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ABSTRACT

The dbm database library [1] introduced disk-based extensible hashing to UNIX. The
library consists of functions to use a simple database consisting of kef/value pairs. A
number of work-alikes have been developed, offering additional feãtures [5] and frêe source
code [1_4,25]. _Recently, a new package was developèd that also offers imprõved performance
[19]. None of these implementations, however, provide fault-tolerant behaviour. 

'

- In many applications, a single high-level operation may cause many database items to
6s rrFdated, created, or deleted. If the application crashes while processing the operation, the
database could be left in an inconsistent state. Current versions of dbmto nof handle this
problem.-. Existing dbm implementations do not support concunent access, even though the
T.^ .of lightweight processes in a UNIX environment is growing. To address 

-these

deficiencies, tdbm was developed. Tdbm is a transaction procissing-database with a dbm-
like interface. It provides nested atomic transactions, volatile and pãrsistent databases, and
support for very large objects and distributed operation.

- This paper describes the design and implementation of tdbm and examines its
performance.

In the UNIX environment, the dbm database Cunent versions of dbm, however, do not meet
liþtutyt [1] has become widely used to provide the requirements of these types of applications.
disk-based extensible hashing for a variety oi appli- Most importantly; they do not guarantee óònsistency
cations. The library consists of functioni to uiè a in the face of crashes. Existing dbm implementa-
simple database consisting of items (key/value pairs). tions cannot be used in a multi-threaded application,
A number of work-alikes have been developed, even though the use of lightweight processes in a
offering additional features [5] and free source code UNIX environment is growing. Also, no assistance
11'4,25-1. Recently, a new p_ackage was developed for implementing distributed and replicated databases
that also offers improved performance [19] and thire is given.
are plans to add a transaction mechanism to this To meet these requirements, tdbm (dbm withpackage [20]' transactions) *a* o.uetäpã¿. rau* provides nested

As an integral part of our distributed system atomic transactions [13], volatile and persistent data-
research, an effrcient and reliable database was bases, support for very large data, stores the database
required. In these and many other applications, a within a single UNIX file, and provides assistance
single high-level operation may resu.lf in several for managing distributed databases. Tdbm can be
objects being updated, created, or deleted. If the configured to operate either as a conventional UNIX
application or host system crashes while processing library or as part of a multi-threaded application.
the operation, the database must not be ieft in aã The EAN object store [17], used by the gÀN X.SOO
inconsistent state. directory service [16], is based on tdbm.

Many distributed applications have a server In the next section, the major design decisions
component that can handle many client requests associated with tdbm are examined. In Section 3,
simultaneously. For example, in the case oi the we look at the implementation of tdbm and in Sec-
X.500 Directory Service [4], a server called the tion 4 an evaluation of the performancp of tdbn is
Directory System Agent is most naturally imple- given. Finally, the paper concludes with some
mented as a multi-th¡eaded application, wiih one or thoughts about our experiences with tdbm and pos-
more thrÞads servicing each client request. To max- sible extensions and improvements. The manual
imize the level of concurrency, the database should page for the library appears in the appendix.
permit simultaneous read-only and update operations

@ble by a grant from oslware,
Inc.

1. Introduction while guarding the database against inconsistencies.
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2. Design

In this section, a summary of important issues
and requirements concerning transaction systems are
presented, including a discussion of how tdbm
addresses them. Although we discuss transactions in
the general context of a multi-threaded application,
transactions can be employed to advantage in a
single-threaded envi¡onment. A discussion of impor-
tant aspects of the environment in which tdbm was
to be used follows. An overview of recoverv tech-
niques, nested transactions, and design coísidera-
tions of the external hashing component are then
given. The section continues with a description of
volatile and persistent databases, the Threads light-
weight process kernel, and support for distributed
operations.
lVhy atomic transactions?

An atomic transaction is a sequence of opera-
tions that are performed as a unit. The collection of
operations within the scope of the transaction is exe-
cuted indivisibly and in isolation from any con-
current actions outside of the transaction. The con-
cept of indivisibility is illustrated in Figure 1. If a
process executing Transactionl explicitly aborts
the transaction (e.9., because BalanceÀ is found to
be less than $10) or the process crashes before the
end of Transactionl is reached, then neither bal-
ance should be changed. Furthermore, if nvo or
more processes execute Transactionl con-
currently, the results should be the same as some
sequence of non-concurrent executions of the tran-
saction. This characteristic is called serializabilitv.

Segin Transaêt ionL
Read BalanceA
Subtract $10 from BalanceA
Write BalanceA
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The Transaction Paradigm
To achieve indivisibility, a transaction must

have four properties which together form the "ACID
principle" [7]: All-or-none atomic behaviour, Con-
sistency, Isolation, and Durability. These properties
are defrned as follows:

r Atomicity. If a transaction successfully com-
mits, all actions within the transaction are
reflected in the database, otherwise the tran-
saction does not modify the database at all as
far as the application is concerned.

o Consistency. The consistency of the database
is preserved whether the transaction commits
or aborts. A database is consistent if and only
if it represents the results of successful tran-
sactions.

r Isolation. The intermediate states of data
manipulated by a transaction are not visible
outside of the transaction. This prevents other
processes from reading and acting on these
intermediate results.

o Durability. Once a transaction commits, its
results will survive any subsequent failures.

