
TCP/IP and OSI fnteroperability
with the X Window System

Nancy Crowther, Joyce Graham - IBM Cambridge Scientific Center

ABSTRACT

Network users are faced with the problem of making the transition from TCP/P
applications to the emerging Open Systems Interconnection (OSI) protocols. To accomplish
this goal, these users must rewrite their code to use OSI, or switch to new applications, or
use a gateway between TCP/IP and OSI based applications. This paper details how this
problem was solved in work at IBM's Cambridge Scientific Center for one distributed
application, the X Window System, and how the same methods could be used for other
applications. The draft ANSI standard mapping X to OSI is explained. The changes that
were made to the X Window System to support OSI and an X TCP-OSI Gateway are
described. The best method for migrating apþiications was found to be extensions tô the
socket to support OSI at multiple layers.

Introduction

Interoperability on a network connecting dif-
ferent types of multi-vendor systems is a feature
increasingly demanded by users. The X Window
System, Transmission Control Protocol/Internet Pro-
tocol (TCP/IP), and Open Systems Interconnection
(OSI) protocols all promote this interoperability. X
allows the workstation user to display results from
applications running on multiple heterogeneous sys-
tems. Both TCP/IP and OSI protocols are non-
proprietary ways to connect these multi-vendor sys-
tems, but users who want to change from TCP/IP to
OSI in order to use new OSI applications face the
problem of converting their current TCP/P applica-
tions to run on the OSI network.

This paper examines one TCP/P-based applica-
tion, the X Window System, and explains how we
moved it into an OSI environment in experimental
prototypes at IBM's Cambridge Scientific Center. X
over OSI is a natural pairing to address requirements
for enhanced interoperability, but until recently has
not been attempted. We explain the mapping of X
to OSI as defined in the draft ANSI standard
[ANSI91], and describe how we implemented it in
two different ways on a uMx based operating sys-
tem, IBM's AIX 3.1. Our experience indicates that
there are many advantages to modifying the OSI
socket programming interface found in 4.3 Reno
BSD [BSD43] to support OSI at the Application
Layer. We also describe an X TCP-OSI Gateway,
for use in networks containing some TCP/P-based
systems and some OSl-based systems.

X Window System

The X Window System is a portable network-
transparent window system, allowing multiple appli-
cations, called X clients, to run on varied hetero-
geneous systems and architectures throughout a

network and display on any workstation running an
X server application. The X server controls the
workstation's bitmap display, keyboard and mouse.
IBM ships X on most of its platforms, either client
application libraries, server, or both, depending on
the system.

Clients and seryer communicate by means of
the X protocol, which consists of requests from the
client for various functions such as drawing, replies
from the server to these requests, events which
notify the client of mouse or keyboard input, and
error notifications. The X protocol in turn rides on
top of a reliable byte stream between client and
server. If client and server are on the same system,
this reliable byte stream is simply some local inter-
process communication mechanism. When client
and server are on different systems connected by a
network, the reliable byte stream is provided by
some communications protocol, typically TCP/IP.
All of IBM's current X products use TCP/IP as the
underlying network communication protocol.

Figure L shows the various parts of an X Win-
dow System.

X client application programs use various
"toolkits", or application programming interfaces
(API's) which implement graphical functions. The
toolkits in turn call routines in the various X
libraries supplied by the X Window System. The
lowest level X library, referenced eventually by all
higher layers, is the Xlib, or X library. Buried in
this library are the routines which perform the net-
work communication. These communication rou-
tines, as distributed in the X source code, currently
support TCP/IP and DECnet only. The window
manager is also an X client, and it uses the Xlib to
perform network communication to the X server. A
client in frequent use is the xterm plogtam, a termi-
nal emulator. This program displays in a window as

Summer '92 USENIX - June 8-June 12, t992 - San Antonio, TX 243

TCP/P and OSI Interoperability...

if it were the system console. All other programs
which write to the console and read from the kev-
board can be run "in" this window, sending their out-
put to xterm, which in turn communicates through
Xlib to the X server.

The X clients and the X server may be execut-
ing on the same workstation, or on completely dif-
ferent systems from multiple manufacturers. Since
the X protocol is system independent, clients may be
written with assurance that they can display on any
workstation implementing a standard X server.
Similarly, a standard X server can expect to be able
to be used by any standard X client from any
software vendor. This of course contributes greatly
to the goal of interoperability. Applications written
for a proprietary windowing system or other user
interface are very limited in their use.

Although the X protocol is designed to be able
to be implemented from its documentation, in prac-
tice vendors use the sample implementation source
code, which is available for free from the Mas-
sachusetts Institute of Technology X Consortium,
and modify it for their own systems. The X source

Crowther, Graham

code (in the C language) is written in such a way
that it can be compiled for many different operating
systems by selecting certain compilation options.
The X code is truly portable. Although it was
implemented first on 4.2 BSD it runs on operating
systems as diverse as VM, MVS, and OS/2, as well
as UMx based operating systems such as AIX. In
the current Release 5 from the X Consortium, code
which specifically supports AIX 3.1 and one of the
graphics adapters for the RISC System/6000 is
included. (This code was written by IBM and
donated to the X Consortium.) This support is thus
freely available to RISC Systenv6000 users even
though it is not yet available as an IBM product.

