
Tiled Virtual Memory for UNIX
James Franklin - Kodak Electronic Printing Systems

ABSTRACT
M.Ly computer applications require the manipulation of large data arrays. These
applÍcations can behave b-adly under a paged virtual memory (vM) system, due to poor
memory access _p¿tterns. One solution to this problem is tiling, a technique in which the
arays are partitioned into sub-arrays that map one-to-one with VM

-pages.
Software

implementations of tiling have been described in the literature, but none pioviAe the speed
and application transparency of a hardware solution.
We have implemented a hardware based, tiled VM within a version of the UNIX operating
system. Based on a novel memory management unit and supporting kemel software, this tiled
VM has proven to be an efficient environment for manipulaiing 2-dimensional arrays of data
In this paper we discuss the kemel changes required to implement our tiled VM. We then
compare tiled and paged versions of our VM system, and show that tiling results in a 5Q-fold
reduction in working set size for a common class of image processing algorithms.

Introduction
There are many computer applications that

require the manipulation of large, multi-dimensional
anays. Example applications include image process-
ing, graphics rendering, numerical analysis involving
large matrices, and simulation of physical systems.
These applications can behave poorly under a con-
ventional VM system, due to memory access pat-
terns that result in targe working setsr t6lt4]t{t9i.

Applications that manipulate large arrays can
benefit greatly from tiling, a technique in which
large data anays are partitioned into a number of
identically sized sub-anays, and the sub-anays
mapped (via software or hardware) to the underlying
virtual pages. Algorithms for manipulating these
tiled anays often show dramatic reductions in work-
ing set size, resulting in less paging activity and fas-
ter execution times.

In a pioneering paper, McKellar and Coffman
[6] investigate the performance of various matrix
algorithms in a paging environment. They conclude
that the use of sub-arrays can improve paging perfor-
mance by orders of magnitude. Blinn [1] discusses
the. advantage of tiling in a graphics rendering appli-
cation, and reports a LO-fold reduction in the number
of page faults. Wada [9] presents a software imple-
mentation of tiling for image processing, and com-
pares various tile replacement and prefetch algo-
rithms. Another software implementation of tiling ior
image processing is described by Ryman [Z].-But
none of these implementations take advantage of the
speed and application transparency that a hardware
solution offers.

We have implemented a hardware based, tiled
virtual memory within SUNOS, Sun Microsystems,
implementation of the UNIX operating system. This

IDenning
[2] defines the working set of a process to be

the set of pages referenced by that ptocess in some time
interval of interest.

tiled VM is based on a custom memory management
unit called the IMMU and supporting kernel
.software. Together, they provide a tiled, shareable,
virtual memory that we call image mernory. As the
name implies, we have used this tiled VM for image
processing applications, although it would be equally
useful for any of the applications mentioned above.

The IMMU and the tiled VM svstem described
in this paper are currently being usód by customers
in a mid-range, color electronic prepress system
called the Kodak Prophecy Color Publishing System.

In the next section we examine the motivation
for using tiling techniques for large anays. This is
followed by an overview of the IMMU and the vir-
tual to physical address translation in IMMU
Hardware. In Image Memory Concepts we describe
our implementation of image memory and the new
system calls that support it. Tile fault handling, tile-

. in and tile-out, and new kemel daemons are
described in Kerni,el Software. This is followed by a
comparison of a tiled and paged version of our VM
system in W Perþrmance. Finally, we close with a
discussion of future work.

Tiling yersus Paging
The fundamental benefrt of tiling over paging is

that processes that manipulate tiled anays often
show dramatic reductions in working set size. To
illustrate this effect, we consider the manipulation of
large images. Figure 1 shows a row-ordered, 2-
dimensional array representing an image. The anay
has 3K rows containing 4K pixels per row, with
each pixel occupying one byte. We want to manipu-
late this array on a machine that has 8 megabyteJ of
physical memory available for paging, and a virtual
page size of 4 kilobytes.

Now, consider a process that manipulates the
anay in paged virtual memory. In process virtual
space, the array lies in a contiguous range of virtual
addresses. Assuming that the first pixel is page
aligned, each row fills one 4 kilobyte page (Fþuie

Summer '92 USENIX - June 8-June L2, LggZ - San Antonio, TX 99

Tiled Virtual Memory for UNIX Franklin

Figure 1: Row-Ordered Anay in Virtual Memory Figure 2: Mapping of Anay to Virtual Pages
2). If the process accesses the anay in row order, the
anay will be paged in and out of memory in an
efftcient fashion. But if the algorithm requires the
process to access the array by columns, the process
will suffer a page fault for every pixel accessed2.