As part of the mechanism to attain these characteris-
tics, the transaction system must have a recovery
component that is executed when the database is
opened. Recovery involves "undoing" any inter-
mediate results applied to the database by an incom-
plete transaction and reexecuting any completed
transactions whose results may not be fully reflected
in the database.
Environmental Issues

The primary motivation behind the develop-
ment of tdbm was to replace our EAN X.500 direc-
tory service's original dbm work-alike database with
a more powerful and efficient one. The nature of
database operatíons for the X.500 directory service
(and directory services in general) is that there are
relatively few updates compared to lookups; some of
the design decisions were made in light of this
observation.

An examination of the original database
showed that keys were relatively short and that there
was a mixture of small objects and larger objects.
Table 1 shows some statistics gathered from an
X.500 database consisting of about 5,900 entries and
36,249 items. Because of the way key structures
were flattened into buffers, they all ended up being
20 bytes in length. These figures helped to guide the
design of tdbm.

Min Max
Keys 20 20 20.0 724,980
Values 38 23.122 181.4 6.577.7L3

Table 1: X.500 Database Item Sizes (bytes)

Read
Add

BaIanceB
S10  to  Ba1anceB

Write BalanceB
End Transact ionl

Figure 1: A Simple Transaction

Transactions provide implicit concurrency control,
freeing the programmer from the need to explicitly
manage locks on objects. lnck management typi-
cally involves operations such as creating a lock,
obtaining a read or write lock for an object, upgrad-
ing a read lock to a write lock, releasing a lock, and
detecting and resolving deadlock.

Because transactions provide atomicity, they
also simplify exception handling for the programmer
since an explicit abort "undoes" a partially com-
pleted request that may involve many objects and a
considerable amount of intermediate state. Transac-
tions provide a simple and easy to use facility to
create fault-tolerant applications.
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During the performance evaluation of the dbm
work-alike database it was found that when large
page sizes were used, there could be many items in
a page (often several hundred) and a signiflcant
amount of time was spent searching sequentially
within a page for a particular key. This information
suggested a different page format.

The fact that the database is used by the object
store within the directory service also influenced the
design. The object store uses encoding functions to
flatten and compress a data structure into a contigu-
ous buffer before calling tdbm to store it. When
fetching an item from the database, the inverse
operation is performed by the object store to restore
the original data structure. Because encoding and
decoding always result in a new copy, tdbm gives
the caller a pointer to the item. A side effect of this,
however, is that the item may not be properly
aligned with respect to the requirements of the pro-
cessor architecture because the item's location
within the buffer has been shifted during space com-
paction2. Likewise, a user storing a binarry integer
could encounter this problem. To solve this align-
ment problem, the caller can specify alignment
requirements for the value so that it can be main-
tained within tdbm's buffer.

The directory service required only two data-
base files and there was no need for transactions
across the two databases. This was taken advantage
of to simplify the implementation of recovery
Recovery Techniques

In the interest of brevity, only the major
approaches to recovery will be outlined. The reader
interested in more detail is referred to [7].

A recovery technique must write log informa-
tion to pe¡sistent storage (e.g., disk) either so that is
later possible to remove the results of incomplete
transactions applied to the database (UNDO) or to
apply the results of complete transactions that are
not reflected in the database when it restarts after a
crash (REDO). If the log contains rhe physical
representation of objects, it is refened to as physical
logging; if higher-level objects are recorded then it
is called logicøl logging.

If physical logging is done at the page (disk
block) level, whenever any part of a physical page is
modiûed the entire page must be written to the log.
If recovery is based on the UNDO operation, the old
page must be saved; if the REDO operation is used,
instead of modifying the old page, the new page
image is logged. It is possible to reduce the size of
the log by only recording the differences between
the initial and final page images. At the logical

@ynamically allocated memory
is typically chosen so that any data type stored there will
be properly aligned. Therefore, making a copy solves the
alignment problem.
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level, for example, it is possible to record the opera-
tions and their parameters in the log so that a REDO
of the user's request can be executed later, if neces-
sary.

When UNDO is used, log information must be
written before the database is modified (called
wrìte-ahead logging), while when REDO is used, log
information must be written before the end of han-
saction is acknowledged.

With each of these approaches there is a hade-
off between normal processing overhead, recovery
processing cost, and implementation complexity.
The degree of assistance provided by the file system
is also an important factor.
Nested Transactions

If a transaction is permitted to have one or
more subtransactions associated with it, a hierarchi-
cal grouping structure called nested transactions [13]
result. When a child transaction commits, its state is
passed up to its parent; only when a top-level tran-
saction commits can the changes be made durable.

Nested transactions fail independently of each
other; subtransactions may abort without causing
other subtransactions or the entire hansaction to
abort. They also form a convenient unit for parallel-
ism, with each child hansaction mapping on to a
thread of control. Nested hansactions provide syn-
chronization among the subtransactions, making it
easy to compose new transactions from existing han-
sactions without introducing data inconsistency aris-
ing from concurrency.
Extensible Hashing

A considerable amount of work has been done
on extensible hashing schemes ÍL8,221. In these
algorithms, a database or hash file is composed of
some number of (usually) equal-length pages, with
each page holding zero or more items. Most of
these schemes aim to retrieve the page holding the
item of interest in one or two disk operations as the
hash file grows and shrinks. The goal is to maintain
this performance without having to do a costly
rehashing of all of the items as the size of the hash
file changes. While the various approaches vary in
their complexity, space overhead, and ease of imple-
mentation, they all tend to depend on a secondary
data structure, such as a directory or index, to assist
in locating the page containing the item. When the
occupancy or load factor of a page falls outside its
allowed range, a reorganization takes place; e.g., an
overfilled page will be split into two partially filled
pages and a record of the page split is made in the
directory structure. Variations on this theme include
Extendible Hashing [6,12], Dynamic Hashing [8],
Linear (Vfutual) Hashing [9,10,L1,19], and
Thompson's dbm method [24].