OSI

While TCP/IP protocols, whose development
began in the mid-1970s funded by the Defense
Advanced Research Projects Agency (DARpA) for
its collection of networks, are the current de facto
standard, the long-term replacement for these proto-
cols is the OSI protocols. This suite consists of
seven layers of international standard protocols being

Network

X Server
(workstation only)

X Toolkits

Figure 1: X Window System Parts

244 Summer '92 USENIX - June 8-June 12,lgg2 - San Antonio. TX

Crowther, Graham

developed by the international community to provide
both the political and technical solution to world-
wide networking. Since August 15, 1990, the US
Government has required that new network procure-
ments and major upgrades to existing networks sup-
port the Government OSI Profile (GOSIP). GOSIP
is a selected subset of the OSI protocols [GOSIP88].

OSI is a complete family of protocols, separat-
ing the functions of communication between applica-
tions into well-defined layers. Figure 2 shows the
OSI reference model [IS7498]. There are two end
systems communicating with each other, connected
by any number of intermediate systems.

At the highest layer, the Application Layer,
applications such as file transfer, mail, and library
information retríeval exchange information organized
into previously agreed upon data structures. These
applications use common application services. One
of these is the Association Control Service Element
(ACSE). The ACSE manages the connection (called
an "association") between the communicating sys-
tems. The two sides agree on which application ser-
vices will be used in the association by exchanging
the "application context." The two applications
agree on the semantics of the data which is being
transferred, but the representation of these data struc-
tures on the respective systems may be very

TCPÆP and OSI Interoperability ...

different. As simple examples of such differences,
one may use ASCII to represent characters and the
other may use EBCDIC. One may use the "big
endian" method of representing integers (most
significant byte first), and the other may use "little
endian." The applications are not concerned with
these differences; they call on the Presentation Layer
to take care of exchanging the data in such a way
that the two systems can understand each other. The
data structures are specified in a system independent
language capable of representing the abstract syntax
which defines the data structures exchanged by the
communicating applications, The most commonly
used abstract syntax language is called Abstract Syn-
tax Notation One (ASN.l), but this is not the only
possibility.

The Presentation Layer transforms the local
data structures into a system independent syntax (the
transfer syntax) which determinés the format ànd
ordering of the bits which are actually sent over the
network to the other side. The receiving Presenta-
tion Layer decodes from the transfer syntax into its
own local forms of data representation. The Presen-
tation Layer on each side is able to do this because
it has knowledge about which transfer syntax was
used to encode the data, and which abstract syntax
was used by the Application Layer. The pair of

End Svstem A End Svstem B

Network
IP, X.25

Figure 2: OSI Communication

Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX 24s

TCP/P and OSI Interoperability ...

syntaxes to be used in the communication, called the
"presentation context", is negotiated and agreed upon
by the two sides of the Presentation Layer. The
most commonly used transfer syntax is the Basic
Encoding Rules, BER, but it is not necessary to use
BER in OSI.

The Presentation Layer calls on the Session
Layer to conduct an orderly conversation with the
other side, including graceful termination of the
conversation and choosing of full or half-duplex
communication. (Session performs many other func-
tions, such as synchronization, activity management,
and so forth, which are not detailed here.) Session
conducts its conversation by means of a reliable
end-to-end Transport connection, which in turn uses
the Network Layer to route the data through the net-
work. Details peculiar to the medium which is used
(Token Ring, 802.3 Ethernet, etc.) are handled in the
Data Link Layer, which in turn is dependent on the
Iowest Physical Layer for the actual electrical and
physical connections between systems.

Transition from TCP/IP to OSI

Since TCP/IP is so successful, one may ask
"Why bother?" when it comes to conversion to OSI.
The first answer is the promise of applications which
are much richer in function than those available with
Internet protocols. Although only a limited number
of these applications are available now, there will be
many more in the future as more customers start to
use OSI. The Message Handling System protocols
(MHS) can send many more kinds of mail than the
text-based Internet Simple Mail Transfer Protocol
(SMTP) can. It defines a general-purpose third-party
transfer facility, with special kinds of structured
mail, such as messages with binary, voice or image
parts, and Electronic Data Interchange (EDI) for
exchange of financial information between enter-
prises. The OSI global directory service, using the
X.500 standard, is already in widespread use, It
enables the location of application programs all over
the world on any subnet which can connect to a
directory service. The new Transaction Processing
(TP) standards will allow the customer's TP monitor,
database, and application to be purchased from dif-
ferent vendors and still interoperate. The Commit-
ment, Concurrency and Recoiery (CCR) protocol
provides the two-phase commit needed in TP and
database manipulation. The OSI Virtual Terminal
protocol potentially will allow a user to log in to any
system in the world from any kind of workstation.
The File Transfer, Access and Management (FTAM)
services provide more than just the file transfer capa-
bility of the Internet File Transfer Protocol (FTp),
such as remote database access, performing of
actions on the remote files, access control, and han-
dling of many different kinds of files.

