
The Continuous Media File System
David P. Anderson - University of California, Berkeley

Yoshitono Osawa - Sony Corporation
Ramesh Govindan - University of Cdifornia, Berkeley

ABSTRACT

Handling digital audio and video data ('continuous media") in a general-purpose file
system can lead.to performance problems.. File systems typically optimlze oveiall'average
pgrformance, while many audio/video- applications'need guæanteéd ùorst-case performanc--e.
These guarantees cannot be provided Uy fast hardwarellone; we must also consider the
interrelated software issues of file layout on disk, disk scheduling, buffer space managemenr,
and admission control, The Continuous Media File System (ôUrS¡ ii a prototipe filó
system that addresses these issues,

Introduction sessions) and disk scheduling. CMFS does not
Support for digital audio/video (continuous igqt::: lighlevel issues such-as.security, naming

media, ôi cu¡ has eñerged as an imporì'anü;;tr; ::d,,T3"Itlg,
or_document shucturing; these are lefl

computer sysiem desigi. cM
".p.uiiitLr

-*¡i
[,lltg.h:l

levels [9, 10]. CMFS simply provides the
greaily expand the role õf computer .yrte., and will i:tl1ry

to source or sink byte sheams to/q9t storage
énricti the- user interfaces of'existing uppti"uiionr. at-guar-anteed rates' CMFS is influence_d by severãl
Mr¡_ch effort is being directed to*.0-,,iiie!i.ii";;; lt:;"::":

CM file systems [1, 5, 8, 1U. However,
CM, that is, handlin! CM data in the same fr"aøwire CMFS is more general than these,systems: it sup-
and softwa¡e fra¡ñework as other ¿"tu.---if,ì. Ports. read and write sessions, variable-rate files, and
apploach provides advantages in nexiUifity á"¿ Àr"l

m_ultiple_sessions with^^different -rates. .It also sup-
erality; however, it introduces performancä probËrns ports non-real'time traffic more effectively.
because CM traffic contends for hardware iesources
tcpÚ, ¿isçìrn"ärtilitrt orher traffic.

luurççÙ The Client Interface to CMFS

Hardware speedup alone cannot solve these
performance problems. It is necessary to schedule
resoruces or limit workload (or both) in a way that
reflects the performance requirementé of CM traffic.
For example, applications might vary data rates (e.g.,
reducing video resolution or frame rate) in response
to changing load conditions. Alternatively, thé sys-
tem might allow applications to ,,reserveii resource
capacity; resources must then be scheduled accord-
ingly. The ability to reserve capacity is especially
important for file systems, since in general ttre ¿atâ
rate of stored CM data is fixed.

CMFS (Continuous Media File Sysrem) is an
experimental disk storage system for integrated CM,
CMFS has the following properties:

o Clients of CMFS can resewe capacity in the
form of sesslons, each of whictr seqúentially
reads from or writes to a file

-
with

'a.

guaranteed data rate.
o Multiple sessions, perhaps with different data

rates, can exist concunently, sharing a single
disk drive.

What exactly is meant by ,,guæanteed data
rate"? It is neither feasible nor desirable that CMFS
should deliver data at a completely uniform rare, one
byte every X seconds. Ideally, the semantics of a
CMFS session should accommodate variable-rate
files, work-ahead, and client pause/resume. We have
developed a semantics that handles these cases in a
simple and uniform way. Our semantics also pro-
v.ides--g.duality between reading and writing, ihus
simplifying CMFS.

To precisely describe the semantics of a CMFS
session, we need a model for how CMFS interacts
with its clients. Our model is as follows. Each ses-
sion has a main-memory FIFO buffer for data
transfer between CMFS and the client. For a read
session, CMFS appends data to the FIFO and the
client removes data (blocking when the FIFO is
g,qrpty). For a write session, the client appends data
(blocking when the FIFO is full) and CMFS removes
it. Performance guarantees are defined entirely in
terms of data insertion in, and removal from, the
FIFO.

