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ABSTRACT

- . Iltt. papg_r Pres€4s the design and implementation of a highly available lock manager
for highly available NFS (HA-NFS). HA-NFS provides highly available network file servlce
to NFS clients and can be used by any NFS client without modification. This is provided by
having two servers share dual-ported disks so that one server can take over the oìher's disks
and file systems if it fails. Making the NFS service highly available is not enough since
many applications that use NFS also use other services provided with NFS sucñ as the
network lock manager. We describe a scheme whereby eaòh server transfers enough of its
lock state to the other so that if it fails, the other server can go through a lock iecovery
protocol. Our design goal was to make the overhead of transferring the state during failure-
free operation as low as possible.

1. Introduction

This paper presents the design and implementa-
tion of a highly available lock manager for a Highly
Available Network File Server (HA-NFS) [3]. HA-
NFS provides tolerance to file server, disk and net-
work failures and can be used by any NFS client.
Recovery from server failure is provided by having
.two servers share access to dual-ported disks and
provide backup service for each other. These servers
are therefore referred to as twins of each other.
However, it is not enough t0 recover the file server
state at a backup server in case of a crash. Most
NFS implementations are accompanied by a network
lock manager so that clients can obtain locks for
files that are remotely mounted, NFS file locking is
an extension of local file locking and was designed
so that applications can use file locking without hav-
ing to know whether the file is local or remote.
Most NFS implementations supporr a lockf)lfcntl},
System V[1] style of advisory file and record locking
over the network. A number of applications use the
network lock manager to synchronize access to
shared files and to prevent multiple processes from
modifying the same file at the same time. Since
locking is inherently stateful and NFS is supposed to
be stateless, the lock manager is implemented
separately from NFS.

When the primary server fails, the lock state
must be recovered at the backup server. This paper
will describe a design for recovering the locking
state at the backup in case of server failure and for
enabling a failed server which is recovering and re-
integrating to regain its locking state.

\lte have implemented a prototype of the
Highly Available lock manager for HA-NFS on the
same platform on which HA-NFS was implemented:
a network of workstations and two file servers from

the IBM RISC System/6000 family of compuring
systems running the AIX Version 3 (AIXv3) operat-
ing system, and connected by either a 10 Mbitia Eth-
ernet network or a 4 Mbit/s or a 16 Mbit/s token
ring network. We constructed dual-ported disks
from off+he-shelf SCSI disks attached to a SCSI bus
that is shared by the two servers. The prototype is
operational and has satisfied the design goals.

In section 2, we present background informa-
tion on HA-NFS. In section 3, we describe the NFS
locking protocol. In section 4, we desøibe various
design alternatives to enable lock state to survive
processor failure and recovery events. Section 5
describes the design we chose and why. Section 6
describes the re-integration protocol executed when a
failed server recovers. Section 7 presents an evalua-
tion of the design from the point of view of imple-
mentation effort and performance. Section 8
describes the technique used to recover from media
and network failures. Section 9 compares our
approach with other approaches and section 10 pro-
poses some items for future work.

2. The Highly Available Network File System
(rrA.NFS)

Traditional approaches for providing reliability
in networked file systems use server replication.
HA-NFS differs from tradÍtional approaches in that it
tolerates server failures by using dual-ported disks
that are accessible to two servers, each acting as a
backup for the other and hence are called wins of
each other. The disks are divided into two sets,
each served by one server during normal operation.
Each server maintains on ir disks enough informa-
tion to reconstruct its current volatile state. Since
NFS is an almost stateless protocol, the only volatile
information is the duplicate cache information that is
needed to detect duplicate transmissions. For
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example, a "create new file" remote procedure call
(RPC) may reach a server and the file create opera-
tion may take place, but the acknowledgement to the
client could be lost. The client would re-try the RPC
and may receive an error because the file already
exists as a result of the previous RPC unless the
RPC was flagged as a re-try. To detect this, the
server stores a cache of recently executed RPCs
called the "duplicate cache". For further discussion
of this topic see [4].