Crowther, Graham

The second reason for the broad potential of
OSI is that it is composed of standards reached by
formal, international agreements. They are thus pol-
itically neutral and less likely to change. OSI is in
widespread use in Europe, and is often the network
of choice for large, multi-vendor corporate networks.

The problem of making the transition from
TCP/IP to OSI has been attacked in several different
ways. See in particular Marshall Rose's book, The
Open Book IROSE9O], which contains an entire sec-
tion on Transition to OSI. But none of these docu-
mented approaches answer the problem of converting
the X Window System to run over OSI.

One approach is the Application-Gateway.
This is a program which converts analogous proto-
cols from one suite to the other. For example, an
FTAM-FTP Gateway can send files between OSI
and TCP/P systems, because it converts FTAM
commands and responses into FTP commands and
responses and vice-versa, The functions of the OSI
FTAM must be truncated into the more limited func-
tions of FTP. In the case of the X Window System
problem at hand, the application running on both
OSI and TCP/P is exactly the same application.
Thus no conversion of functionality is required.
Although we did in fact write a Gateway, it does not
need to understand the X requests that are made. It
just passes the X protocol through to the other side,
unexamined. A true Application-Gateway must be
able to understand the protocol requests of each
domain and translate them to an equivalent, or
compromise, request in the other domain.

A second transition approach is to use a
Transport-Gateway, Transport Service Bridge, or
Network-Service Tunnel. These methods involve
running the upper OSI layers on top of either TCP or
IP. They are handy when you wish to experiment
with OSl-based applications on systems which do
not support the OSI Iower layers. In our case, how-
ever, we had a TCP/IP-based application which
needed conversion, and we had OSI oroducts avail-
able on all of our systems.

A third approach, the Dual-Stack, is also used
for unlike applications to talk to each other, and
requires installation of both protocol suites. As with
the Application-Gateway method, this method does
not apply since we have one application, which we
want to talk directly to the protocol stack on systems
which have either OSI or TCP/IP installed.

Our approach is a fourth method. We claim
that rewriting TCP/P based applications to run over
OSI can be easier than any of the approaches listed
above, if a simple, high level interface to OSI is pro-
vided. The job is particularly straightforward if the
high level interface is the socket interface, since
many TCP/IP-based applications are written to this
interface.

246 Summer '92 USENIX - June 8-June 12,l9g2 - San Antonio. TX

Crowther, Graham

Standards

As shown above in the case of both X and OSI,
in order for true communication to exist, standards
are necessary, so independent implementations will
interoperate. The X Window System is already a de
facto industry standard. The definition of the proto'
col between X client and X server will soon be pub'
lished as an American National Standard (ANS)

IANSI9U, and will then become an international
standard (IS). One of the authors contributed to Part
IV of this draft standard, the Mappíng onto Open
Systems Interconnection (OSI) Servíces.

In this mapping, the X Window System appli'
cations, client and server, are found in the Applica-
tion Layer of the OSI Reference Model. The Asso-
ciation Control Service Element (ACSE) manages
the connection between client and server' The client
sends the first X data, which is the Open Display
request of the X protocol. This request, and all sub'
sequent X requests, replies, events, and errors, are
carried as User Data on Presentation Iayer P-Data
requests.

International consensus has been reached on X
over OSI. The European Workshop for Open Sys-
tems (EWOS) has published the E WOS Technical
Guide 013, A Mapping of the X Wittdow System over
an OSI Sr¿c*. This ETG specifies a minimal use of
ACSE, Presentation and Session services, known
colloquially as the "skinny stack," for use with X.
In a Guidance for Implementors section, the ETG
suggests that a Transport Layer API be used, and
that fixed headers for the upper layers be prepended
to the outgoing data and removed from incoming
data. In work parallel to ours, the University of
London Computer Centre, under the sponsorship of
the UK's Joint Network Team, has implemented this
"skinny stack" method on two systems tJl{'fl.

White it may seem obvious that X, being an
application, should operate in the Application Layer
of the OSI Reference Model, this was not ahvays the
case. Initial work in mapping X to OSI placed it
just above the Transport Layer, since it was felt that
this layer was more closely analogous to TCP

[BRENN91], ICROWC9O]. This placement, how'
ever, is not a valid use of OSL The OSI Transport
Layer functions are not completely the same as TCP
functions, and the OSI Reference Model asqigns
functions to the upper layers which are needed for
valid communication. It was felt that a Transport
Layer mapping would not be approved by ISO com-
mittees as an international standard since it violates
the OSI Reference Model. In addition, Application
Layer placement allows for future changes to the X
protocol which can take advantage of the richness of
OSI functionality, such as the ability to address mul-
tiple servers, OSI security aspects, and the ability to
specify multiple transfer syntaxes including one for
compressed data.

TCP/IP and OSI Interoperability ...

Implementation

In order to prove the feasibility of X over OSI,
we implemented prototypes on AIX and on ttù/o
other IBM operating systems - VM and OS/2 -
which support the socket interface to TCP/IP by
means of a user-space application library' IBM
ships OSI products on all of these operating systems.
On the RISC System/6000, the OSI produc't is called
OSI Messaging and Filing, or OSIMF/6000

[OSIMF91]. For VM and OS/2, the OSI product is
ða[ed OSl/Communications Subsystem, or OSI/CS

Iosrcs].
Because the Application Programming Interface

to OSI is different in OSI/CS and OSIMF/6000, dif-
ferent approaches were used. This also provided the
opportunity of comparing the methods for ease of
implementation, minimization of changes to the X
code, network management ability, and ease of con-
formance testing.