On the other hand, suppose the same process
manipulates the same anay ìn tiled virtual memory,
using 256x256 byte tiles. In process virtual space,
the array still lies in a contiguous range of virtual
addresses. However, that range of addresses is now
mapped to virtual tiles (Figure 3). If y is the virtual
address of the first byte in the array, and V is
mapped to physical tile 1, then the virtual bytes at
V, V +L, . " , V +255 are mapped to sequential
physical bytes at T, T +t, . . . , T +255. The virtual
byte at V +256 is mapped to a different physical tile
r. The virtual byte ar v +4096 (rhe first byte of the
second array row) is again mapped to physical tile ?,
at T +256.

With tiled virtual memory, row and column
access are equally efñcient. If the anay is accessed
by columns, e.g., the process will suffer a tile fault
every 256 pixels in the first column, and then run
without faults for the next 255 columns.

Note the difference in working set size during
column access to the paged and tiled arrays. For a
column of the paged ãrrãy, the working sát size is
3K pages (the entire array), or 12 megabytes. For a
column of the tiled array, the working set size is just
12 tiles or 786 kilobytes.

Tiled virtual memory can also reduce the work-
ing set size for many localized anay operations. For
example, consider an application that performs a
local editing operation on the bicycle rider's shirt,
such as a color or texture change. In paged memory
(Figure 4), the working set size is approximately
1024 pages or 4 megabytes. In tiled memory (Figure
5), the working set size is 19 tiles or 1.2 megaby[es.

2A column of pixels touches every virtual page ín the
array, requiríng 12 megabytes of physical memory per
column. The host machine has only 8 megabytes of
physical memory available. Assuming a conventional LRU
(Iæast Recently Used) replacement algoritbm, línear
passes through the array columns will cause the enti¡e
array to be repeatedly paged in and out of physical
memory.

Figure 5: Tiles Needed for Local Editing

Figure 3: Mapping of Anay to Virtual Tiles

Figure 4: Pages Needed for Local Editing

100 Summer '92 USENIX - June 8-June 12,1gg2 - San Antonio. TX

Franklin

IMMU Hardware
Functional Overview

A functional overview of the IMMU hardware
is shown in Figure 6. The IMMU consists of tile
address mapping logic and a conventional MMU.
Array virtual addresses from the CPU pass through
the tile address mapping logic and are converted to
tiled virtual addresses. These addresses then pass
through the MMU and are converted to physical
memory addresses via conventional means.

Tiled Virtual Memory for UNIX

tile offset. The upper portions of the Y and X
addresses (Y*ro and Xuppr^) are extracted and com-
bined to form a virtual tile number. Finally, the tile
number and tile offset are concatenated to form the
tiled virtual address.

In order to extract Yrcvla and Xuoa from an
anay virtual address, the IMMU needs to know the
anay's XSIZE - the number of bits in the X address.
During tile address mapping, the upper bits of the
anay virtual address are used to index into an
XSIZE table to obtain the number of bits in the X
address. This effectively breaks the IMMU vi¡tual
space into 256 segments of 4 megabytes each. All
images in the same segment have the same XSIZE.
Images longer than 4 megabytes occupy multiple
segments.

Y Address X Address

Yupp¡n Ylowm Xupp¡n Xlo*m

Flgure 7: Anatomy of an Array Virtual Address

Tile Number Tile Offset

Yuppen Xuppm YLowen Xrowen

Flgure 8: Anatomy of a Tiled Virtual Address

Image Memory Concepts
Image Memory as Shared Virtual Memory

Image memory is treated as a type of shared
vi¡tual memory. Processes request the allocation of
an image in image memory and specify its attributes,
such as size, read/write protection, and access rights.
The kernel returns to the requesting process a unique
image identifier for the allocated image. This
identifier is used to reference the image or to allow
another process to share the same image, by passing
the image identiûer. A reference count is maintained
for each allocated image, and an image is freed
when the reference count drops to zero. The separate
components of a color picture (such as (u,v,L),
(R,G,B), or matte) are stored as separate images in
image memory.