In some algorithms, relatively large directory
structures may result. Schemes that require special
page overflow handling (e.g., via bucket chaining)
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have additional complexity for these special cases.
In the context of hansactions, schemes that access
many pages have the unfortunate consequence that
these pages will need to be read or write locked.
Apart from the extra I/O overhead of reading and
witing these pages, there might be substantial con-
currency conhol overhead.

In any of these scheme,s, some additional
mechanism is required to handle keys or values that
are too large to fit in a page. One way to handle the
problem is to put a pointer to the item in the loca-
tion where the item should go. The pointer could
simply be the name of a separate file containing the
item, as was done in our previous dbm work-alike.
While this is relatively easy to implement, it suffers
comparatively high overhead in creating, opening,
closing, and removíng the separate file. This can be
particularly inefficient if the large item is frequently
updated. Another approach is to effectively imple-
ment a simple file system so that pages can be
dynamically allocated and released within the hash
file. The page number generated by the extensible
hashing scheme is then treated as a logical page
number which is mapped to a physical page number
within the hash file. Physical pages need not all be
the same size. The Berkeley Hash Package (bdbm)
[19] uses an algorithm called buddy-in-waiting to
support multiple physical pages per logical page.

After surveying the literature and experimenting
with several hashing schemes, it was decided to
reimplement Thompson's method because its perfor-
mance was known to be good, we have had consid-
erable experience with it, and it also appears to
behave reasonably well with respect to its page
access patterns. We elected to implement a simple
bitmap-based dynamic page allocation mechanism to
manage operations on contiguous page ranges to
handle the problem of indirect items. It was also
decided to maintain the database within a single
UNIX file to keep the design cleaner.
Volatile and Persistent Databases

In many applications, such as the directory ser-
vice, it is necessary to maintain a database of per-
sistent objects; i.e., objects written to non-volatile
storage so that they can exist independently of the
process that created them and survive a system
crash. On the other hand, there are applications that
want these objects to always be in memory, perhaps
for performance reasons, or because it is unnecessary
or impractical to save the objects outside of a pro-
cess' volatile memory. Because of this, transactions
on volatile databases should not require any disk
accesses. Some applications might like the choice
between volatile and persistent databases to be made
at runtime; having to use a separate package such as
hsearch [2] for volatile databases is not a viable
option,

Brachman, Neufeld

The desire to avoid a separate set of functions
for each of the two database storage modes called
for the notions of volatile and persistent databases to
be integrated. As a consequence, the most straight-
forward design seemed to have all operations occur
in memory up to commit time, when secondary
storage became involved in the case of persistent
databases. Designs involving witing intermediate
states to disk were ruled out. Also, rather than
implementing complicated secondary storage
management functionality as for differential files, it
was decided to let UNIX's vi¡tual memory system
deal with memory management.

Note that because transactions on volatile data-
bases are not durable, no recovery component is
needed for them outside of handling aborts.
Threads

Threads [15] is a lightweight process kernel
that resides within a single host operating system
user process. It provides fast thread creation, a
shared address space for all threads, non-preemptive
scheduling, and efficient IPC (using blocking
Send/Receive/Reply) and context switching between
threads. Of considerable significance to tdbm, the
implementation of locks, semaphores, and shared
memory does not require any intervention by the
UNIX kernel since there is a single address space for
all threads.

Portability is facilitated through the sub-kernel
technique because instead of making system calls to
the host kernel directly, applications must call the
sub-kernel's versions. As a result, there is little
application code that directly relies on the operating
system. Threads has been ported to several different
flavours of UNIX as well as several different
machine architectures.
Support for Distributed Databases

One of the original design goals called for data-
bases capable of being used with an object store that
supports dishibuted operations and replication. The
dishibuted object store is responsible for interprocess
communication and execution of an" atomic commit
protocol (such as the two phase commit protocol
[3]), but the underlying databases must provide some
assistance.

Consider the case shown in Figure 2 where a
dishibuted object store updates items in two or more
databases within an object store transaction, each
database running in a different server process, possi-
bly on different hosts. One of the cooperating object
store servers is distinguished as the transaction coor-
dinator, After the last update in the hansaction has
been executed, the coordinator wants the transaction
to be committed at all databases or at none. In the
first commit phase, the coordinator requests all data-
bases to "precommit" þrepare to commit) their part
of the transaction and report the outcome. After a
successful precommit, each database guarantees that
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a subsequent commit (the only operation allowed on
the transaction beside abort) will succeed. If one or
more databases fail to precommit, the transaction is
aborted. If the coordinator proceeds to the second
phase, all databases will be asked to commit their
hansaction.

Figure 2: A Distributed Object Store

When the object store restarts, it needs a way
of determining whether there was a distributed han-
saction in progress, and if so, which database,s were
involved and which phase the transaction was in. If
a database crashes after its hansaction is precommit-
ted but before the second phase completes, the
object store must determine whether to commit or
abort the transaction when it restarts. This requiras
that the object store keep some state information
about a hansaction until it knows that all databases
have committed or aborted. Also, as part of
recovery, a database may need to contact the coordi-
nator to determine the outcome of the transaction.

3. Implementation

The tdbm library is implemented as three
independent layers: the item layer, page layer, and
hansaction layer. It would be relatively straightfor-
ward to replace a layer or have multiple versions of
a layer. The tdbm library consists of approximately
6,500 lines of C source code, including header files
and comments.