The goals of implementation of X over OSI
across all th,ree operating systems were the follow-
ing:

o Enable X server and X client to support both
OSI and TCP/P protocol families at the same
time. The reason for this goal is that many
potential customers of X over OSI already
have TCP/P installed, and are adding OSI to
their repertoire.

o Enable IBM X sewers and X clients to sup-
port only one of the two protocol families, for
systems on which only one is installed. This
is done by means of conditional compilation
and/or selective linking of the X code'

o Minimize changes to the X code. This was a
goal even for the approach in which the
changes rrti'ere concentrated in the X code
rather than in the socket laYer.

. Maintain existing semantics of the X code.
This goal means that, for example, we did not
redesign the X client library to do synchro-
nous (blocking) IiO, even though this would
have made our job easier. The reason for this
is that client applications are allowed to have
connections to multiple servers at one time.
Thus asynchronous I/O must be used'

o Make it as easy as possible for human users
of X clients to specify the OSI addresses of X
servers. OSI addresses are long and diffrcult
to type. We wanted to be able to use nick-
names, resolved to an OSI address by direc-
tory lookup.

o Require absolutely no changes to X clients
themselves, except to specify that they must
link with a particular Xlib. There is a large
body of existing X clients. We did not want
to add an invocation parameter to all of these.

o Make no changes to the invocation pæameters
for X servers, so that switching to the

Summer '92 USENIX - June 8-June 12,1992 - San Antonio' TX 247

TCP/P and OSI Interoperability...

enhanced X server is transparent to worksta-
lion users.
A primary goal of the design of OSI support

was to allow the enhanced server and Xlib to sup-
port both OSI and TCP/IP at the same time. Thus,
the server can accept connections from both
TCP/IP-based clients and OSl-based clients, if it is
running on a system on which both protocol families
are installed. The client linking with the enhanced
Xlib can connect to either an OSl-based server or a
TCP/IP-based server if both æe installed on the
client host. This raised the problem of how ro dis-
tinguish which protocol family is desired when the
client is invoked, Currently, with TCP/IP, the server
desired is specifred as follows:

-display serveripname : x. y

where serveripname is the Internet host name of the
system on which the server is running, x is the
number of the display desired, and y is the number
of the screen for that display. DECnet names are
distinguished from Internet names by specifying a
double colon, as follows:

-display serverdecnetname¡ ¡x.y
The Xlib XOpenDisplay routine knows to attempt a
DECnet connection if the server's name is specified
with two colons following it.

We decided that a similar svntacrical merhod of
identifying the OSI protocol family would be
beneficial. We selected the following method:

-display serverosiname : ix.y
where the i identifies the host name as being an OSf
nickname used for OSI directory lookup. This
method means that the user running the X client can
select the protocol family desired, and there is no
problem with duplication of Internet names with OSI
nicknames. An OSI nickname is a short mnemonic
name for a system or X server. This nickname is
turned into a full OSI address (which may be quite
lengthy and difficult to remember) by the software.

The X Window System code as distribured by
the MIT X Consortium uses the BSD socket to
access TCP/IP. The VM and OS/2 design consisred
of modifying the existing application socket library
(now shipped as part of the TCP/P products) ro
invoke OSI at the ACSE/Presentation level, using
the API provided by OSI/CS. Using this approacñ
we rû¡ere able to avoid changing the X code very
much, and we could take advantage of the OSI upper
layers in the product. Because of this approach's
advantages, we also implemented an OSI socket
library on AIX,

To result in an upper layer OSI socket, two sets
of functional modifications tù/ere needed on the
socket architecture. First, the socket architecture as
implemented by IBM was redesigned to match the
OSI socket support found in the 4.3 Reno release of

Crowther, Graham

Berkeley UNIX [BSD43]. A new family was
defined to allow sockets to be declared as belonging
to the OSI address family, and new address struc-
tures for this family were introduced.

Second, the 4,3 BSD socket design was
extended to. support OSI at the ACSEÆresentation
Laye¡ so that it could be used by the X Window
System. Three new protocol definitions were pro-
vided so that an application can specify that either
Presentation layer, Session layer, or Transport layer
protocols are to be used by the OSI socket being
defined. New setsockopt and getsockopt services
were added to specify user information, application
context name, presentation context definition list,
and maximum length of user information
[CROV/T91]. This new information is stored in rhe
socket data structure.

Sklnny Stack Implementation

On AIX, the first method tried was to modify
the X server and X client library source code to sup-
port OSI by adding conditional compilation of two
commonly used interfaces to the OSI Transport
Layer. These two API's are the socket AP[, taken
from the 4.3 Reno BSD OSI socket imolementation
[BSD43], and the X/Open Transport Inìerface(XTI)
[XOPEN88], which is an important new standard for
network programming and is the one used in IBM's
OSIMF/6000 product.