The two servers periodically exchange
liveness-checking messages. If one server fails, the
failed server's disks will be taken over by its twin
server. The twin then reconstructs the lost volatile
duplicate cache state using the information on disk.
Then the twin impersonates the failed server by tak-
ing over its IP address and operation continues with
a potential reduction in performance due to the
increased load. The clients on the network are
oblivious to the failure and continue to access the
file system using the same address. During normal
operation, the servers communicate only for periodic
liveness-checking. The servers do not maintain any
information about each other's volatile state or
attempt to access each other's disks during normal
(failure.free) mode of operation. HA-NFS adheres
to the NFS protocol standard and can be used by
existing NFS clients without modification;

HA-NFS is implemented on top of the AIXv3
log-based file system. The AIXv3 file system pro-
vides serializable and atomic modification of file
system meta-data by using transactional locking and
logging techniques. File system meta-data are com-
posed of directories, inodes, and indirect blocks.
Every AIXv3 system call that modifies the meta-data
does so as a transaction, locking meta-data as they
are referenced, and recording the changes in a disk
log before allowing the meta-data to be written to
thei¡ "home" locations on disk. In the case of sys-
tem failure, the meta-data æe restored to a consistent
state by applying the changes contained in the log.
The reliability of ordinary files is ensured by NFS
semantics, which require forcing the file data to disk
before sending an acknowledgement to the client.
The volatile state at an NFS server consists of the
duplicate cache; this information is recorded on the
disk log so that it can be recovered by the backup
server. Further details about the design and the
implementation of HA-NFS can be found in [3].

3. The NFS Locking Protocol

In this section, we will provide and overview of
the NFS/ONC locking protocirl. The locking proto-
col is implemented outside of the NFS protocol,
because the NFS locking protocol is stateful and
NFS is designed to be stateless. In most implemen-
tations the file locking protocol is actually imple-
mented in two daemons. The daemons are usually
named rpc.lockd and rpc.statd and these a¡e the
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names used in AIXv3. The rpc.lockd daemon at a
server handles locking requests for NFS clients
which are accessing frles at the server. The
rpc.lockd daemon acts as a surrogate at the server
for client processes and keeps track of what locks
are held by clients at any one point in time. At a
client, the rpc.lockd keeps track of what locks are
held at the NFS server by the various processes.

The second daemon, the rpc.statd daemon at a
server keeps a list of clients that are to be tracked
for system failure. Similarly at a client, this daemon
keeps track of what remote servers are cunently
being accessed by file lock requests.
Getting A lock

When an application at a client makes a system
call requesting a lock on a NFS-mounted file, the
client kemel makes a RPC to the client's rpc.lockd.
This rpc.lockd then sends the lock request to the
rpc.lockd at the server which makes a lock request
to the server's kernel. The server's kernel accepts
the lock request and returns the appropriate response
to the server's rpc.lockd. The server's rpc.lockd will
then respond to the client's rpc.lockd with the result.
It in turn will respond to the client's kernel which 1
will then return the response to the application.

When the client's rpc.lockd receives the origi-
nal lock request from the client kernel, it will regis-
ter the server's host name with the client's rpc.statd.
This is done before the lock request is sent to the
server's rpc.lockd to be processed. Upon receiving
the lock request from the client the rpc.lockd at the
server will register the host name of the client with
the rpc.Statd at the server. The rpc.statds on both
the client and server record the host names on disk
so that it can be açcessed after a failure. This regis-
tration process is done for the fi¡st lock request only.
The rpc.lockd keeps internal state about which hosts
it has registered with the rpc.statd so this initial
registration step is skipped on subsequent lock
requests.
Recovery Actions Upon Client/Server Failure

In a standard NFS (not HA) server
configuration, there is a method to rebuild the lock-
ing state that is kept by the NFS server. Rebuilding
of state occurs only after server failures. It is not
needed afrer client failure and recovery since the
applications that took the locks no longer exist after
the client's system failure. The only actions that
need to be taken when a failed client recovers is to
tell relevant servers to release the locks that are held
on the client's behalf.