Although for our purposes it was not necessary
to maintain compatibility with ndbm, the interfaces
are quite similar. The major differences are that
most tdbm fi¡nctions require database and transac-
tion identifying parameters and most functions return
a result code.

The tdbm library can currently be compiled to
run in "non-concurrent" mode (i.e., without any
locking) and in multi-threaded mode under the
Threads lightweight process kernel. In either case,
tdbm runs as a single user-level UNIX process.
When configured for concunency, tdbm uses
Threads' semaphores and lock manager, so no extra
UNIX system calls are required.

TDBM: A DBM Library With Atomic Transactions

The Item Layer
The item layer deals with the layout of

key/value pairs in a page. There are two kinds of
pages. The fi¡st kind is similar to that used by dbm
and contains a directory for the items stored in the
page and zero ot more items. All of these pages are
the same length. The second kind, indirect pages,
are a variable number of physical pages long and
simply contain data values that are too large to fit in
any normal page.

In addition to its simplicity, the original dbm
page format has the advantage that the contents of a
page are packed so that there is no fragmentation
between items. Reducing the number of pages helps
to keep the database small and makes iterating
through all items in the database more efficient. In
the context of hansactions, this is important because
it reduces main memory requirements since many
pages might be held in memory during the life of a
transaction.

To help lower the overhead of searching for a
key within a page, the tdbm page format was
designed so that a binary search could be used to
locate an item. This data structure permitted the
same efficient item packing within a page at the
expense of maintaining additional directory informa-
tion. Keeping the directory ordered slows adding
and deleting entries somewhat, but significantly
reduces search times when there are many items per
page'

Each normal page consists of a variable length
directory and some number of items (Figure 3). The
directory is a vector of unsigned short integers,
beginning with a count of the number of entries in
the page and indexlast, the index for the direc-
tory entry that points to the innermost item (i.e., the
one bordering on the free space). Each directory
entry consists of a tuple: ( keyof f set,
keylength, dataoffset,  indexnext).
These directory entries are kept sorted by their key,
in ascending keyJ.ength order and lexicographi-
cally for equal keylengths. The first directory entry
is for the "smallest" key and the last is for the
"largest". The Índexnext fields form a circular
list and keep track of the relative positions of the
items; that is, indexlast's indexnext is the
index of the directory enhy for the item closest to
the end of the page. The indexnext of that direc-
tory entry is for the item second from the end of the
page, and so on. If the value is stored indirectly, the
value field in the cunent page indicates the physical
page number where the real content is and the real
size of the content.

Each entry has a f lag byte that indicates the
alignment requirement for the value and whether the
value is stored in the current page or indirectly. The
flag byte consists of four fields. The alignment con-
straint is specified by the user at the time the value
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is stored: no conshaint, even address, and addresses
divisible by 4 or 8. For example, a character string
probably would not require special aligrrment but an
integer might require an address divisible by 4 so
that after fetching the value it can be accessed
directly from the page buffer without copying.
Alignment requirements for the key, as specified by
the user, are cunently stored þut not enforced by the
system. The system sets the Indirect bit if the
value is too big to fit on a page (the key remains on
the page).

Normal Page
blt8 18

# ol enbleg Indox|asl koyolhot toylonglh dat¡otÍsst

lndome¡d koyoísol kryl.ngth daleofirot Indexncxt

Free Space

velue I key +fagc I valuc I key +fage

Flag Byte Format
7 8 6

Indkocl lcy ellgnmont Vdue ellgn Valuo

Figure 3: Page Iayout
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items. An entry that won't fit into a page is stored
outside the normal page space and suffers an extra
disk read and, likely, internal fragmentation. This
internal fragmentation is ameliorated somewhat by
having an allocation unit size in addition to the page
size. The allocation unit size is the size of each
page in the file as far as page allocation is con-
cerned.

In addition to configuration constants like the
pagesize, the header of the database contains three
tables: the splitnap, physmap, and freemap. The
splitmap is equivalent to the .dir file of a dbm
-style database. It keeps track of how many times
each page has split. The physmap maps a logical
page number to a starting physical page number.
The maximum size of these tables, in pages, is
determined at compile-time. The maximum number
of logical pages is (NPHYSMAI_IAcEs * pagesize)
I sizeof(u_int), where NPHYSMAP PAGES is a
compile-time constant.

The freemap is a birnap representation of phy-
sical page allocation. Each bit in the freemap
represents (¡tagesize I allocunits) bytes. For exam-
ple, if. pagesize is 8t92 and allocunifs is 8, then disk
space allocation is in blocks of. 1024 bytes and 8
contiguous blocks are needed to allocate one page.
As albcunits gets larger, external fragmentation
tends to grow but internal fragmentation in indirectly
stored data tends to decrease. rWith a pagesize of
8L92 bytes, one freemap page contains (8L92
bytesþage * 8 bits/bytg) == 65536 bits/freemap
page, which can map (65536 pages * pagesize
bytesþage) == 536Mb. Physical page 0 is the file
header and pages INITIAL_FREEMAP_PAGE
through lillrrrar, FREE¡,IãI rAGE +
NFREEMAP PAGES - 1) are preallocated for the
freemap. Pãges after thié hst pãge are dynamically
allocated and page FIRST_AVAIL PÀGE will be
the first physiial-page reprãsente¿ är ttre freemap.
While this . approach leaves several holes at the
beginning of the file (making it look much bigger
than it really is), it simplifies the problem of having
the freemap allocate new space for itself.