¡ Non-real-time traffic is handled concunently. Further details are intentionally left unspecified,
Thus CMFS can be used as a general-purpoie since the model can be realized

-in
varioui ways.

file system that handles CM dai-a as *eì1.
'

For example, a CM-capable frle system may run in
To provide these capabilities, CMFS addresses lE 9l

kernel -or in. a protected user-modè vi¡tual
several intenelated design'isuæ,ãirt r,uvo*,;¡ñ- :19jt:Ì^:p..".(see

Figure 1)' I!-may communicate
sion control (acceptance or rejection ói-;; with clients via traps (system calls) or via RPC; the

Summer '92 USENIX - June 8-June lZ, tggz - San Antonio. TX 157

The Continuous Media File System

FIFO may be a memory-mapped stream [6] or a ker-
nel data structure accessed by read () system
calls.

Figure 1: A CM-capable file system can run at the
user level, communicating with its clients over
network connections (a). Alternatively, it can be
implemented in an OS kernel, with client data
access by a shared-memory FIFO (b).

The CMFS prototype is implemented as a
user-level UNIX process (Figure 1a), and clients
communicate data via flow-controlled network con-
nections. Data is removed from the FIFO of a read
session whenever the corresponding network connec-
tion is ready to accept data.

The Semantics of a Session
The semantics of a CMFS session æe defined

in terms of a "logical clock" C(t), the "ggt point"
G(t) (the start of the FIFO data) and the "put
point" P(r) (he end of the FIFO data). These are
byte indices into the file; C G) is zero when the ses-
sion starts (f =0). Each session has two parameters:
À (its data rate) and f (its "cushion"). Figure 2a
depicts the semantics of a read session:
o The logical clock advances at rate R whenever it

is less than the get point.

Anderson, Osawa, ...

o The logical clock stops whenever it equals the get
point.

¡ The put point is always at least 7 ahead of the
logical clock.

These rules imply that if the client removes one
byte of data every l/R seconds, it will never block;
in other words, the client is guaranteed a data rate of
R bytes/second. However, the flow of data need not
be smooth or periodic. CMFS promises to stay
ahead of the logical clock by a given positive
amount (the cushion 1), and the client's behavior
determines how the clock advances. These seman-
tics allow CMFS to handle variable-rate files and
other non-uniform access in a simple way. CMFS is
guided by client behavior; no explicit rate-control
calls are needed, and CMFS need not know about
file internals.

ø) read session

(client read) (CMFS write)
c(t) G(r) P(r)

offset in file

. V

b) write session

(CMFS read) (client write)
c(f) c(r) P(t)

o i
"""1::*ï ffietinfite

r-=-+ ltoP
i <R-Y I C IoCKsB-Y i .clocK' fi zero

s B
Figure 2: The semantics of read and write sessions

are described in terms of a "put point" P (t), a
"get point" G(t), and a logical clock C(t). The
shaded rectangles represent data in the FIFO.

The semantics of a write session are as follows
(see Figure 2b):
¡ The logical clock advances at rate R whenever it

is less than the put point.
o The logical clock stops whenever it equals the put

point.
o The get point trails the logical clock by at most

B - ï bytes, where B is the size of the FIFO.

1 t Æ t i
l t :

u s e r l l i

158 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Anderson, Osawa, ...

The Duality of Reading and Writing

_ In describing the algorithms used by a real-time
file system, it is tedious to have to dêal with the
read and write cases separately; they are similar but
they differ in some crucial respects. In CMFS this
problem disappears because reading and writing are
dual in the following sense. Given a write session,
consider a read session for the same file; the FIFO
of the read session is identical to the write session,
but with "empty" and "full" interchanged (see Fig-
ure 3). As shown in [4], the dual read session obefs
the rules for read sessions (described above) if and
only if the original write session obeys its
corresponding rules. (In fact, the semantics of ses-
sions were designed to make this hold.)