The following explains the conesponding steps
that the NFS server rpc.lockd/rpc.statd follow to
recover locking state. The rpc.statd is started before
the rpc.lockd during system initialization. When the
rpc.statd on a server restarts, assuming system
failure, it reads from disk the names of systems it
was monitoring during its previous incarnation. The
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rpc.statd then informs each of the rpc.statds on these
client systems about the server's failure. Client
rpc.statds then inform their rpc.lockds about a server
failure.

In the case where the rpc.lockd process on the
server has failed, the rpc.lockd process during initial-
ization will inform the local rpc.statd that it had
failed and goes into a grace period in which it
accepts only lock reclaim requests from clients.
When a client rpc.lockd is informed of server failure,
it goes through its lock table and re-requests or
reclaims all locks it had held at that server. After
all clients go though this protocol, the server has
now regained the lock state that was held before the
failure.

In the case where the rpc.lockd process on the
server has failed, the rpc.lockd process during initial-
ization will inform the local rpc.statd rhaa it had
failed and goes into a grace period in which it
accepts only lock reclaim requests from clients.
When a client rpc.lockd is informed of server failure,
it goes through its lock table and re-requests or
reclaims all locks it had held at that server. After all
clients go through this protocol, the server has now
regained the lock state that was held before the
failure. If the client system fails, the rpc.statd at the
client will notify the servers of client failure. The
list of servers is built from the list of monitored
servers that the rpc.statd was keeping in the file sys-
t-ery of the client. Upon notification of client system
failure, the server's rpc.lockd will release all óf the
file locks that were held by that client.

4. Design Alternatives

To design a highly available lock manager for
HA-NFS, a way must be found to transfer the lock-
ing state held by the primary HA-NFS server to the
backup or twin HA-NFS server. This needs to be
done so that correctness can be maintained in the
operation of the NFS server from the client,s per-
spective.

The first approach that might be taken is to fol-
low the same general scheme for transferring the
lock state that the HA-NFS server uses to trãnsfer
file system state and duplicate cache entries to the
twin HA-NFS server. Recall that duplicate cache
entries a¡e used to detect request re-lransmissions
that occur when acknowledgements get lost. The
HA-NFS server stores the duplicate cache entry in
the file system log when the duplicate entry is ini-
tially added to the duplicate cache table. This works
because of the one to one mapping of the duplicate
cache entry and the commit of the entry to thè AIX
Journaled File System (JFS) log. For this same
mechanism to work for the NFS locking there needs
to b_e a mapping between the lock/unlock operations
of the client and JFS logging commit points which
correspond to metadata modiûcation points. This
mapping does not exist and would not be possible
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without a redesign of the logging services to serve
other than normal JFS activity. This would also
mean that locking operations would run at disk
speed.

The second approach could be to have the
rpc.lockd of each HA-NFS server transfer the lock-
ing state to the twin HA-NFS server. This would
need to be done with each positive response to a
client's locking request. Before the primary server's
rpc.lockd sends its positive/granted response to the
client, it would have to call the rpc.lockd on the
twin HA-NFS server. The rpc.lockd on the twin
could then build the same locking state as the pri-
mary server. This approach would have a perfor-
manc€ impact on each locking operation. This
would also affect the twin's locking performance and
general system performance since it would be field-
ing the same locking requests that the primary would
be handling. Another drawback to this approach
would be the added complexity of keeping'lòcking
state for the nvin and differentiating that locking
state from the local locking state of the twin.

The third approach is similar to the second,
except that instead of all positive lock/unlock
responses being passed to the twin, host names of
new clients are passed to the twin on the client,s
first lock request. Thus, the rpc.statd would be the
one passing state information to the twin's rpc.statd.
Recall that the rpc.statd is contacted by the rpc.lockd
on the first lock request of a client. The rpC.statd is
told to monitor that client. The rpc.statd in turn
creates a file in the directory /etclsm. This file name
matches the host name of the client making the
request. With this procedure the rpc.statd can then
recover the list of clients that were being monitored
before failure. After the rpc.statd has placed the file
named after the client in the /etclsm directorv. it will
contact the twin's rpc.statd. The twin's rpc.statd
also places an entry in the /etclsm directory that
corresponds to the primary server's entry.