Here are the values currently being used,
requiring a minimum page size of. 2048 bytes to
accomodate the header:

#def lne NSpfJITHAp_pÀcES
#def lne NPHYSMAP-PAGES

1 0 0
4 0 0

This organization provides a good tradeoff
between lookup speed and space utilization, although
if there are a great many very small items the direi-
tory space required per item could be unacceptable.
Both the original dbm organization and the new one
can spend a considerable amount of time compacting
or coalescing page contents after a deletion to elim-
inate fragmentation. This is particularly evident in
page splitting, since on average one half of the
entries are deleted and moved to a new page. rilhile
this is acceptable when lookups are more frequent
than updates, it may not be in the reverse situaiion.
One solution is to allow alternative page directory
formats, either per database or per page. The user
could select a data structure to optimize for space or
time or the system could automatically convêrt for-
mats based on the space utilization.
The Page Layer

The page layer deals with management of logi-
cal pages, allocation of physical pages, page cach-
ing, and the mappings from keys to logicãl pages
and logical to physical pages. It is not concerned
with the page contents.

At the time a database is created, the user can
specify the physical page size and the allocation unit
size. The page size must be a power of 2 and
should take into account the best VO block sizes for
the filesystem and internal fragmentation of indirect

#define INTTIAI, FREEMÀP PAGE 1
#def lne NFREEI.IAP_PAGES 1 0
#deflne FIRST-AVAIL-PAGE \

( INITIÀL_FREEt!ÀP_PAGE + NFREE¡,ÍÀP_PAGES )

The hash ftrnction that maps the user's key string to
an integer is part of the page layer. A good hashing
function is critical to the performance of any exten-
sible hashing package. Nine functions were
evaluated by having each hash a list of 84,165
strings made up of English words and symbol table
entries and counting the number of collisions. One
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of the best, the hash function from sdbm [25] (also
used in bdbm), was chosen for tdbm because it did
not generate a single collision.

The Transaction Layer
The transaction layer provides nested transac-

tions over logical pages. The transaction layer is
responsible for locating the appropriate version of a
page for a transaction, concunency control, and
cornmit and recovery processing.

Every page that is read from the database is
cached as a top-level or base copy 3. All transac-
tions that read the page share this base copy. If a
subtransaction updates or creates a page, it retains a
private copy of the page that may be later accessed
by it and its subtransactions. The correct instance of
a page for a particular subtransaction is quickly
located by associating a simple hash table with each
transaction identifier. The search process involves
examining the transaction's hash table, proceeding
up the hierarchy through its superiors' hash tables,
and finally reading the database, if necessary, until
the page is found. As transactions commit, their
state is merged with that of their parent; when a
top-level transaction commits, the new pages are
propagated back to the hash file.

Apart from reading base pages from the data-
base during transactions, writing pages to the tran'
saction file while preparing to commit, and copying
pages from the transaction file to the database during
the commit, no other file I/O is performed. When
dynamically allocated pages are no longer required,
they are freed for general use by the application.
Keeping all accessed pages in virtual memory elim-
inates ariy I/O from a temporary file and makes the
integration of persistent and volatile databases seam-
less. It was felt that performance would be better if
a temporary file could be avoided and that, in our
environment, long-running transactions are unlikely.
A shortcoming of this approach is that the number of
pages a transaction can access is limited by the con-
straints of UNIX's virtual memory subsystem; a
transaction will fail if it requires more memory than
is available. Bdbm, on the other hand, may use a
temporary file in conjunction with a volatile database
if its cache size is exceeded. For best performance,
the bdbm user has to specify a sufficiently large
cache size at the time the database is opened. This
memory is reserved until the database is closed.

Cunently, the programmer is responsible for
synchronizing threads executing subtransactions with
that of the parent transaction; a parent transaction
cannot commit or abort until all of its subtransac-
tions have terminated. Automatic blocking in these
cases is a possible extension to the package.

3Currently, this copy is kept in memory only as long as
some t¡ansaction needs it.

TDBM: A DBM Library ltrith Atomic Transactions

Concurrency Control
Concurrency control is only performed when

tdbm runs under Threads; it is simply not
configured into the system otherwise. When con-
currency control is available, a particular database
can be opened multiple times by different threads
and there can be many concunent tdbm transactions
on the database.

Threads provides a lock manager that allocates,
obtains, and releases a lock on behalf of a client
thread. The tdbm library uses Threads semaphores
to protect critical sections. As a tradeoff between
overhead and the level of concurrency, concurrency
control is performed at the page level rather than at
the hash file level (as our work-alike did) or the item
level. Before a page can be read, tdbm obtains a
read lock for the page. Tdbm must obtain a write
lock for a page, perhaps by upgrading a read lock
that the transaction already holds, before a page can
be written. In keeping with strict two phase locking
[1,3], locks are not released until the topJevel tran-
saction commits or an abort occurs. When a sub-
transaction commits, the parent transaction inherits
any locks.

A good deal of the complexity of the transac-
tion layer is due to the lock management protocol
required by nested transactions and sharing
unmodified pages. Only a limited degree of
deadlock detection is cunently implemented.
Commit Processing and Recovery

Commit processing of a top-level tdbm tran-
saction is done by creating a transaction file (also
called an intention list [23]) that represents the
actions that must be executed to update the database.
This approach is known as after-image physical log-
ging l7l. The transaction file is stored in the same
directory as the database file.

The transaction file contains some header infor-
mation followed by a variable number of fixed-
Iength shadow pages that represent the new contents
of physical pages in the database. When the transac-
tion file has been written and secured to disk using
the fsync( ) system call, a chmod( ) is done to it
to atomically indicate that the transaction has been
committed. At this point, the new pages in the tran-
saction file can overwrite the old pages in the data-
base file. Upon successful completion of top-level
commit processing, the results of the transaction
have been applied to the database and the transaction
file can be removed. This technique is similar to the
idea of differential files [21], although tdbm opera-
tions never access the transaction file.

