 'ü/e attempt to create an overall
approach to addressing classes of problems, our user
community benefits from the application of a useful
tool which addresses a specific need. The VNS
Retriever is paving the way for more facile access to
the ever-expanding collection of intemetworked
resources.

Acknowledgments

Support for this work was provided by The
National Library of Medicine (N01-LM-1-3516 and
usPH-02-G08-LM04905).

Thanks æe due to Ed Sequeira of the NLM,
and to David Ely and Vint Cerf of CNRI for making
our use of ABIDE possible. In addition, we wish to
thank Tony Gorry and the rest of the Baylor IAIMS
group for their ideas and encouragement. Thanks to
Cindy Petermann and Barry Meyer of the group for
their helpful comments on the manuscript.

For more information on the Knowbot Operat-
ing Environment, contact CNRI electronically at:
knowbot info@nri.reston.va.us

Long, Fowler, ...

References

[1] A. M. Burger, et. al. "The Virtual Notebook
System," Proceedings of the Hypertext '91
Conference, ACM, L991.

[2] G. A. Gorry, et al., "Computer Support for
Biomedical Work Groups," Proceedings of the
Conference on Computer Supported Coopera-
tìve Worlç September L988.

[3] C. A. Gorry, et al., "The Vi¡tual Notebook Sys-
tem: An A¡chitecture for Collaboration," Jour-
nal of Organizational Computing Volume 1
Number 3, t992.

[4] R. Scheifler and J. Gettys, The X Wíndow Sys-
tem, Digital Press, 1.988.

[5] Open Softwa¡e Foundation, OSFlMotif Styte
Gui.de, Prentice -Hall, L 990.

[6] R. E. Kahn and V. Cerf, An Open Architecture
for a Dìgital Library System ønd a Plan for íts
Development, The Digital Library Project,
Volume 1: The World of Knowbofs, Corporation
for National Reserach Initiatives, Reston, Vir-
gina, 1988.

[7] B. Shearer, L. McCann, L. and W. J. Crump,
"Grateful Med: Getting Started," Journal of the
American Board of Family Practice, Volume 3,
Number 1, pp. 35-38, January-March, L990.

[8] David Ely, An Overview of the ABIDE Gate-
way System, Technical Report TR-9L-L, Cor-
poration for National Research Initiatives, Res-
ton, Virginia, L991.

[9] J. Fowler, K. B. Long, and S. Barber "The
MEDLINE Retriever,r' Submitted, 16th Annual
Symposium on Computer Applications in Medï
cal Cøre, Baltimore, Maryland, November
t992.

[10] Sun MicroSystems, lnc., RPC: Remote Pro-
cedure Call Protocol Specificaion Version 2;
RFC 1057,Network Center (NIC) at SRI Inter-
national, Menlo Park, Californi4 June L988.

[11] S. Barber, J. Fowler, K. B. Long, R. Dargahi,
B. Meyer, "lntegrating UMLS into VNS Retri-
ever," Submitted, 16th Annual Symposium on
Computer Applications in Medical Cøre, Bal-
timore, Maryland, November 1992.

[12] Brewster Kahle, Wide Area Information Con-
cepts, Thinking Machines Corporation, Techni-
cal Memo DR-89-1.

[L3]Microelectronics and Computer Technology
Corporation, MCC Carnot Project Description,
Austin, Texas, 1991..

Author Information

Kevin Long is Director of IAIMS Development
at Baylor College of Medicine. A graduate of Rice
University, Kevin has been involved in the
Integrated Academic Information Management Sys-
tem initiative at Baylor since 1985, and is Vice
President of The ForeFront Group, Inc., a

90 Summer '92 USENIX - June 8.June 12,1992 - San Antonio, TX

Iang, Fowler, ...

technology-transfer company which distributes the
VNS outside of BCM. Reach him via U. S. Mail at
Baylor College of Medicine; One Baylor Plaza;
VPIT; Houston, TX 77030-3498. Reach him elec-
tronically at klong@bcm.tmc.edu .

Jerry Fowler has been a member of the techni-
cal staff of lntegrated Academic Information
Management System Development Group at Baylor
since 1991. He holds bachelor's degrees in math and
music from the University of Oklahoma and a mas-
ter of science in computer science from Rice Univer-
sity. His U. S. Mail address is LAIMS Development,
Baylor College of Medicine; One Baylor Plaza;
Houston, TX 77030-3498. His electronic home is
gfowler@bcm.tmc.edu.

Stan Barber is Director of Networking and Sys-
tems Support at Baylor College of Medicine. A gra-
duate of Rice University, Stan has been involved in
the Integfated Academic Information Management
System initiatíve at Baylor since 1986. Stan also
supports ongoing development of rl, the popular
news reader program originally developed by Lury
Wall. Reach him via U. S. Mail at Baylor College of
Medicine; One Baylor Plaza; Houston, TX 77030-
3498. Reach him electronically at
sob@bcm.tmc.edu .

VNS Retriever: Querying MEDLINE over the Internet

Summer '92 USENIX - June 8-June 12,lgg2 - San Antonio, TX 9l