The Continuous Media File System

o The initial pause that occurs when files f¡om
several CMFS servers are played synchro-
nously at a single I/O server (such as ACME
[3]) is handled automatically.

. If the hardware is fast enough the client can
read arbitrarily far ahead of the logical clock.
This "workahead" data can then be buffered
(both within CMFS and at.other points), pro-
tecting against playback glitches and improv-
ing the performance of other trafÊc (see [2]).
CMFS is intended to be part of a real-time dis-

hibuted system in which each shared resource (CpU,
disk, network) can be reserved in ,,sessions',,.each
of which handles a data sheam and has an upper
bound on its delay. This "meta-scheduling,, schême
is described elsewhere [2]; the conneðtion with
CMFS is that a session's "cushion,' parameter I
should be at least as large as the delay bound of the
resource (usually a CPU) handling the data after
removing it from the FIFO. This ensures that the
þSicat clock never stops accidentally due to delay in
CPU processing.

the CMFS Control Interface
The operations (RPCs or system calls) to create

and start a CMFS session have the following form:
ID request_sess ion(

int direct ion,
FfLE_fD name,
in t o f fse t ,
F IFO* bu f fe r ,
TfME cushion,
i n t r a t e) ;

s ta r t_c lock(ID id) t
I f direct ion is READ, request_session()
requests a session in which the given file is read
sequentially starting from the given offset. If the
session cannot be accepted, an error code is returned.
Otherwise, a session is established and its ID is
returned. Start clock() starts the session,s
logícal clock. The ãient is nbtineA (via an RpC or
exception) when the end of the file has been
reached. CMFS also provides a seekO operation
that flushes data currently in the FIFO anô reposi-
tions the read or write point.

A real-time file is created using
create_realtime_f i 1e (

BOOLEAN expandable,
i n t s i z e ,
int max_rate) t

expandable indicates whether the file can be
dynamically expanded. If not, size gives its
(fixed) size. max_rate is the maximumãata rate
(bytes per second) at which the file is to be read or
written. CMFS rejects the creation request if it
lacks disk space or if max_rate is too high.

a) write session

GwQ) CwQ) PwQ)
r r l

0 i i i ffietinfite

CnQ)

B

b) equivalent reød session
Figure 3: By interchanging empty/full and

read/w¡ite, a write session (a) is transformed into
a read session (b) that is equivalent with respect
to scheduling.

__ - fhus, from the point of view of scheduliùg in
CM-FS? reading and writing are essenti;lly
equivalent. The main difference is the initial condi-
tion: an empty buffer for a write session
corresponds to a full buffer for a read session. In
describing CMFS:s algorithms for scheduling and
session acceptance, we will refer only to reaá ses-
sions.

Using CMFS Semantics
The CMFS interface provides an implicit rate

control: the client can stop the logical clocl by sim-
ply not removing data from the FIFO. This òontol
mechanism can serve several purposes:

. CMFS adapts automatically to files that have
variable data rate (e.g., variable-rate
compressed video) or instantaneous,,chunks',
such as video frames (this is formalized in
t4l).

o A client can pause a session by stopping the
removal of data from the FIFO. performance
guarantees will remain valid after the client
resumes reading.

Gn(r) Pn(r)

Summer '92 USENIX - June 8-June 12, LggZ - San Antonio. TX 159

The Continuous Media File System

Non-Real-Time Access
CMFS also supports non-real-time file access.

There æe two service classes: ínteractive and back-
ground. Interactive access is optimized for fast
response, background for high throughput. The
interface for non-real-time access is like that of a
UNIX file system, except that the open () call
specifies the service class. There are no perfor-
mance guarantees for non-real-time operations.