Recovery is automatically initiated when tdbm
is started so that incomplete transaction files (those
without a file mode indicating they've been commit-
ted) can be removed and the contents of completed
transaction files can be applied (or reapplied) to the
database. Note that this recovery procedure is
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idempotent; if the system crashes during the
overwriting process, recovery can be retried until
successful.

This approach to recovery was taken primarily
because of its simplicity. For example, it is not
necessary to make a copy of the old data. Also, it
was used by the package tdbm replaced and known
to work well in practice. Physical logging was
chosen because it was straightforward to make com-
mit processing atomic and idempotent; it was felt
that it would be more difficult to implement and
debug logical logging of operations. Alternate
approaches require maintaining log information,
perhaps in terms of tdbn commands rather than
disk pages (logical logging), so that changes can be
undone or reapplied. A disadvantage to this
approach is that a number of small changes to many
pages may result in a large transaction ñle, but this
can be mitigated by carefirl choice of page size and
was not deemed to be as significant as benefits aris-
ing from the scheme's simplicity.

Since modified pages are not directly written to
the database file, no log information needs to be
maintained. On the other hand, modified pages must
be held in memory until commit time, effectively
caching all accessed pages. For transactions that do
not involve a huge amount of data, this is not a
significant penalty in terms of memory requirements
and should normally result in improved performance.
Also, this greatly simplified implementation of vola-
tile (non-persistent) databases since virtually all of
the same code can be shared with that necessary for
persistent databases. The same storage.and retrieval
algorithms are used whether the database is volatile
or persistent.

Several extensions to this basic scheme were
necessary to support two phase commit, A precom-
mit operation was added for top-level transactions.
It is called to precommit any local updates within
the transaction and to track the state of a transaction
that has successfully completed the first phase. In
either case, the c¿ller can associate arbitrary data
with the precommit. If, at the time the database is
opened, transactions are found that terminated after
phase one but before phase two completed, the
application receives an appropriate return code. It
may then invoke the recovery operation to obtain the
data associated with the transaction and subsequently
complete the transaction. In this way. the

Brachman, Neufeld

application can update the transaction,s global state.
The database is unavailable for normal operation
while recovery is going on. The transaction can be
committed (and the transaction file removed) when
all databases have agreed on the outcome.

4. Evaluation

In this section, the performance of tdbrn is
compared to that of the most widely-used extensible
hashing library under UNIX, ndbm, and the package
expected to be its replacement, bdbm. All experi-
ments were performed on a Sun Sparcstation 1 run-
ning SunOS 4.1.1 with 24lv[b of. mèmory and a CDC
Wren IV disk drive.

In the first experiment, the performance of the
three libraries was measured for creating and retriev-
ing data from persistent databases, varying page
sizes and the amount of data being stored. 

-ftre

second experiment involved repeating the first series
for tdbm and bdbm using volatile databases. In all
cases, consecutive integers (as ASCil strings) were
used as keys. Three different sets of data values
were used; they are characterized in Table 2. The
first is the list of words in /usr/dict/words, the
second is the word list referred to in Section 3, and
the third is a set of 200 RFC documents. All times
reported are the sum of the times spent in user mode
and system mode. The error in these measurements
is approximately x5%o. Tdbm was tested outside of
threads, so there is no concurrency control cost asso-
ciated with its measurements. Each tdbm test run
involves a single transaction.

To reduce the number of experimental factors
being varied, the bdbm fill factor paramete/ was set
at I28 for all bdbm runs since that value tended to
result in the best performance for all page sizes [19].
Also, bdbm tr¡/as run with both the default cache sizê
of 65,536 bytes and a size of 4Mb. The latter
configuration was the smallest size that virtually
eliminated bdbm's need to access a temporary file.
Since ndbm's page size can't be determined at run
time, several versions were compiled.

aThe fill facto¡ indicates a desi¡ed densitv within the
hash table and approximates the numbe¡ of iceys allowed
to accumulate in any one bucket.

Name Number
of Values

Value Sizes (byres)
Minimum Maximum Mean Total

/usr/dict/words 25,L44
wordlist 84,165
rfc 200

t 22 7.2 206,672
| 40 8.9 836,663

1.43 799,768 78,990.6 t5,877,t02

Table 2; Data Value Sets
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Persistent Databases
The first experiment examined creating and

reading persistent databases. Figure 4 shows the
time to create a persistent database using the con-
tents of /usr/dict/words as data values, The
results of fetching all data items by using the data
keys sequentially are shown in Figure 5 and the
results of having the databases iterate through each
key are shown in Figure 6.
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Figure 4: Creating Persistent Databases
(/usr/dict /words)
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(/usr/dict /words)
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Figure 6: Iterating Through Persistent Databases
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Tdbm performs well compared to both ndbm
and bdbn in the creation and reading tests. A trial
where the data keys were shuffled for the reading
test did not yield significantly different results from
their sequential use. Because tdbm keeps all pages
accessed during a transaction in memory, it performs
relatively poorly on the iterative key retrieval test.
In fact, this operation is almost funcfionally identical
to that used by the sequential reading test so this test
v/as not repeated in the other configurations.

The next set of runs (Figures 7 and 8) repeats
the previous set with the larger set of data values in
wordlist. Here, tdbm performs substantially
better than both ndbm and bdbm with the small
cache. The last data point in Figure 8 for bdbm
with 4Mb cache probably is indicative of the perfor-
mance hit taken when bdbm switches to its tem-
porary file after its cache fills.