With the conesponding /etclsm entries in place
on the HA-NFS twin, all it has to do during takèover
is to go through the lock recovery protocol playing
the role of a recovering server for both itself and ité
twin. The clients of the failed server and those of
the twin will execute lock recovery and the twin will
effectively rebuild the locking state held by the pri-
mary server.

5. Our Design

The third design alternative involves the least
overhead during normal failure-free operation.
Tables 'J. and 2 show the details of this þrotocoi.
Table 1 shows how a lock is obtained. Table 2
explains how locking state is re-established at the
backup after a server fails. This design requires that
the rpc.locìcd be stopped and restarted during the
takeover proc€ss to force the lock recovery to occur.
One disadvantage of this scheme is that locking state
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has to be rebuilt instead of being already available
as in the second scheme or getting it from the log as
in the first scheme. We considered this trade-off
acceptable since we were getting better performance
in the normal case for sacrifrcing some performance
during recovery from failure.

For simplicity in the chosen design, we decided
to let the rpc.lockd reclaim lock state for itself in
addition to the failed server. It would be possible to
modify the rpc.lockd so that it would not drop its
own locking state during recovery of the twin HA-
NFS server's locking state.

o An application requests a lock on a file that
resides in an NFS file svstem.

o The NFS client's kernil makes a RPC to the
client's rpc.lockd requesting the lock

. If this is the first lock request for the server,
the rpc.lockd on the client registers the
server's host name with the rpc.statd on the
client.

o The client's rpc.lockd sends the lock request
to the server's rpc.lockd.

o If the lock request is the fust one received
from this particular client, the rpc.lockd regis-
ters the client's host name with the rpc.statd
on the server

o The server's rpc.statd then informs its twin
rpc.statd on the backup server that the client
should be monitored and then sends an ack-
nowledgement to the rpc.lockd.

o The server's rpc.lockd makes the lock request
to the server's kernel.

o The server's kernel accepts the lock request
and validates it. Returns response to the
seler's rpc.lockd.

o The server's rpc.lockd responds to the client's
rpc.lockd.

r The rpc.lockd on the client responds to the
NFS client's kernel with the lock response.

o The application is given the answer to its lock
request.

Table 1: Getting a lock on remote file in IIA-NFS

The rpc.statd on a system is. informed of the
name of its ¡vin host through a RPC call by a HA-
NFS daemon when the HA-NFS subsvstem is
started. Once this is done, the rpc.statd wiil contact
the twin's rpc.statd every time it is called by the
local rpc.lockd with a new host to be monitored. The
twin's rpc.statd will create an entry in the /etc/sm
directory with the host name specified by the
primary's rpc.statd and respond to the monitoring
request.

If a server fails, the HA-NFS daemons running
on its ¡vin will detect the failure and take over its
disks. They will then replay the log and bring the
file systems to a consistent state and mount them on
the appropriate directory. Finally, they will take
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over the IP address of the failed server on a spare
network interface provided for this purpose. The
network interface may be either ethernet or token

o The failure of the trvin server is detected by
the backup HA-NFS server. The backup
server takes over the disks, brings the file sys-
tems to a consistent state and rebuilds the
duplicate cache of the failed server. The
rpc.lockd is stopped to prevent requests from
being processed until takeover is complete.
The backup then takes over the IP addreìs of
the failed server and starts to provide NFS file
service.

o The rpc.lockd is restarted at the backup
server. When it starts, it contacts the server's
rpc.statd to tell it of its failure.

o Upon receiving the failure notification from
the rpc.lockd, the rpc.statd at the backup
server contacts each of the clients (both its
own clients as well as those of the failed
nvin) that were being monitored because of
the cunent locking state. This notification
lets each of the clients know that the server's
rpc.lockd has failed. The rpc.statd notifres
each of the clients playing the role of the
appropriate server.