The goal of this preliminary AIX work was to
revise the Xlib and the sample X server code to sup-
port the XTI interface to either OSI or TCP/IP, and
to support OSI with either the XTI or socket inter-
face. Since X is written in a very clean, modular
manner, the changes were confrned to a very few
existing X routines: four in Xlib and three in the X
server, plus a new module for each of client and
server. A new module for XTI support, and a
module for OSI support, linked by both client and
server, were added. A new module for OSI direc-
tory support, useable by any OSl-based application
on AIX, was written. Since no OSI directory ser-
vices are available with OSIMF. these routines
needed to be written.

Because the server and client library must be
able to support OSI, TCP/IP and UNlX-domain con-
nections, a new data structure used bv all connec-
tions had to be added. This data shuóture soecifies
the protocol family and endpoint rype (soèket or
XTI). The connectio¡¡.c module of the server con-
tains routines for each protocol family supported
which make the connection. A minor change had to
be made to each of these to set up this new data
structure. In both client and server, the data struc-
ture is tested on each read or write to determine
which API to use (socker or XTI) and which domain
to use (OSI, UNIX, or TCP/IP).

24E Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX

Crowther, Graham

The OSI and XTI support was added with the
following new or modified C language statements:
Xlib, 250 statements; X server, 250 statements; new
code used in both client and server, 1000 state-
mentsr.

The work for the prototype was done on the
brand-new Release 5 of the XL1 source code. When
an attempt was made to retrofit the X changes to the
product release of AlXWindows, which at the time
the work was done was Release 3 of X11, the over-
riding disadvantages of using this approach became
clear. It was difficult to do the retrofit work for the
server because key modules had been changed by
MIT. The prospect of repeating this work for each
future release of X was unpleasant. In addition. we
had invested a lot of time in this work and the result
was only that the X Window System now worked
over OSI, but not any other application.

Because of these two problems, we decided to
rewrite the code into a user-space socket emulation
library, In AIX, sockets are of course part of the
kernel. Vy'e wanted to get this implementation work-
ing quickly, without the complications of kernel
modifrcation, AIX does not cunently support socket
access to OSI at any layer. Our socket emulation
library, thus, intercepts socket calls in user-space,
determines whether this is a real socket or emulated
Socket, and makes the real socket call if requested.
The emulated socket code issues the XTI call, and
translates the return codes to socket return codes
before returning to the caller. Much of the code
from the embedded method was used intact in the
socket library. The per-connection data structure
was simply turned into the emulated socket data
structure, set up on every call to the new Socket ser-
vice (even for TCP/IP and UNIX domain sockets).
The XTI access routires are now called by the
socket emulation library rather than called by X rou-
tines.

Since the X code was alreadv written to the
socket interface, changes to use ihis new socket
emulatíon library were minimal. Thus retrofitting
these changes to future releases of X will be pain-
less.

The number of lines of code for the changes
done by this method was about the same as the pre-
vious method, but the number of lines modified in
the actual X code was substantiallv less - under 100
for both client library and server. The bulk of the
new code is in separate modules implementing the
OSI socket library.

IAll counts of statements in this paper were arrived at
by counting lines of code ending in a semi.colon. This
includes data declarations, and does not include lines
consisting only of comments, curly brackets, preprocessor
statements, or if (expressìon).

TCP/P and OSI Interoperability ...

_ In both implementation techniques, the upper
OSI layers were needed, since in OSIMF/600O ihe
only OSI API is to the Transport Layer. This
required implementation of specialized ACSE,
Presentation, and Session Layers, thus lending itself
to use of the "skinny stack" method envisioned in
the EWOS Technical Guide. Thar is, the layers
implement only the simple functions needed by the
X Window System. On outgoing data, predeter-
mined fixed headers for the upper layers are
prepended to the X data itself, and passed out over
the Transport layer. Incoming data is more compli-
cated; it must be parsed to determine the header type
and format of the data. The headers are stripped
from the data, and only the X data itself is passed up
to the caller.

The advantage to this approach is that the OSI
Layer implementations were hand-coded for use by
TCP/IP-based applications such as X only, Thui
tests for the many unused functions of the Session
Layer, for example, were eliminated. The Presenta-
tion Layer implementation does not need to handle
encoding of general abstract syntaxes. In the socket
approach, these upper OSI layers are embedded in
the socket emulation library, below the socket ApI.

The initial implementation contains no network
management in the upper layers, a disadvantage to
this approach. If we had been able to use a com-
plete, general-purpose OSI implementation, network
management would have been included. Another
disadvantage to this approach is that the specialized
upper layer code must now be tested for confor-
mance with standard OSI layers. While the EWOS
Technical Guide restrictions permit simplifred encod-
ing of outgoing data, all possible forms of incoming
data must be decoded, and these must all be tested.
If we had been able to use a product level imple-
mentation of the OSI upper layers, this testing would
have already been done.