Disk Layout and Performance Assumptions

To make performance guarantees, we need
information about the speed of disk operations,
which is determined largely by the disk layout.
Many layout policies are possible, and there is no
single best policy. For example, contiguous layout
minimizes seek time within frles, but it may cause
external fragmentation, and it is difficult to extend
existing files. So instead of adopting a particular
policy, we just assume that the disk is read and writ-
ten in blocl<s of fixed size (a multiple of the
hardware sector size), and that the layout has
"bounding functions" Up'and V¡:
o For a given file F, U¡(n) is an upper bound on

the time to read n logically contiguous blocks of
F, independent of the position of the disk head
and the starting block number to be read.

a VF(i, n) is an upper bound on the time needed to
read the ¿ blocks of file.F starting at block i.

The functions should take into account sector
interleaving, interrupt-handling latency, the CPU
time used by CMFS itself, and featurgs (such as
track buffering) of the disk controller.

Our CMFS prototype uses contiguous alloca-
tion. The number of sectors per block is a fixed
parameter. Ignoring CPU overhead and other fac-
tors, bounds functions for this policy are easy to
derive (see [4]). Contiguous layout, however, is
only feasible for read-only file systems or if disk
space is abundant. For more flexibility, a variant of
the 4.2BSD UNIX file system layout [7] could be
used. A real-time file might consist of clusters of n
contiguous blocks, with every sequence of /c clusters
constrained to a single cylinder group. n and /r are
per-ñle parameters; they are related to the file's
max_rate pafameter.

Admission Control

CMFS accepts a new session only if its data
rate, together with the rates of existing sessions, can
be guaranteed. One way to decide this is to see
whether any static schedule (that cyclically reads
fixed numbers of blocks of each session) satisfies the
rate requirements of all session and fits in the avail-
able buffer space.

To be more precise, suppose that sessions
, S r " ' S " r e a d f r l e s F , , , . F n a t r a t e s R l . . . R n . A
schedule Q assigns to each S, a positive integer M,.

. Anderson, Osawa, ...

CMFS perþrms a schedule by seeking to the next
block of frle F,, reading M, blocks of the frle, and
doing this for every session S,. From the functions
U and V we can get an upper bound I(Q) on the
elapsed time of performing þ.

The data read in Q "sustains" S, for A

seconds, where ,4 is the block size in bytes. D({),
the period for which the data read in Q sustains all
the sessions, is the minimum of these periods. If the
data read in Q "lasts longer" than the worst-case
time it takes to perform 0 (i.e., if ¿(0) < D(Q)), we
call it a worlcahead-augmenting schedule (WAS).

If the amount of data read for each session in a
schedule Q fits in the corresponding FIFO, we say
that Q is feasible. It is easy to show the following
(see [4]): CMFS can safely accept a set of ses.
sions if there is a feasible workahead-augmenting
schedule.

We now describe an algorithm to compute the
minimal feasible I4láS ü (the feasible IWAS for
which I(Q) is least). Clearly, a minimal feasible
WAS exists if and only if a feasible WAS exists.

Suppose that sessions 51 ' ' .S" are given. Let
Dr be the "duration" of one block of data for $,
given by.A/R¡. Iæt {r0 < tr < . . . } be the set of
numbers of the form lrD, for /c > 0 and i > 0. Let /¡
denote the interval (t,, t,,rl. Let 0¡ denote the

schedule .ltro,]
l,ro.]r. Note rhat Q¡*¡

differs from Q, by the addition of 1 block to all ses-
sions whose block durations divide f,r,; hence the
sequence of Q, is easy to compute.

The following algorithm computes the minimal
WAS (he proof is in [a]:
(1) Let 0o = <1., ' ' ' , 1) (this is the minimal

schedule for which D(0) € /o).

(2) If Q, is infeasible (i.e., there is no allocation
< B | , . . 8n > of buffer space to client FIFOs
such that MA + Y¡ s B, for all r) stop; there is
no feasible WAS.

(3) If ¿(0) s D(þ) stop; Q, is the minimal feasible
WAS.

(4) Compute Q,*, and go to (2).

Disk Scheduling

When a disk block I/O completes, CMFS
decides which disk block to read or write next, and
it issues the appropriate command (seek, read, or
write) to the disk device driver. The algorithm for
this decision (the disk scheduling policy) must
prevent starvation of sessions, and it should handle
non-real-time workload efficientlv.