o After the rpc.lockd notifies the rpc.statd of its
failure it goes into a grace period for lock
recovery. This allows clients to reclaim locks
that they held before the failure of the Win
servers rpc.lockd. The default grace period is
45 seconds.

o lVhen the client's rpc.statd receives the
notification that the server has failed, it "calls
back" to the rpc.lockd on the client to notify
it of the failure of the server.

o When notified, the client's rpc.lockd will send
reclaim requests for all locks currently being
held that are from the failed server. These
reclaim requests will be honored at the server.
As a result the server will regain the locking
state that was held prior to its failure.

o During the grace period on the server, the
rpc.lockd will only honor reclair?r requests
from clients. This assures consistency for the
clients that held locks prior to the failure.
The locks will be held again when the server
restarts normal lock service. Regular locking
requests that the server's rpc.lockd receives
will be returned to the requesting client with a
message that the client should retry the lock
request. After the grace period elapses, new
lock requests start being honored.

Table 2: I¡ck Recovery After Server Failure in
HA-NFS

ring. Finally the rpc.lockd is restarted. Because of
the restart, the rpc.lockd and rpc.statd will
through the lock recovery protocol sending

go
out
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requests to clients of both this server and its failed
twin to perfofm lock re-claim actions. The clients
will see a simultaneous failure of both the twin
servers and send out reclaim requests to both. All
these requests will be received by the operational
twin (since it is responding to both IP addresses) and
the correct locking state will be recovered

Another detail of the rpc.statd modifrcations
deals with contacting the clients upon server failure.
The clients are notified of the server failure bv
receipt of an RPC. Within the parameters of thä
RPC is the host name of the server that has failed.
The rpc.statd at the client uses that host name þ
check if it among the list that is cunently being
monitored. [f so, the rpc.statd then sends an RpC tõ
the rpc.lockd at the client signifying the server
failure. A simple solution would be for the twin
rpc.lockd upon takeover to contact each client with
the name of the failed server as well as its own host
name. To get around this overhead, the file with the
client's name in the /etclsm directory indicates
whether it is this server that needs to monitor the
client or its twin.

A call to unmonitor a host needs to be sup-
ported for the twin-registration process. This ls
needed so that when a primary's rpc.lockd decides it
no longer needs to monitor a client, the rpc.statd on
both the primary and twin systems will rèmove the
monitoring entry from the /etclsm directory. When
the rpc.statd on the primary HA-NFS server receives
an unmonitor request from the rpc.lockd it will
remove its /etclsm entry for that host. The rpc.statd
will then call the twin's rpc.statd with the request to
remove the host from its monitoring tables. The
rpc.statd on the twin will decrement the reference
count of that monitored host. If the reference count
is zero, it will remove its entry from the /etc/sm
directory.

6. Reintegration

When a failed server recovers, the HA-NFS
daemon at that server will recover the duplicate
cache state from its trvin after taking over the file
systems.

The failed server will also receive the roc.statd
state from the twin. The mechanism to hanàle this
is achieved through the twin registration process at
the twin. After the duplicate cache state is
transferred to the recovering server, the host name of
the recovering server is registered with the twin,s
rpc.statd. By design the rpc.statd"will transfer to the
registered server the full list of host names that it is
currently monitoring. This allows the recovering
seryer to obtain the current list of clients that are
being monitored.

After receiving the list of clients, the recover-
ing server then restarts the rpc.lockd. Through its
normal recovery process each of the clients in the
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transferred monitoring list are contacted and told of
the failure of the recovering server. The rpc.statd at
the notified client will then follow the normal lock
recovery process by contacting the client's rpc.lockd
allowing it to reclaim the client's locks.

The twin at this point will restart its rpc.lockd
and it will also have the locking state rebuilt when
the client's reclaim their locks. The rpc.lockd on the
twin was originally stopped so that the file systems
of the recovering system could be unmóunted.
When the rpc.lockd exits gracefully, the locks that it
holds are released from the file system therefore
freeing the file systems of reference counts that mav
prevent them from being unmounted.