A rule of thumb for performance of the X Win-
dow System is that the round-trip time for communi-
cation between client and server should be 50 mil-
liseconds or less in order for human perception of
response time to be acceptable. Performance of the
OSl-based X server and X client librarv was meas-
ured by usingxllperf, which is an X client used for
measuring server performance. This client calculates
and displays the round-trip time of communication
between client and server before going on to execute
detailed tests of the server graphics operations. This
round trip time was found to be approximately 20
ms, with untuned code, which is an acceptable level.
This number was dominated by the performance of
the OSIMF lower layers. Running at Transport layer
versus running at ACSE layer made very little differ-
ence in the round-trip time.

Summer '92 USENIX - June 8-June 12, Lg92 - San Antonio. TX 249

TCP/P and OSI Interoperability ...

General Purpose OSI Product Implementation

For both VM and OS/2, IBM ships a socket
library as part of their TCP/IP products. We
obtained the source code for these libraries and
modified it to support OSI as well as TCP/IP.

On VM, only X client applications are sup-
ported. The availability of X over OSI means that a
VM customer running only the OSI communications
protocol on thefu machine can execute X-based
applícations on their VM mainframe and take advan-
tage of the display capabilities of a bitmap graphical
terminal attached to an X server connected to an
OSI network,

The goal of the design for VM ,ü/as to provide
the ability for any program using the socket interface
for network communications to use TCP/IP, OSI and
local sockets simultaneouslv, In the case of X. this
permits a single client application to communic"te
with multiple remote X servers, some of which
might be using TCP/P transport protocol and others
using OSI transport protocols. The socket applica-
tion library was modified to support the OSI/CS
ACSEÆresentation Layer APL This means that the
socket library need not contain an implementation of
the OSI upper layers, as was necessary in AIX.

The TCP/P socket code was modified to test
for the domain address family on each request. For
most servic¿s, new routines were written for the OSI
protocols and added to the socket library; in a few
instances existing routines were simply modified to
use the OSI/CS API to invoke the appropriate
ACSElPresentation Layer function. A major benefit
of this approach is thai it will allow any ãppfication
(not just the X tr¡/indow System!) which uiiiizes the
socket for network communication to replace TCP/P
with OSI with only minor changes required to han-
dle specification of the OSI protocol and address
family. As a result, aside from the socket library
changes, only minor changes to the X library were
made to set up information required for OSI connec-
tions.

The OSI implementation used is an IBM pro-
duct, and contains network management in all layers,
as well as extensive directory services. It allows the
clients and server to refer to each other very simply
by nickname, so that there was no need to write ãny
routines to perform directory lookup of OSI
addresses. In addition, the OSI implementation is
already conformance tested. Thus testing required
for thÍs work could be conûned to the socket
changes and X changes only.

The OSI support was provided by adding or
modifying 100 C statements in Xlib, and 1600 C
statements of socket library code to utilize the ApI
provided by OSVCS, Noie that this is about the
same effort as the AIX X code modifications, even
though the AIX code is implementing the upper
layers themselves, and the VM code is using an ApI

Crowther, Graham

to the upper layers. On first examination the number
of lines of code that was added to the socket library
to provide these services might seem surprising.
However, an examination of the code reveals that
there are three factors that account for this size.
First, the socket library changes represent a general
purpose implementation of services that are not
optimized for usage by X. Modifications were made
to provide consistency with the framework of the
existing socket library structure. TWo, because X
code handles multiple connections at once, for this
implementation most OSVCS callable services are
performed asynchronously and control is returned to
the issuing socket routine as soon as the callable ser-
vice is received by OSVCS, but before the action is
complete. Return indicates only that the parameters
of the OSI service have undergone a preliminary
stage of validation, and that the call has been
accepted (or rejected) for further processing. This
means that for each asynchronous OSVCS service
call that was used, an additional test had to be added
to the socket code to determine the results of this
preliminary validation. And finally, all return codes
and error conditions that are received from OSVCS
must be converted to corresponding socket retum
codes and eror conditions. Due to the large number
of possible codes and conditions that can be returned
from OSVCS, a significant portion of the new code
represents tests that are performed in the event that
an error condition is received, and the subsequent
conversion of these codes and conditions to socket
codes and error numbers.

On OS/2, IBM cunently ships an X server,
called PMX, and no X client library. Availability of
an OSl-based X server means that clients running on
an OSl-based system can display on the PS/2 works-
tation. X server requests that are received from an
X client program are interpreted and OS/2 Presenta-
tion Manager (PM) requests are used to control the
workstation's bitmap display. Keyboard and mouse
events, error notifications, and request replies from
the server are packaged in X protocol packets and
transported over the network to the client.

Since IBM provides OSI support for OS/2 with
its OSVCS product, we originally planned to imple-
ment the)VOSI support using an approach similar to
that used in the VM implementation; we would
modify the socket code allowing application pro-
grams to remain largely unchanged. TCP/IP socket
source code for OSl2 V2 was obtained, and the
implementation designed using this model. How-
ever, pending the availability of a OS/2 V2.0 Ether-
net device driver for OSI/CS, it was necessary to
change the design to use an approach similar to the
first AIX implementation - modifications and addi-
tions were made to the PMX server. The OS/2 X
server code code performs all tests for protocol fam-
ily determination, and invokes the calls to the
OSVCS API as required.