Image memory is tiled in 64 kilobyte chunks to
and from the swap device. Swap space for an image
is allocated when an image is allocated, and deallo-
cated when the image is deallocated. This swap
space is associated with the allocated images, not
with the processes that created them. Since image
swâp space is associated with each image, processes

CPU

ìii,à

ï,íï

Physical Memory

-Arrøy VirtualAddress

- T iled Vir tual Ad.dres s

-Physical Address

Figure 6: IMMU Functional Overview

The IMMU is located on the system bus, and
responds to two address ranges: a 5L2 megabyte
physical space, and a 1 gigabyte virtual space. All
accesses to IMMU physical space are mapped
directly to IMMU physical memory, which provides
physical tiles to support the tiled virtual memory.
Access to this physical space is restricted to supervi-
sor mode, and is only done during tile-in, tile-out,
and copy-on-write tile faults.

Access to IMMU virtual space invokes the
IMMU vi¡tual to physical mapping, and the access is
redirected to the appropriate physical tile. During an
access to IMMU virtual space, a tile fault will occu¡
if the corresponding tile table entry is marked as
invalid or if the access violates the virtual tile's pro-
tection. A tile fault causes the IMMU to generate a
bus enor signal.
Tile Address Mapping

When IMMU virtual space is accessed, the
IMMU must translate the anay virtual address to a
tiled virtual address, which is then passed to the
MMU. Internal views of an array virtual address and
a tiled vi¡tual address are shown in Figure 7 and
Figure 8, respectively. An anay virtual address con-
sists of a Y address and an X address portion. The
length of the Y and X portions can væy"from 8 to
16 bits, corresponding to image dimensions from 256
bytes to 64 kilobytes. During tile address mapping,
the lower 8 bits of the Y and X addresses (yro*o
and Xrono) a¡e extracted and combined to form a

Summer '92 USENIX - June 8.June l2r lgg2 - San Antonio, TX 101

Tiled Vlrtual Memory for UNIX

sharing an image therefore share the same image
swap space.
New System Calls

There are four new system calls to support tiled
image memory. Image memory is allocated with
imem_alloc, shared with imem_share, and freed with
imem;þee. The protection of an image can be
changed with imem¿rot.
lmem_alloc
caddr t
imen-ãIloc (x_dirn, y_dim, image_area,

access , f i l l _co1or)
int x_dim, y_dim;
rect_t *image_area;
accegg_e accessi
int f i l l co lo r ;
typedef struct {

int x_min, y_min, x_max,
y_maxi

) rect_t;

typedef enum {
IMEM PRIVÀTE, IMEM-SHÀRE

) access_e;

- Data pixels in image_area rectangle

- Unused pixels in partially used tiles

- Unused pixels in read-only border tiles

Figure 9: An Allocated Image

Franldin

Due to hardware constraints imposed by the
IMMU, the specified x_dím value is rounded up to
the next power of 2, and y_dim is rounded up to the
next multiple of.256 as image memory is allocated.
As a result, there can be border tiles around the
image that do not overlap with the image_area rec-
tangle. Any such tiles have their protection set to
read-only, no-fault on write (see Figure 9). Any tiles
that overlap the image_area rectangle have their pro-
tection set to read-write. imem¿rot can be used to
change this protection.

imem_share
bool_t
imem_share (image)
caddr_t image;

imem-share requests that the cuffent process be
allowed to sha¡e the previous allocated image. The
image must have been specified as shareable by the
process that allocated it.

imem_free
bool_t
imem_free (inage)
caddr_t inage

imem_þee informs the kernel that the specified
image is no longer needed by the cunent process. If
no other process is currently sharing the image, it
will be deleted.

imemgrot
bool t
imem-prot(image, image_area, prot)
caddr_t inage;
rect-t *image_area;
prot_e prot;

typedef enun {
IMEM-PROT-RO,
IMEM-PROT_RONF,
IMEM-PROT-R!{

) prot_e¡
bool_t

imem¿rot changes the protection of the previ-
ously allocated imdge. The new protection can be
read'only, read-only with no fault on write, or read-
write. The image must have been allocated by the
current process or have been specified as shareable
by the process that allocated it. The protection of all
tiles in the region of the imagè specified by
lnage-area is altered according to the value of, prot.
Protection can only be altered on enti¡e tiles, not
individual pixels.
Constant Color Tiles