The last run in the series (Figure 9) shows that
tdbm performs well in conjunction with large data
values. Since ndbm cannot load data values larger
than its page size, it was excluded from the rfc
data value runs.
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When creating a new database, all libraries
tend to prefer a small page size. The exception is
the rfc test where bdbm does better with a larger
page size. While ndbm and bdbrn also prefer a
small page size for reading, tdbm does better as the
page size increases. These observations are also true
for volatile databases, discussed in the next section.

Volatile Databases
The second experiment examined the perfor-

mance of bdbm and tdbm with volatile databases
(ndbm doesn't support volatile databases). For both
the /usr/dict/words and wordlist data
value sets, tdbm performs about the same as for a
persistent database. This indicates that for a
modestly-sized update, tdbm's commit processing is
not expensive. Note that with the small cache,
bdbm's performance is slower than for a persistent
database. Figure 14 shows that for very large
updates, tdbm outperforms bdbm. Tdbm's commit
cost for very large updates can be seen by compar-
ing its performance in Figures 9 and 14.
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Figure 7: Creating Persistent Databases (wordlist)
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Figure 10: Creating Volatile Databases
(/usr / dict/words)

Figure 11: Reading Volatile Databases
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Figure 12: Creating Volatile Databases
(wordlist)

Figure 13: Reading Volatile Databases
(wordlist)
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Performancp evaluation of tdb¡n under
Threads, using both real and apparent concurrency,
is planned. It might also be interesting to configure
tdbm to run under SUnOS's or Mach's threads.
Separating the atomic transaction mechanism into a
separate UNIX process could also be examined.

6. Availability

The libræy will be made available for
anonymous ftp from cs.ubc,ca (137.82.8.5) as
pub/ loca1/src/tdbn . t  ar .  z.
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TDBM(3-LOCAL) MISC. REFERENCE MANUAL PAGES

tdbm - dbm database functions with nested atomic transactions

SYNOPSIS
#include <tdbm.h>

DbmRc DbmAbort(tid)
Tid *tid;

DbmRc DbmBegin(parent, child)
Tid *parent;
Tid **sþi¡¿;

DbmRc DbmClose(dbm)
Dbm *dbm;

DbmRc DbmCommit(tid)
Tid *1i¿;

DbmRc DbmDelete(dbm, tid, key)
Dbm *dbm;
Tid {,tid;
Datum key;

char *DbmErrorString(rc)
DbmRc rc;

DbmRc DbmFetch(dbm, tid, key, value)
Dbm *dbm;
Tid *1i¿;
Datum key;
Datum *value;

DbmRc DbmFind(dbm, tid, key, value)
Dbm rdbm;
Tid *tid;
Datum key;
Datum '¡value;

DbmRc DbmFirstkey(dbm, tid, key)
Dbm *dbm;
Tid *tid;
Datum *key;

DbmRc DbmNextkey(dbm, tid, key)
Dbm +dþ¡¡;
Tid *tid;
Datum *key;

DbmRc DbmOpen(pathname, type, config, dbm, recovery)
char *pathname;
DbmFileType type;
DbmConfig *config;
Dbm **dbm;
DbmRecovelT * *recovery;

Last change: 2t April 7992
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DbmRc DbmPrecommit(tid, tidname)
Tid *tid;
DbmTidName rtidname;

DbmErrorClass DbmRcClass(rc)
DbmRc rc;

DbmRc DbmRecover(dbm, recovery, tid)
Dbm *dbm;
DbmRecovery r *recovely;
Tid **tid;

DbmRc DbmSûore(dbm, tid, key, value, mode)
Dbm *dbm;
Tid *tid;
Datum key;
Datum value;
DbmStoreMode mode;

DESCRIPTION
Tdbm is a collection of functions that implement a simple database made up of key/content pairs.
While similar to the UNIX dbm(3) and ndbm(3) packages, there are a number of significant differ-
ences:

. Nested atomic transactions are supported across a single database.

. Volatile (temporary and memory resident) databases can be used.

o A database is implemented as a single file.

. Very large objects can be stored.

a In a multi-threaded environment, concurrent transactions are possible.

. In many cases, performance should be improved.

The usual Datum data structure has an additional component, a datum descriptor:
typedef u_char EntryDesc;

typedef struct {
char *dptr;
int dsize;
EntryDesc desc;

) Datum;

The descriptor can be used to specify the alignment requirements of a key or value. For the value, the
system preserves the requested alignment when it is read so that it can be accessed directly from the
system buffer, obviating the need to copy the value into properly aligned memory. For the key, the
alignment is not preserved but the specified alignment can be determined later.

The low-order two bits of the descriptor specify alignment. The following constants are defined:

ALIGN0 - No alignment required

ALIGN2 - Align on any even address

ALIGN4 - Align on any address divisible by 4

ALIGNS - Align on any address divisible by 8

Last change: 27 April 1992
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Before a database can be used, it must be opened by calling DbmOpenO. The pathname argumenr
identifies the database to be used; it is created if necessary. If type is DBM-pERSISTENT, then the
database will be a normal Unix file. The file will be exclusively locked using flock(2). If it is
DBM-VOLATILE, then the database is temporæy and will disappear when it is no longer referenced (or
when the program terminates). A database can be opened multiple times except for one special case.
For volatile databases, if pathname is NULL or the null string, then a unique internal name is effec-
tively assigned to the database.