250 Summer '92 USENIX - June 8.June 12,1992 - San Antonio, TX

Crowther, Graham

As in the first AIX implementation, since the
PMX server code has been modified this current
OS/2 implementation will require that the changes
be retrofitted whenever there are changes made to
the PMX code on which it is based. Fortunately,
modifications to existing server code was confined to
two modules with 100 new C statements added. All
additional changes were implemented in three new
modules, representing an additional 1700 C state-
ments. As in the case of VM, these new modules
provide general purpose OSI functional equivalents
of socket service requests, and are available to any
application. However, since these changes were not
made to the socket library (due to the device driver
availability problem previously mentioned) applica-
tions must explicitly call for the OSI version of
requests (e.g., osi socket, osi_listen, osi_read, etc.).

Finally, as in the case of the VM implementa-
tion and in contrast to the AIX implementation, the
OSI support is provided by the IBM OSVCS product,
and therefore a complete OSI implementation includ-
ing network management, extensive directory ser-
vices, as well as conformance testing are all pro-
vided by this product.

X TCP-OSI Gateway

A typical customer who is beginning to install
OSI will have some systems running OSI, but some
which are still running TCP/IP. The customer will
want to use the X Window System to communicate
among all of these systems. To satisfy this need we

TCP/IP and OSI Interoperabitity ...

implemented the X TCP-OSI Gateway. This pro-
gram reads data on one protocol family and writes it
out on the other, thus connecting clients and servers
running different protocol families. It runs on AIX
and VM.

Figure 3 shows a diagram of a mixed network
with some systems running TCPiIP and some run-
ning OSI. Through the intermediary of the X TCp-
OSI Gateway, these systems can talk to each other.

The Gateway appears as an X server to normal
X clients, and appears as an X client to normal X
servers. It must be able to interpret addresses in
both OSI and Internet address domains. It runs on a
system which has both OSI and TCP/P installed.
The Gateway was written by adapting some of the
network communication routines found in the server,
and linking with Xlib to use the network communi-
cation routines found in the client. The Gatewav
does no interpretation of X protocol requests or
replies. It simply passes them uninterpreted to the
other side. Because of the specific data exchange
made when an X client connects to an X server, this
Gateway will work only for X. However similar
work could be done for other distributed applica-
tions.

Future I{ork

Now that we have OSI socket libraries we plan
to port other socket-based applications to OSL Can-
didates for this work include TELNET, FT?, NFS,
x3270. This will enable users to maintain their

Figure 3: Use of X TCP-OSI Gateway

Summer '92 USENIX - June 8.June lZ,lgg2 - San Antonio, TX 251

TCP/P and OSI Interoperability ...

productivity with familiar network tools, while
adding new OSI applications to their repertoire.

Concluslons

The problem of moving a TCP/IP-based appli-
cation such as the X Window System to OSI was
addressed. Different approaches were taken in dif-
ferent operating systems and these were compared.
The "skinny stack" approach was used in AIX. Spe-
cialized, minimal function OSI layers were imple-
mented by prepending the OSI layer headers to data
sent using a Transport Iayer APL This approach
minimizes the path-length required for OSI, but
means that we could not take advantage of upper
layer network management or conformance testing.

When the "skinny stack" code was embedded in
the X source code, retrofitting problems arose. On
systems where the socket interface is found in a
user-space application library, the socket was
modified to access OSI at the Application Layer.
Modification of an existing socket interface to sup-
port OSI means that the changes to existing X Win-
dow System product code can be confined to under
100 lines of code. This method proved to be so
superior in terms of minimization of changes to the
X source code and usefulness for other applications,
that a user-space "socket" library was implemented
on a UNIX system where sockets are found in the
kernel. Proper implementation of an OSI upper
layer socket clearly requires kernel changes. Once
the socket modifications are made and tested, they
can then be used by any application written to the
socket interface. The socket implementation can use
an upper layer access to OSI if this is available to
kernel code (often it is not), or can implement the
"skinny stack".

Although direct performance comparisons
between the "skinny stack" method and general pur-
pose OSI layer method could not be made since both
methods could not be implemented on the same
operating system, one would suspect that a "skinny
stack" would exhibit higher performance. However,
a general purpose stack can be implemented in such
a way that a fast path is used for applications which
do not use the complicated features.

For operating systems which are slow to imple-
ment OSI, a Gateway can be interposed between
clients and servers in different protocol domains.
This Gateway is particularly easy to write if a high-
level interface such as the socket is available for
both domains.

Based on our experience, we advocate that
common network API's such as sockets, XTI, and
TLI, should be modified to support OSI at the Appli-
galion layer as well as the Transport kyer.

-The

OSI upper layers should contain network manage-
ment and directory support, and should be confor-
mance tested. The simplifications and fast-path

Crowther, Graham

approach highlighted by the "skinny stack" should be
used as much as possible. When these high level
interfaces are available in operating systems, existing
TCP/IP-based application which are now in
widespread use can be rewritten with only minor
changes to run over OSI.