Multiple virtual tiles are often mapped to the
same physical tile. Tile sharing is desirable because
it saves physical tile memory, and allows an allo-

r
N
I

ímem_alloc allocates a section of image
memory large enough to hold an image of size
x_dim by y_dim. Tlte image-area rectalgle defines
the area of the image that the user process will be
writing to. By selecting appropriate values for
image_area and (x-dim, y_dim), it is possible to
obtain a constant color border around the working
image area. The image is private to the curent pro-
cess if access is IMEM_PRIVATE, and shareãble
between processes if access is IMEM SHARE. If
fill_color is in the range 0-255 then all lixels in ttre
4l^oc{9d lmage are ser to fill_color. l{ fiil_cotor is
NO_COLOR then all pixels in the a[oùted image
are left unchanged, and will have undefined values.

L02 Summer '92 USENIX - June 8.June 12,lgg2 - San Antonio, TX

Franklin

cated image to be quickly set to a default color, such
as "paper white".

When an image is allocated using imem_alloc,
a fill color is specified for the image. All tiles in the
allocated image arc effectively filled with the
specified color. This is done by mapping all virtual
tiles in the image to the same physical tile. The phy-
sical tile is filled with the specified color, Any
border tiles around the image are permanently
marked as read-only, no-fault on write. Any virtual
tiles that overlap the image_area rectangle are
marked as read-only and copy-on-write (see Figure
e).

Thus, a read of any pixel in the newly allocated
image returns the fill color, A write to any pixel in a
border tile is ignored, since all such tiles are marked
no-fault on write. A write to any pixel in the
image_area rectangle causes a tile-fault, since all
such tiles are marked read-only.

The tile-fault handler detects that the virtual
tile is marked copy-on-write, allocates a new physi-
cal tile, fills it with the color found in the read-only
tile, re-maps the virtual tile to the new physical tile,
and resets the protection bits for the virtual tile
according to the original value of. prot from
imem_alloc. On return from the tile-fault handler the
written-to pixel is updated in the newly mapped phy-
sical tile. Subsequent accesses to any pixels in the
same virtual tile are directed to the newly mapped
physical tile.

Kernel Software
Tile Faults

Tile faults can be generated by a process run-
ning on the host processor or by a hardware
accelerator on the system bus. Faults generated by a
process on the host processor cause a bus eror to be
received by the host processor, and are handled in a
conventional fashion. Faults generated by a hardware
accelerator cause a bus error to be received by the
hardware accelerator, which generates a vectored
interrupt to inform its device driver. These faults are
handled by the tile-in daemon, which is discussed
below.
Tile Swap I/O

Tile-in and tile-out are handled separately from
SUNOS page-in and page-out. Under SUNOS ver-
sions 4.0 and 4,1, allocation of swap blocks is
delayed until a page-out is required. Swap blocls
can therefore appear in random positions on the
swap device. In addition, swap blocks are equal in
size to the virtual page size, which is 4 or 8 kilo-
bytes.

To obtain maximum tile swap performance, we
swap individual tiles to or from contiguous 64 kilo-
byte portions of the swap device. In addition, the
current implementation allocates tile swap space
when image memory is allocated, so that the entire

Tiled Virtual Memory for UNIX

image uses a contiguous portion of the swap device3.
Both of these techniques minimize disk seek time
during tile-in and tile-out. Tile i/o is done using a
greatly simplified version of. physio - the block i/o
service routine of standard SUNOS. The resulting
tile i/o subsystem is very efficient, and achievei
approximately 95 percent of the theoretical disk
bandwidth during operation.
Tile Daemons

TWo new kernel processes are run to support
the tiled virtual memory system. The first process,
the tile-out daemon, tries to maintain an adequate
supply of physical tiles in the free list to sarisfy
future tile faults, This process is similar to the page
daemon process, and uses a conventionat high/low
water mark approach. Tiles that have been
scavenged by the tile-out daemon are placed on a
FIFO free list, and the virtual to physical mappings
are maintained in a tile cache.If there is a tile fault
on a tile that has recently been scavenged by the
tile-out daemon, the physical tile is simply removed
from the free list and the virtual to physical mapping
restored.

The second process, the tile-in daemon, handles
tile faults incurred by hardware accelerators. The
hardware accelerators perform various image-
processing operations on image memory, and are
designed to be restartable. If one of the accelerators
incurs a tile fault while processing an image, it gen-
erates an interrupt and halts. The interrupt causes the
appropriate device driver interrupt routine to be
invoked.