If not NULL, config allows the user to override system defaults for database parameters: If recoverA is
not NULL, a list of precommitted transactions is returned (see DbmPrecommitO and DbmRecoverO).

typedef struct DbmConfig {
int mode; /* Mode when creating new dbm */
int pagesize; /r Size of each page (bucket) in the dbm */
int allocunits; /* Allocation units, w.r.t. pagesize */

) DbmConfig;

typedef struct DbmTidName {
int hostid;
int startJime;
int count;

) DbmTidName;

typedef struct DbmRecovery {
char *pathname;
DbmTidName tidname;
struct DbmRecoverï +next;

) DbmRecovery;

A default is ovenidden only if a configuration option is non-zero. An identifier associated with the
opened database is returned.

Most operations on a database occur within the context of a transaction. A transaction is initiated by
calling DbmBegino. If the parent argument is NULL, then this is a topJevel transaction, otherwise the
ne\il transaction is a subtransaction of parent. A new transaction identifier tid is returned. In the
current implementation, all operations within a topJevel transaction must be associated with a single
database; a transaction is implicitly associated with a database based on the first I/O operation it pir-
forms.

!.8. The value (or key) returned by a function must be copied if it is going to be modified. Also, a
datum's dptr may no longer be valid if the transaction with which it is associated aborts.
New entries are stored in the database using DbmStoreO. The given value is put into the database
using key. The mode argument is either DBM-REPLACE or DBM-INSERT. The former deletes an
existing instance of an entry with the same key before storing the new entry while the latter insists that
there be no existing entry. The key and value are copied, so they may be freed after this call.
DbmFetcho is used to retrieve an entry. DbmFindO locates an entry without retrieving the value.
Both fr¡nctions set the descriptor for the key and the value.

Last change: 27 April 1992 78
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An entry is deleted from the database by calling DbmDeleteO.

A database can be traversed in (apparently) random order. DbmFirstkeyO retrieves the key of the'1first" entry in the database. DbmNextkeyO may be called to retrieve the keys of successive entries.
Both functions set the descriptor for the key. Note that these functions should be used carefully since
they could end up locking the entire database while their transaction exists.

A transaction is committed by calling DbmCommitO or aborted by calling DbmAbortO. Aborting a
transaction rolls back all modifications made to the database by the transaction. In either case, the tran-
saction must not have any subtransactions.

A top-level transaction may be prepared for commitment, but not actually committed, by calting
DbmPrecommitO. Upon successful completion, the system guarantees that a subsequent commit will
succeed (modulo media failures). After this call, the only operations allowed on the transaction are
DbmCommito and DbmAbortO. If tidname is not NULL, then it is initialized ro the (globally
unique) name of the transaction. If DbmOpenO returns recovery information, then one or more
precommitted transactions exist. DbmRecoverO should be called (until *recovery is NLJLL) to return a
transaction identifier and the transaction name for each precommitted transaction. These functions are
expected to be used by a two phase commit protocol.

A database is closed using DbmCloseO. Closing a database aborts any active transactions using it. The
given dbm identifier is invalidated, yet if the database was opened multiple times, operations on the
database may continue using the other identifiers.

DbmErrorString0 returns an error message conesponding to the given result code. DbmRcClasso
returns an indication of the type of error that has occuned (e.g., DBM_FATAL).

WARNING
It is unwise for a program to update a database that it is accessing via NFS; databases should always be
accessed directly on the file's server. NFS file locking is not performed. Also, byte ordering is not
addressed by the cunent implementation.

FTIFS

As part of the atomic commit operation, a transaction file is created. Its name is that of the database
with a ".trans" appended. The mode of this file has special meaning to tdbm and therefore shouldnot
be changed by the user.

SEE ALSO
dbm(3), ndbm(3).

The GNU gdbm library, Philip A. Nelson <phil@cs.wwu.edu>, Computer Science Department, Western
Washington University.

The Berkeley Hash package, Margo Seltzer <margo@postgres.berkeley.edu>. See: "A New Hash pack-
age for LINIX" by Margo Seltzer and Ozan Yigit in rWinter 1991 Usenix Proceedings.

An interactive program, tdbm(l), is available to manipulate and inspect tdbm files.

DIAGNOSTICS
When an unusual error occurs, a message is likely to be printed on stderr.

BUGS
Because creation of a new database occurs outside of the transaction mechanism, rollback is not possi-
ble.
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TDBM(3-LOCAL)

Multithreaded operation is cunently supported only for the U.B.C. Th¡eads kernel.

There are currently configuration-dependent limits on the length of a key (it must fit into a database
"page") and the length of a value (depends on the size of the page allocation bit map and other fac-
tors).

Although very large, there are limits on the maximum size of a database. A database cannot span
filesystems (unless the O/S provides it transparently).

A mechanism to support efficient tree locking should be added.

The space uded by deleted entries is not reclaimed by the operating system but may be reused by the
database. The database file may contain holes, making it appear much bigger that it really is. There is
no automatic "shrinking" of the database. If desired, this must be done by traversing the old database,
copying each entry to a new database.

The package cannot recover from media failures.

The location of the transaction file is not user configurable.

The obvious method of deleting (or adding) items while iterating through the database using DbmFirst-
KeyO' DbmNextKeyo, is buggy. No updates should be performed until you're done iterating.
The wish list of additional functionality is too long (but suggestions and bug reports are welcome). The
following user-visible improvements currently top the list:

o Deadlock detection (eg., via timestamps).

a Performance instrumentation "DbmstatsO".

a Make DbmRc a structure that includes errîo.

o Arbitrary size keys.

. Multi'volume dbms (e.g., make it possible to allocate pages on a different ñlesystem once a limit is
reached (soft or hard)).

. Multi-dbm transactions.

AUTHOR
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