Although these experimental prototypes are not
available to customers, they point the way toward
solution of the problem of migrating all TCP/IP-
based applications to OSL An OSI upper layer
socket, which implements the most basic, simplified
functions of Session, Presentation, and ACSE, can
be used by all socket-based TCP/P applications.
Since the more complicated functions of the OSI
upper layers were not available to them, they either
do not use them, or implement them in other ways.
This capability is critical for users who want to
change to OSI in order to comply to the Government
OSI Profile, or who want to start using the rich func-
tionality of OSI applications, or who want to com-
municate with European OSl-based networks, but do
not want to give up using their TCP/IP applications.

Acknowledgements

We wish to thank our management at the IBM
Cambridge Scientific Center, Bob Anderson and
Dick MacKinnon, for funding and encouraging this
work. Jeny Mouton of IBM Nenvorking Systems
had the original idea for the OSI upper layer socket,
and both he and Keith Sklower of the University of
California made contributions to the design of this
socket. We would like to thank Jay Elinsky and
Oleg Vishnepolsky of IBM Watson Research, and
the PMX team at Cambridge - Allen Springer, Bill
Barrett, and Rod Maxwell - for making their socket
library source code and PMX source code available
to us.

Bibliography

[ANSI9l]X3.196-199x, X Window System Dara
Stream Definition. Part I, Functional
Specification Parf II, Data Stream Encoding,
Part III, KEYSYM Ettcoding. Part IV, Mapping
onto Open Systems Interconnection (OSI) Ser-
yices. Revised November 20, 1991.

[BRENN9l] Brennan, Thompson, and Wilder, Map-
pittg the X Window ortto Open Systems Inter-
connection Standards, IEEE Network Maga-
zine, May 1991..

[CROWT9l] Crowther, X on OSI, Xhibition 9t
Conference Proceedings, Integrated Computer
Solutions, June L991.

[BSD43] Manual pages for socker calls in 4.3 Reno
release of Berkeley Software Distribution, Sec-
tions 2 and 4, Computer Systems Research
Group, Computer Science Division, Univ. of
California, Berkeley, Calif, May 30, 1990.

[CROWC90] Crowcroft, J., Experience with mapping
the X wittdows protocol onto ISO transport

252 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Crowther, Graham

service,", Networks 90 - Network Management.
Proceedings of the International Conference,
Birmingham, UK June 1990

[DYER90] Dyer,"X TVindows over OSI", Report of
Joint Network Team, Rutherford Appleton
Laboratory, United Kingdom, October 199b.

[EWOS91] EWOS Technical Guide 013, A Mapping
of the X Window System Over an OSI Stack,
European Workshop for Open Systems, 2L May
799t.

[GOSIP88] U.S. Government Open Systems Inter-
connection Profile (GOSIP), U.S. Federal Infor-
mation Processing Standards Publication (FIPS)
1.46, Version 1, August 1988.

[IS7498] ISO 7498, Information Processing Systems
- Open Systems Interconnection - Basic Refer-
ence Model, International Organization for
Standardization, Geneva, Switzerland (1983).

[IS8823] ISO 8823, Information Processing Sysrems
- Open Systems Interconnection - Connection
oriented presentation protocol definition,
Geneva, Switzerland (1988).

[JNT] Peter Furniss and Kevin Ashley, personal
communications with the authors.

[OSICS] OSllCommunications Subsystem General
Information Manual, GL23-0184, IBM, palo
Alto, California, March 1990.

[OSIMF91] AIX Version 3 for RISC System/6000
OSI Messaging and Filing/6000, User's and
System Administrator's Guide, Second Edition,
SC32-0012-01., IBM, Palo Alto, California,
September 1991.

[ROSE9O] Rose, The Open Book, Prentice Hall,
1990.

[SCHE9O] Scheifler & Gertys, X Window System,
Second Edition, Digital Press, L990.

[XOPEN88])VOpen Portability Guide 3, Volume 7
Networking Services,)VOpen Company, Ltd.,
Reading, Berkshire, United Kingdom, 1988.

Author Information

Nancy Crowther has been at IBM for 15 years.
Most recently she has been a Staff Member at the
IBM Cambridge Scientific Center, where she has
worked in the area of networking software. She also
worked for Informatics at NASA/Ames Research
Center where she did scientific applications for 6
years. She has an M.S, in Applied Mathematics
from the University of Santa Clara and an A.B. in
Mathematics from Rutgers. Reach her via US Mail
at IBM, 101 Main St., Cambridge, MA 02!42, or
electronically at crowther@cambridge.ibm.com.

Joyce Graham is a Staff Member at the IBM
Cambridge Scientific Cenrer. Prior to joining IBM,
she worked at United Technologies Pran & Whitney
Division as a research engineer, and at the Mas-
sachusetts Institute of Technology as a scientific pro-
grammer, user consultant, and systems programmer.

TCPÄP and OSI Interoperability ...

Since joining IBM in 1.981, she has worked in the
areas of operating systems, user interface, and net-
work communications. Ms. Graham received a joint
B.A./8.S. (Aeronautical Engineering) from New
York University. She may be reached at
joyce@cambridge.ibm.com or via US Mail at IBM,
101 Main St., Cambridge, MA 02L42.

Summer '92 USENIX - June 8.June 12, Lgg2 - San Antonio, TX 253