The interupt routine gets the vifual tile
address of the fault from the accelerator, and passes
it to the tile-in daemon along with a notify routine.
The interrupt routine then exits, leaving the accelera-
tor halted. The tile-in daemon resolves the tile fault
on behalf of the device driver4, and then calls the
notify routine. The notify routine then touches the
restart bit on the accelerator, and the accelerator
resumes its processing at the previously faulted
address. The entire process takes just 200
microseconds on a SUN 4/330.

If this technique was not used, all the virtual
tiles needed by an accelerator would have to be
mapped and locked to physical tiles before the
accelerator was started, similar to the way that pages
are locked in prior to a disk transfer. But this is
infeasible, given the potential size of the images and
the lack of any knowledge of what tiles an accelera-
tor is going to access. It would even be necessary to
know which pixels were to be read, and which were

- rln principle, this approach could cause problems with
fragmentation of the image swap space, but this haS not
proven to be a problem in practice.

'The tile fault must be resolved by another process,
since a driver can not sleep at intemrpt level.

Summer '92 USENIX - June E.June L2, L992 - San Antonio, TX 103

Tiled Virtual Memory for UNIX

to be written, so that copy-on-write tiles could be
properly mapped and copied.
Tile Replacement Algorithm

The choice of replacement algorithms for a
tiled VM system is problematical, just as with a
paged VM system t2ltsltgl. The currenr implementa-
tion of the tile-out daemon uses a modified LRU
(Iæast Recently Used) replacement algorithm. Unfor-
tunately, LRU algorithms can perform poorly in
common anay processing operations [4][7]. If an
aray is accessed in a linear fashion in paged or tiled
virtual memory, an LRU replacement algorithm acts
just like a FIFO algorithm. If the anay is larger than
physical memory, successive passes through the
anay will cause the entire aray to be copied to and
from the swap device.

Despite the potential problems with LRU
replacement, we have found it to provide acceptable
VM performance in practice. The tile cache (dis-
cussed above) has proven to be very helpful in
improving system performance.

We have experimented with a RANDOM
replacement algorithm, and found it to be much
slower than the LRU algorithm, even in cases where
the LRU algorithm performs poorly. The dismal per-
formance of the RANDOM replacement algoriihm
appears to be caused by the complete failure of the
tile cache - with random tiles in the free list, the
tile cache hit rate falls close to zero.

We are curently investigating the use of LIFO
(Iast-In, First-Out) replacement. If large data arrays
are accessed. repeatedly, in a sequential fashion,
LIFO replacement may be much more effective than
LRU replacement. Initial tests have shown that LIFO
replacement reduces tile i/o by 25 to 50 percent in
our application,

To illustrate this effect, suppose that we have a
20 megabyte affay, and that the operating system has
16 megabytes of physical memory available for pag-
ing. Now, suppose that the array has already beãn
accessed sequentially at least once. With LRU
replacement the last 16 megabytes of the array
remain in memory, and the first 4 megabytes are
swapped out. \ryith LIFO replacement the valid and
swapped sections are reversed, i.e., the first 16
megabytes of the array are valid, and the last 4
megabytes are swapped out,

When the array is processed a second time,
using LRU replacement, the initial portion of the
array is invalid, and must be swapped in from disk.
But for each page swapped in, another page must be
swapped out. As a result, the second sequential pass
tluough the aray causes every page in lhe array to
be swapped in once and swapped out once, for a
total of 40 megabytes of page i/o.

Franklin

But when the aray is processed a second time,
using LIFO replacement, the initial 16 megabytes of
the anay are still valid. No page faults occur until
the last 4 megabytes of the aray are accessed. Just
as with LRU replacement, for each of these pages
swapped in, another page must be swapped out. So
with LIFO replacement, a total of 8 megabytes of
page ilo are required.

In general, for repeated sequential access to an
array of ¡ü bytes on an operating system with P
bytes of physical memory, with N>p, LRU replace-
ment will require 2N bytes of page i/o, and LIFO
replacement will require 2(N-P) bytes of pageilo.

We expect to continue investigating replace-
ment algorithms in the future, including LIFO and
the most-distant algorithm discussed in Future Work.