7. Evaluation

The efÏort it took ro implement the design
chosen was minimal. A simple RPC program was
designed to handle the trvin registration and the
transfer of host monitoring requests between
rpc.statd's. The rpc.statd code was structured in
such a way that the extra logic required to imple-
ment our design was small. Most of our effon was
spent on understanding the design and implementa-
tion of the rpc.lockd and rpc.statd prior to
modification. After the design of these two daemons
was understood it was straightforward to design and
implement the method chosen. There are three areas
where the performance of a HA-NFS server and its
clients will be affected by our design for the highly
available lock manager. This performance penalty is
in comparison to a standard NFS server and the smn-
dard implementation of the network lock manager
protocol.

1. The first performance penalty is taken when a
given client makes the very first lock request
of the I{A-NFS server. Contacting the twin
server for the monitoring of the client will add
extra delay in responding to the client. No
penalty is incurred for subsequent lock
requests.

2. The second penalty will be paid when a twin
fails and the twin that takes over its identitv
starts to proc€ss the lock requests of its owi
clients and the clients of the failed twin.

3. The third penalty is incurred when the rein-
tegration of the failed twin occurs. The twin
server that has taken over musi transfer the
monitoring state to the recovering twin. In
this case the implementation has the rpc.statd
forking a child that handles the transfer of rhe
monitoring state.

Because the first two penalties are more important,
they will be discussed in further detail.
Penalty For The First Lock Request

In both the standard NFS and our lock manager
designs, the first time a client makes a lock requesq
the rpc.lockd contacts the rpc.statd, and asks thàt the
client's name be placed in the /etclsm directory.
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This is done by creating a file name which
corresponds to the host name of the client. In our
desigÍr, the rpc.statd at this point of first registration
will also contact the twin's rpc.statd and have it
monitor the same client. The rpc.statd makes this
RPC to the twin's rpc.statd and waits for a response
before responding to its rpc.lockd monitoring
request. This means that the rpc.lockd will not be
able to continue processing the lock request of the
client until the rpc.statd at the twin finishes creating
its file that conesponds to the initiating twin.

This extra overhead of contacting the twin's
rpc.statd will obviously delay the response to the
first lock request of the client. Table 3 illustrates
the impact of this delay. A configuration of Risc
Systems/6000s were used to measure what the cost
of this frrst lock request would be in a HA-NFS
environment. Three svstems were used for these
measurements. They were running AIXv3 with the
HA-NFS subsystem installed and configured. The
rpc.lockd and rpc.statd had been modifred to follow
our design. The three systems were isolated on a 16
Mbit/s token ring. The test case that was executed
reset the systems so that no previous rpc.statd state
was held at any system (client or sewer). The test
case at the client mounted one of the HA-NFS
exported file systems from the HA-NFS server pair.
The test case then noted the current time and issued
a system call to obtain a lock on a file in the NFS
mounted directory. After the lock system call
returned, the cunent time again was noted and the
elapsed time measured. This is reported on the row
labelled "First lock"
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The test case went on to do the same sequence of
lock and unlock requests a second time. This
second iteration however did not reset the rpc.statd
state. Therefore the overhead of obtaining a second
lock was measured. This is reported on the row
labelled "Second lock".

This test case was also executed with a stan-
dard NFS server for comparison. The same
configuration described above was used except that it
was just one standard NFS server and one client.
This time the rpc.lockd and rpc.statd were running
the standard algorithm. Again the rpc.statd state on
both client and server was removed and the test case
executed. The second lock request was also exe-
cuted as in the scenario described above.

Both of these lock test scenarios were executed
50 times and an average response time for the lock
request and standard deviation calculated. These are
the results reported in Table 3.