160 Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX

Anderson, Osawa, ...

As with any disk-based file system, seek over-
head is a dominant concern in CMFS scheduling. It
ís desirable to perform long (multi-block) operations.
However, it is only possible to perform long opera,
tions if the system is far enough ,,ahead of
schedule" so that no sessions will starve before the
operation is complete. We use the term slack time
to mean the maxímum time that CMFS can defer
doing any reads for sessions.

The slack time, denoted ̂F/, is computed as fol-
lows. Suppose that rhe minimal W-A,S S takes
w o r s t - c a s e t i m e L t + , . . * L n , w h e r e
L¿ = U¡,(M¡), I-et Wi denote the "workahead" for
session i; that is, the temporal value of data in the
FIFO minus the session's cushion I.. Assume ses-
sions are numbered so that W, sW2s , . , Wo
(this ordering maximizes slack time). If the opera-
tions in f is performed immediately in this ordei, the
workahead pf session j will not fall below
Ht = Wt - !Yf¡1. CMFS can therefore safely defer

starting Q for a period of I/ = t".t¡fal.

CMFS factors the disk scheduling policy into
three parts:

. A non-real-time policy decides whether a
non-real-time operation can be initiated.

o If a non-real-time operation is not initiated, a
real-time policy decides which session ro
work on.

o A startup policy is in effect when sessions
have been accepted but not yet started.

We describe these sub-policies separately.

Real-Time Policies
We have implemented and studied several

real-time policies (the choice of policy is a CMFS
option):

o The Static/Minimal policy simply repeats rhe
minimal WAS.

o The Greedy policy does the longesr possible
operation for S, (the session with smallest
workahead). It reads blocks for S, for a
period of H + Lr; i.e., it uses the entire slack
time for workahead on Sr.

o The Cyclical Plan policy tries ro divide slack
time workahead among the sessions in a way
that maximizes future slack time, The policy
distributes workahead by identifying th;
"bottleneck session" (that for which

-II,
is

smallest) and schedules an extra block for it,
This is repeated until .Ff is exhausted. The
resulting schedule determines the number for
blocks read for Sr; when this read completes,
the procedure is repeated.
All policies skip to the next session when a

buffer size limit is reached. If at some point all
buffers are full, no operation is done; when a client
subsequently removes sufficient data from a FIFO,

The Continuous Media File System

the policy is restarted. In both the Greedy and Cycl-
ical Plan policies, the least-workahead session S, is
serviced immediately, Therefoie the value of .EI
used by these policies can be computed as the
minimum of the slack times of all sessions except
51, yielding Aggressive versions of the policies.

Non-Real-Time Policy
Recall that CMFS has two classes of non-real-

time traffic: interactive and background. The goal
of the non-real-time policy is to provide fast
response for interactive traffic and high throughput
for background traffic.

A non-real-time operation with r¡/orst-case
latency Z can safely be started tf L s H. However,
doing so may make Il close ts zero. This wilt sub-
sequently force CMFS to do short real-time opera-
tions (close to the minimal WAS), causing high-seek
overhead.

Instead, CMFS uses a s/øc& time hysteresis pol-
icy for non-real-time workload. An interaciive
operation is started only if H > H,r. Once I/ falls
below fIrr, no further interactive operations are
started until If exceeds f/¡r. Similarly, background
operations are done with hysteresis limits
ÍHar, Hrr). No background operation is started if an
interactive operation is eligible to start.

If the hysteresis limits are set appropriately,
this policy has two benefits: 1) it keeps slack time
from becoming close to zero, and 2) it avoids the
seek overhead of rapidly alternating between real-
time and non-real-time operations.

Startup Policy
When CMFS accepts a session request, it must

delay returning from the request_session()
call until the system state is "safe" (i.e., slack is
positive) with respect to the new ÌWAS. CMFS uses
the following policy during this startup phase.