VM Performance
By making a trivial change to the kernel code

for imem_alloC, we are able to tuin our tiled VM
into a conventional paged VM. The tiled version
uses 64 kilobyte tiles, the paged version uses 64
kilobyte pages. Every other aspect of the two ker-
nels is identical, including use of the IMMU
hardware, fault handling, swap space allocation,
swap i/o transfer size, replacement algorithm, and
tile/page daemons.

These otherwise identical VM svstems are ideal
for comparing the performance of tiiing and paglng
on a common image processing operation such as
filteringo. To do the comparison, we use one of our
ha¡dware accelerators to filter a t2 megabyte
(4000x3000 pixel) greyscale image. The fiitering
operation requires a horizontal and a vertical pass, so
the entire image is read and written twice: once by
rows; once by columns.

Our test filters the image once for each of a
range of physical memory sizes, recording the exe-
cution time for each. We repeat the test using both
the tiled and the paged VM system. At the siart of
the test, 16 megabytes of physical memory are avail-
able to the VM system for image storage. On each
pass of the test the following steps are performed:

1. The required images are allocated, initialized,
and forced out of physical inemory;

2. The filtering operation is performed and the
processing time is recorded;

3. The images are deallocated; and

5We simply set XSIZE (the number of bits in the X
address portion of the virtual address) to 8. This
effectively transforms a request for an ll by M tile ima1e
into a request for an (N x M) by 1 tile image. That is, tñe
allocated image is 1 tile wide, regardless of the requested
width.

ófiltering is used for a variety of image processing
operations, including rotation, scaling, sharpening,
blurring, and warping.

r04 Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX

ã
tt

ã o og

Ê s oÉ
o.ll

E , o

Franklin

4. The amount of physical memory is reduced by
256 kilobytes.

The passes continue until the VM system starts
thrashing.

Figure 10 shows the results of these tests as a
graph of execution time vs. physical memory size.
The paged VM system starts thrasþing when physi-
cal memory drops to 13 megabytes/. The tiled VM
system, on the other hand, exhibits a linear degrada-
tion in performance until physical memory drops to
2 megabytes. Below 2 megabytes there is a steeper
but still roughly linear degradation.

0 4 8 1 2 1 0

Physical Memory Available (megabytes)
Flgure 10: Performance of VM System on Filtering

Task

For this filtering tâsk, the paged VM system
requires at least 13 megabytes of physical memory.
The tiled VM system continues to function with 1/4
megabyte of memory and only a doubling in the
nominal filtering time. This is a SO-fold reduction in
working set size.

Future l{ork
Tile Replacement Algorithms

As discussed in the Kernel Software section,
the tile-out daemon uses a modified LRU algorithm,
and this algorithm can perform poorly for some com-
mon array access patterns.

Wada [9] suggests the use of a most-distant
replacement algorithm for image processing applica-
tions. In this algorithm, the tiles most distant from
the last accessed tile are candidates for replacement.
This algorithm appears to be well behaved under
many of the common access patterns in image

ffiage plus free space for the
VM system to use for tile fault resolution.

Tiled Virtual Memory for UNIX

processing. However, it is more computationally
expensive than other common replacement algo-
rithms, and also requires knowledge of the last tile
accessed. This information is not available from our
IMMU hardware.

We would like to investigate whether an
approximation to the most-distant algorithm would
be effective. One possible approach would be to use
a conventional clock algorithm to clear all of the tile
reference bits at regular intervals. When the tile-out
daemon runs, the centroid of the recently referenced
tiles could be used as an approximation to the most
recently used tile.
Tile Prefetch Algorithms

The current tiled VM system is demand tiled
- a tile is fetched from the swap device only when
a tile fault occurs. It may be desirable to modify the
tile fault handler to detect common image access
patterns (such as rorù/ or column access), and then
asynchronously prefetch entire rows or columns of
tiles before they are needed.

Alternatively, it may be easier to add a system
call that would allow the application process to pro-
vide hints to the kernel about intended image access.
The hints should include the region of the image to
be processed and the image access pattern.

We would also like to investigate the possibil-
ity of coupling images with respect to tile faults, so
that a tile fault on one color component of a picture
would cause an implied fault on the corresponding
tiles in the other color components. Similar coupling
of source and destination images may also be useful.
Extensibility to Higher Dimensions

The current implementation of the IMMU
hardware and software provides an efficient environ-
ment for processing large 2-dimensional arrays.
However, the array virtual to tiled virtual address
translation (as performed by the IMMU) is easily
extensible to higher dimensions. The only fundamen-
tal constraint is the size of a virtual address on the
host processor.