The overhead of contacting the twin server to
have the rpc.statd monitor the client almost doubles
the response time for the very first lock request. We
felt that this cost was reasonable given that it
occured only for the first lock request from a partic-
ular client. The numbers for the "second lock"
request with and without tlA-NFS are the same
within the limits of experimental error.

The same was done for the unlock request and
again the elapsed time reported. Table 4 shows the
measurements for the unlock requests. This data
shows that HA-NFS unlock requests do not suffer
from any extra overhead.

Without HA-NFS With HA.NFS
Lock Opm Std. Dev. hck Oprn Std. Dev.

First Lock 132.12 ms 13.28 ms 245.06 ms 70.18 ms
Second Lock 15.66 ms 0.98 ms 16.08 ms 1.20 ms

Table 3: Highly Available Lock Manager Overheads for locks

Without HA-NFS With HA.NFS
Unlock Oprn Std. Dev. Unlock Oprn Std. Dev.

First Unlock 14.30 ms 0.41 ms 14.42 ms 0.80 ms
Second Unlock 14.43 ms 0.47 ms 14.63 ms 0.60 ms

Table 4: Highly Available Lock Manager Overheads for unlocks

Without tlA-NFS With IIA.NFS
Lock Oprn Unlock Oprn Lock Oprn Unlock Oprn

First Run 14.80 ms 13.89 ms 15.19 ms 13.97 ms
Second Run 14.82 ms 13.85 ms 14.91 ms 13.90 ms
Third Run 14.80 ms 13.89 ms 15.17 ms 13.98 ms

Table .5: Highly Available Lock Manager Overheads (500 operations)
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We believe that the typical mode that clients
use seryers in most applications is that a client
would tend to get many locks on a particular server
in a given period. This would tend to wash out the
effect of the higher HA-NFS first lock overhead as
gompared to the standard NFS lock manager. Table
5 shows a test case that executed 500 sequential lock
operations in the same configurations specified above
(unlock operations were also measured). The results
reported are the per request elapsed time.
Overhead Of Handling The Failure Of A Twin

The steps that are taken when a server fails and
its twin takes over operation for the failed server
have been enumerated in Table 2. Remember that
one of the steps is to stop the rpc.lockd while the
takeover configuration is executing on the twin.
Once the takeover is complete, the rpc.lockd is res-
tarted. At this point, the rpc.lockd will notify the
rpc.statd of its failure and the rpc.statd will execute
its lock recovery algorithm.

With our design, the rpc.statd will have to con-
tact each of the clients twice. One RPC will contain
the twin's host name and the second RPC wifl con-
tain the host name of the failed server. In this wav
the clients will be notified of both server's failurä
and they will reclaim the locks held at the server
pair. With our design the rpc.statd has exactly twice
the normal number of RPC's to execute. This
number may also include clients that held locks at
the failed server and not at the twin that has taken
over. Since this notification mechanism is asvnchro-
nous to the other operations occurring at the server it
should not be a significant burden for the twin.

Also, the twin will have to handle its own
incoming reclaim requests and the reclaim requests
for the failed server. This load is difficult to deter-
mine since it depends on the type of applications
that are being executed at the clients and their lock-
ing behavior. Therefore under heavv stress the
default grace period that the rpc.lockd uses for lock
reclaims may not be sufficient for conect operation.
This is also true of a standard NFS servei but is
made worse by the fact that the twin will also be
handling the failed server's lock requests.

In the testing that has been done with this
implementation the recovery of client locking state
was achieved in a reasonable amount of time. The
majority of this testing was done under light to
medium locking stress. Since the rpc.lockd has a
relatively short default time for its grace period, the
recovery process that the clients are forced to go
through may fail under a very heavy load. If this
happens, the grace period can be increased by the
system administrator to handle this case.

It should be mentioned that the lock response
time will not be the only thing that will suffêr when
a server fails. The normal NFS requests that the
twin receives will also be affected by the extra work
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load that it has taken on as part of the impersonation
of the failed seryer.

8. Network and Media Failures

HA-NFS provides recovery from disk and net-
work f¿ilures for the file server as described in [3].
The same methods can ensure that the lock manager
can recover from these failures.