_ Suppose sessions 51 . ' 'Sn are currently active,
and session S,*, has been accepted but not yet
started. Let 0" ffid Qn*r denote the minimal WASs
fo¡ the sets S, ' . . ,S" and 51 . . .S"*, respectively.
The scheduler enters "startup mode" during whióh
its policies are changed as follows:

o Non-real-time operations are postponed.
¡ For scheduling purposes, slack time I/ is com-

puted relative to Qn.
o When Sr .' . Sn have positive slack with

respect to Qn*r, a read for S"*, (of the number
of blocks given by 0,*r) is started. When this
read is completed, the state is safe for all n +1
sessions. The request_session () call
for Sn*1 is allowed to return, Q,*1 becomes the
system's WAS, and the system leaves startup
mode. This step is omitted for write sessioni
because the FIFO of the dual read session (as
described earlier) is initially tull.

Summer '92 USENIX - June 8-June L2, LggZ - San Antonio. TX 161

The Continuous Media File System

CMFS Performance

The CMFS prototype is written in C++ and
runs as a user-level process on SUnOS 4.L. Depend-
ing on a compile-time flag, disk I/O is either simu-
lated or real. The simulator keeps track of the disk
head radial and rotational position, and models disk
latencies realistically. Real I/O is done to a SCSI
disk via the UNIX raw-disk interface.

Performance on UNIX
We tested a "real VO" version of CMFS on a

Sun 4/110 connected to a CDC Wren III via a SCSI
interface. To obtain functions U and V, we meas-
ured the time of VO operations. We found that the
time to read a (512 byte) sector on the same track as
the previously-read sector, and at a rotational dis-
tance of n sectors, varied from 6 msecs for z=11 to
21 msecs for n=10 (i.e., the disk spins 10 sectors
before another read command is handled). The aver-
age time needed to read a sector at the same rota-
tional position on an adjacent cylinder was 24
msecs, and on an extreme cylinder 54 msecs.,

We then measured the CPU time used by
CMFS. In a typical situation (1 MB buffer, two
1.4Mbps sessions, background traffic, Greedy policy)
the average time per scheduling decision was 250
usecs. Cyclical Plan policy was slightly slower: 303
usecs average. The maximum times (impossible to
measure precisely on UNIX) were in the range of 2
to 4 msecs.

Because of the high per-read overhead of
UNIX, we used a block size of 35 sectors (1 track).
We then defined functions U and V based on the
measured times for UNIX I/O and CMFS execution.
With 2 MB of buffer space, this version of CMFS
accepts 39 64Kbps (telephone-rare) or 2 l.4Mbps
(CD-rate) sessions. Starvation occurs about once per
minute, perhaps due to UNIX CPU scheduling.
With a workload consisting of 2 CD-rate sessions
and random interactive a¡rivals at a rate of 5/sec.,
the mean response time is about 80 ms. With 2
CD-rate sessions, the throughput of background
traffic is 1.424 Mbps, These results are in rough
agreement with the simulator using the same system
pafameters.

Simulation Studies
Because of the scheduling vagaries of UNIX

and the restriction to our available disk drives, the
"real IlO" version of CMFS is not well-suited to
performance studies. Instead, we did simulation-
base studies using the CMFS simulation mode.
Unless otherwise stated, the simulations use the
Cyclical Plan policy and assume a disk with 11.8
Mbps transfer rate and 39 ms worst case seek time.
Block size is 512 bvtes.

Anderson, Osawa, ...