Most modern processors provide 32-bit virtual
addresses. In the current implementation, both the X
and Y portions of an array virtual address can be up
to 16 bits. A tiling architecture to handle 3-D or 4-D
arrays would require reductions in the maximum
dimensions of the arrays, but would still be useful
for some applications. However, future trends are
definitely toward larger virtual addresses [8], and
64-bit machines are already becoming available. On
such a machine, a tiling architecture for 3-D or 4-D
arrays would be quite interesting.
Integrated MMU and IMMU

The IMMU is complelely separate from the
host processor's MMU and is situated on the system
bus. This limits the potential performance of the
image memory system, due to the overhead in

Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX 105

Tiled Virtual Memory for UNIX

addressing the system bus and the inability to take
advantage of the cache hierarchy on the host proces-
sor.

The IMMU is very similar to a conventional
MMU, with the exception of the array virtual
address to tiled virtual address mapping. Integration
of this mapping logic into a conventional

-MMU

should be straightforward, but is beyond our means.

Conclusions

!e have implemented a tiled virtual memory
for UNIX, based on a custom MMU and supporting
kernel software. Together, they provide ï tite¿,
shareable, virtual memory that has proven to be an
efficient environment for manipulating 2-dimensional
anays of data.

Use of the tiled VM presented here is nearly
transparent to application software and programmers.
In fact, the same executable binaries run on svstems
with and without tiled VM, rhe only difference
showing up in array handling performance. For
anays that fit in memory, tiled and paged VM are
equal in performance. For arrays larger than physical
memory, tiled VM provides much higher perfor-
mance.

This tiled virtual memory has been used suc-
cessftrlly in a commercial product for the color elec-
tronic prepress industry. Although we have used this
tiled VM solely for image processing applications,
we believe it would be equally useful in ã variety of
other applications.

Acknowledgements

9.ry Newman was responsible for the concep-
tual design of the IMMU and its use in a tiled vii-
tual memory system, and later guided the develop-
ment of both the IMMU and the kernel softwaie
described here. Steve Mclafferry and Bob Getz
implemented the IMMU hardware.

References

[1] Blinn, J. F., "The Truth About Texture Map-
ping", IEEE Computer Graphics and Applicä-
tions (March 1990), 78-83.

[2] Denning, P. J., "The Working Set Model for
Ploggm Behavior", Commun. ACM 11(5) (May
7968),323-333.

[3] Denning, P.J., "Virtual Memory", ACM Com-
put. Surv., 2(3) (Sept 1970), 153-189.

[4] Hatfield, D. J., and Gerald, J., "program Res-
tructuring for Virtual Memory", IBM Systems
Journal 10(3) (March 197t), I6B-t92.

[5] Madnick, S. 8., and Donovan, J. J., Operating
Systems, McGraw-Hill, New York, 1974.

[6] McKellart A. C., and Coffman, E. G., "Organiz-
in_g Matrices and Matrix Operations for Þaged
Ygro-ry , Systems", Commun. ACM 12(3)
(March 1969), 153-165.

Franklin

[7] Ryman, 4., "Personal Systems Image Applica-
tion Architecture: Iæssons Learned from the
l1agEdlq Program", IBM Systems Journal 29(3)
(Sept 1990), 408-420.

[8] Slater, M., "Is 64 bits the next step?", Micropro-
cessor Report, 5(4) (March L99l),3-4,

[9] Wada, B. T., "A Virtual Memory System for
Picture Processing", Commun. ACM 27(S)
(May 1984), 444-454.

Author Information
Jim Franklin received a BA in Mathematics

from Cornell University in 7974, and an MS in
Computer Science from the University of Maryland,
C-ollege Park in L976. He was a member of techni-
cal staff at Bell Laboratories until 1980, working on
software tools, and then joined Automatix, working
on programming languages for robotic systems. In
1986 he joined Kodak Electronic Printing Systems,
where he works as a consulting engineer in the
Color Image Products Group, investigating operating
system issues for new imaging platforms. He can bé
reached via U.S. Mail at Kodak Electronic printing
Systems; 164 Lexington Road; Billerica, MA 01821-.
His electronic mail address is jwf@keps.kodak.com
or uunetlkeps.kodak.comljwf .

106 Summer '92 USENX - June 8.June 12,1rgg} - San Antonio, TX