Fast recovery from disk failures is achieved in
HA-NFS by mirroring files on different disks. How-
ever, all copies of the same file are on disks that are
controlled by the same file seryer, eliminating the
overhead of ensuring consistency and coherence
between the two servers that would othen¡¡ise occur.
Since disk failures are not frequent, minoring is only
used for applications that require continuous availa-
bility. Othenvise, archival backups could be used to
recover from disk failures. The files used by the
rpc.statd could be mirrored to provide high availabil-
ity.

Network failures are tolerated by optional repli-
cation of the network components, including the
transmission medium. However, packets are not
replicated over the two networks. Instead, the net-
work load is distributed over the networks. Clients
detect network failure because of loss of heartbeat
from servers and switch over to the second network
by changing their routing tables. Also, a message is
sent to the server to change its routing tables. This
mechanism works for all messages between client
and server, including the locking protocol messages.

9. Comparison with Other Systems

Tandem's NonStop architecture t2] t5] uses
special-purpose hardware in the form of dual-ported
disk controllers which allow each disk to be attached
to two processors. If a single processor fails, the
other takes over the disks and provides processes
that were using these disks with continued access.
However, Tandem has the conc€pt of process-pairs.
Thus each I/O process has a twin to which it con-
tinuously checkpoints its state. This ensures that the
backup I/O process knows what operations are
needed to bring the disk to a consistent state when it
takes over. On the other hand, HA-NFS has no such
checkpointing overhead during normal (failure-free)
operation. The information for bringing the disks to
a consistent state is stored on the disk itself by treat-
ing each NFS client-to-server RPC as a transaction
and writing a log. Thus, there is a signifrcant differ-
ence between the IIA-NFS and Tandem approaches.
Presumably in the Tandem approach the same
processor-pair/checþointing approach is used to
transfer locking state from one proc€ss to its backup
twin. In our approach, the rpc.statd communicatei
with its twin rpc.statd only when a new client makes
its first lock request. No communication is required
for subsequent lock requests.
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VAXcluster [6] also has a distributed lock
manager which recovers locks after a processor fails.
Upon being notified of node failure, the lock
manager on each node must perform recovery
actions before normal cluster operation continues.
First, each lock manager deallocates all locks
acquired on behalf of other processors. Only local
locks are retained. Next, each lock manager
acquires each lock it had before the failure. The net
result is to deallocate all locks owned by the failed
node. However, note that this requires a// locks to
be re-acquired on any failure. In NFS and IIA-NFS,
clients that held locks at a failed server node need to
re-acquire only those locks that were held at the
failed node. The trade-off is that the first lock
request is slower in HA-NFS.

10. Future Work

We used a simple design where the twin of a
failed server rebuilds both its own locking state
along with the locking state of the failed server. The
load of this server would decrease if only the failed
server's locking state were to be selectively rebuilt.
This can be done by having the rpc.statd keep a
more detailed record of what clients were monitored
by which server. This way only the clients affected
by a takeover would be notified of the server failure.

The other part of the design that might be
extended has to deal with the grace period that the
rpc.lockd uses. The grace period is used to allow
the clients to rebuild their locking state after a server
failure. This grace period in the implementation is a
default of 45 seconds. As mentioned earlier, this
default seems to work well with the test cases used
but it may not be sufficient when the load of the
server increases. There is a possibility that the grace
period could be dynamically decided based on the
number of clients that respond to the failure message
that the rpc.statd supplies. The rpc.statd could possi-
bly keep track of the percentage of clients that have
contacted the server after being notifred of the
failure. Once a certain percentage has been reached
the rpc.statd could then notify the local rpc.lockd so
that it can make a decision to either continue the
grace period or extend it. It is possible that clients
do not need to contact the server after failure of the
rpc.lockd so the perc€ntage to use in determining
validity of the grace period would not be simple.

These future work items could possibly
decrease the work load of the server and increase the
likelihood of correct and the timely reclamation of
locking state.
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