Figure 4 shows the maximum number of con-
current sessions accepted by CMFS as a fr¡nction of
total buffer space, for data rates of 64 Kbps and 1.4
Mbps. Curves are given for three different disk
types: 39 ms maximum seek time and 11.8 Mbps
transfer rate (CDC Wren V), 35 ms maximum seek
time and 8,6 Mbps transfer rate (CDC Wren III) and,
180 ms maximum seek time and 5.6 Mbps transfer
rate (Sony 5.25" optical disk).

number of sessions
(64 Kbps each)

39 ms

35 ms

180 ms

1OOB 1OKB].MB 1OOMB 1OGB
buffer space

number of sessions
(1.4 Mbps each)

1

1OKB 1MB 1OOMB
buffer space

Figure 4: The maximum number of sessions
depends on the available buffer space. The disk
transfer rate imposes an upper limit on the
number of sessions; to reach 90Vo of. the limit
with the 11,8 Mbps disk requires 4 MB of buffer
space for 1.4 Mbps sessions and 85 MB for 64
Kbps sessions.

An important criterion for real-time scheduling
policies is how quickly they increase slack. To
study this, we simulated CMFS with three con-
current 1.,4 Mbps sessions, no non-real-time traffic,
and 8 MB buffer space. From the results (Figure 5)
we see that Cyclical Plan performs slightly better
than Greedy when slack is low, but that Greedy
quickly catches up. Staticffinimal, because it can-
not do long operations, performs much worse at
higher slack levels. With appropriate hysteresis
values CMFS maintains moderate to high slack

5.2 Mbps, 180 ms

L62 Summer '92 USENIX - June E.June L2,1992 - San Antonio, TX

slack

10 15 20

Anderson, Osawa, ...

levels during steady-state operation; thus the
dynamic policies are preferable,

The Continuous Media File System

Finally, we studied startup time for read ses-
sions. We ran a simulation in which requests for six
sessions 1.4 Mbps arrive at time zero. The first ses-
sion starts in about 0.1 seconds. The gap between
the start times of successive session then increases
rapidly; the sixth session takes about 2.0 seconds to
start. This is because the workaheads of existing
sessions have to be increased to accommodate thè
new minimal WAS, which becomes longer as more
sessions are added.

Conclusion

CMFS shows that it is possible for a file sys-
tem to simultaneously handle multiple sessions with
different data rate guarantees, together with non-
real-time workload. This is an important step in the
integration of audio/video in general-purpose com-
puter systems. CMFS contributes new ideas in its
acceptance test and scheduling policies, and also in
the flexible but rigorous semantiõs of sessions.

Our performance experiments show that 1) for
real-time traffic, dynamic scheduling policies (such
as Greedy and Cyclical Plan) perform besr; Z)
significant buffer space is needed for the system to
perform near the limits of the disk drive; 3) slack-
time hysteresis limits can have a large effect on
non-real-time performance.

There are many directions for further work in
CM file systems: integration of low-level servers
like CMFS with higher levels, extension to parallel
I/O architectures, dynamic layout and compaction
schemes, and improved scheduling policies for non-
real-time workload, to name a few.

Acknowledgements

This research was supported by NSF, Sun
Microsystems, Sony Corp., and ICSI. Thanks to
George Homsy, Vassilios Polimenis and Mark
Moran for helpful discussions about CMFS, and to
Eric Allman for encouragement and advice.

References

[1] C. Abbott, "Efficienr Editing of Digital Sound
on Disk", J. Audio Eng. Soc. 32, 6 (June
1984),394.

[2] D. P. Anderson, "Meta-scheduling for Distri-
buted Continuous Media", UC Berkeley, EECS
Dept., Technical Report No. UCB/CSD 90/599,
Oct. 1990.

[3] D. P. Anderson and G. Homsy, ',4 Continuous
Media UO Server and its Synchronization
Mechanism", IEEE Computer, Óct. 1991, 5j.-
57.

[4] D. P. Anderson, Y. Osawa and R. Govindan,
"Real-Time Disk Storage and Retrieval of
Digital Audio and Video", ACM Trans. Com-
puter Systems, to appear. Also UC Berkeley

greedy

_cyclical plan

static/min

ìS time

Figure 5: Disk scheduling policies build up slack at
different rates. The Aggressive Cyclical Plan
(solid line), Aggressive Greedy (dotted) and
Static/lvfinimal (dashed) policies are shown here.

To study the performance of interactive non-
real"time traffic, we ran simulations combining Pois-
son anivals of interactive requests (each reading a
random block) with several sessions. We then meas-
ured the average response time of the interactive
requests. Details are given in [a]; the main results
are:

o The effect of hysteresis parameters is greatest
under heavy load; otherwise slack remains
high and hysteresis is not exercised.

o Reasonable "rule of thumb" values for the
hysteresis parameters are H,, = .3ÃI.r, and
H¡z ' Hn = min(.3//,",, 0.5), where .I1.,* is
the upper limit on slack time imposed by
buffer space.

o Response time decreases with increasing
buffer space; in scenarios involving CD-rate
sessions, the "knee" was around 1 MB.
To study the effect of real-time traffic on back-

ground traffic throughput, we simulated several ses-
sions and a single background task that sequentially
reads a long, contiguously-allocated file. We definê
the background throughput fraction T as the fraction
of residual disk throughput (i.e., disk throughput not
taken up by real-time sessions) used by the back-
ground task. We found that T was maximized for
(roughly) Hn =.25H^u and HB2 = .9H,,,. Again,
increasing buffer space improves non-real-time per-
formance; a buffer of at least 1 MB was needeá to
attain a value of l above 0.9.

Summer '92 USENIX - June 8-June 12, Lggz - San Antonio, TX 163

The Continuous Media File System

EECS Dept. Technical Report No. UCB/CSD
9L1646.

[5] J. Gemmell.and S. Ch¡istodoulakis, "Principles
of Delay Sensitive Multi-media Data Storage
and Retrieval", ACM TOIS, to appear.

[6] R. Govindan and D. P. Anderson, "scheduling
and IPC Mechanisms for Continuous Media",
Proc. of the 13th ACM Symp. on Operaring
System Prin., Pacific Grove, California, Oct.
14-16, 1991, 6g-90.

[7] M. K. McKusick, W. N. Joy, S. J. Leffler and
R. S. Fabry, "A Fast File System for UNIX",
ACM Transactions on Computer Systems 2, 3
(Aug. 1984), 181-197.

[8] P. V. Rangan and H. M. Vin, "Designing File
Systems For Digital Audio and Video", Proc.
of the 13th ACM Symp. on Operating System
Prin., Pacifrc Grove, California, Oct. 1991, 81.-
94.

[9] D. Steinberg and T. Learmont, "The Mul-
timedia File System", !roc. 1989 International
Computer Music Conference, Columbus, Ohio,
Nov. 2-3, 1989, 307-31L.

[10] D. B. Terry and D. C. Swinehart, "Managing
Stored Voice in the Etherphone System", ACM
Trans. Computer Systems 6, 1 (Feb. 1988), 3-
27.

[11] C. Yu, W. Sun, D. Bitton, R. Bruno and J.
Tullis, "Efñcient Placement of Audio Data on
Optical Disks for Real-Time Applications",
Comm. of the ACM 32,7 (1989\, 862-871.

Author Information
' David P. Anderson has been an Assistant pro-
fessor at UC Berkeley since 1985. He is currently
studying Macintosh programming and jazz piano.
Contact him at anderson@icsi.berkeley.edu ol ßn
Blake St., Berkeley CA94703.

Yoshi Osawa recently spent a year as Visiting
Industrial Fellow at UC Berkeley. After graduating
from the University of Tokyo in 1985 he has workeã
for Sony, where his address is Sony Corporation,
Electric Devices Group, Storage Systems Business
Unit, Magneto-Optical Disk Drive Division, 2255
Okata, Atsugi, IGnagawa 243, Japan. His email
address is osawa@strg.sony.cojp.

Ramesh Govindan received his undergraduate
degree from IIT-Madras and is completing his Ph.D.
degree in CS at UC Berkeley. He can be reached at
Evans Hall, UCB, Berkeley CA 94720 or
ramesh@icsi.berkeley.edu.

Anderson, Osawa, ...

164 Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX

