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Abstract
This work is focused on processor allocation in shared-
memory multiprocessor systems, where no knowledge
of the application is available when applications are sub-
mitted. We perform the processor allocation taking into
account the characteristics of the application measured
at run-time. We want to demonstrate the importance of
an accurate performance analysis and the criteria used to
distribute the processors. With this aim, we present the
SelfAnalyzer, an approach to dynamically analyzing the
performance of applications (speedup, efficiency and
execution time), and the Performance-Driven Processor
Allocation (PDPA), a new scheduling policy that distrib-
utes processors considering both the global conditions
of the system and the particular characteristics of run-
ning applications. This work also defends the impor-
tance of the interaction between the medium-term and
the long-term scheduler to control the multiprogram-
ming level in the case of the clairvoyant scheduling pol-

icies1. We have implemented our proposal in an SGI
Origin2000 with 64 processors and we have compared
its performance with that of some scheduling policies
proposed so far and with the native IRIX scheduling
policy. Results show that the combination of theSelfAn-
alyzer+PDPA with the medium/long-term scheduling
interaction outperforms the rest of the scheduling poli-
cies evaluated. The evaluation shows that in workloads
where a simple equipartition performs well, the PDPA
also performs well, and in extreme workloads where all
the applications have a bad performance, our proposal
can achieve a speedup of 3.9 with respect to an equipar-
tition and 11.8 with respect to the native IRIX schedul-
ing policy.

1  Introduction
The performance of current shared-memory multipro-
cessors systems heavily depends on the allocation of
processors to parallel applications. This is especially

important in NUMA systems, such as the SG
Origin2000 [SGI98]. This work attacks the problem o
the processor allocation in an execution environme
where no knowledge of the application is availabl
when applications are submitted.

Many researchers have considered the use of applicat
characteristics in processor scheduling [Brecht9
[Chiang94][Marsh91][Nguyen96][NguyenZV96][Parso
ns96]. In these works, parallel applications are chara
terized by different parameters such as the maximu
speedup, the average parallelism, or the size of t
working set. Performing the processor allocation with
out taking into account these characteristics can resul
a bad utilization of the machine. For instance, allocatin
a high number of processors to a parallel applicatio
with small speedup will result in a loss of processor pe
formance.

Traditionally, characteristics of parallel application
were calculated in two different ways. The firs
approach is that the user or system administrator p
forms several executions under different scenarios, su
as the input data or the number of processors, and c
lects several measurements. A second approach, use
research environments [Brecht96] [Chiang94
[Helmbold90] [Leutenegger90] [Madhukar95]
[Parsons96] [Sevcik94], defines a job model, characte
izing the applications by a set of parameters, such as
average of parallelism or the speedup. This informatio
is provided to the OS as ana priori input, to be taken
into account in subsequent executions.

This approach has several drawbacks. First of all, the
tests can be very time-consuming, even, they can be p
hibitive due to the number of combinations. Furthe
more, many times the performance of the applicatio
depends on the particular input data (data size, numb
of iterations). Second, the behavior of the applications
influenced by issues such as the characteristics of
processors assigned to them, or the run-time mapping

processes to processors, or the memory placement.

1. Those scheduling policies that consider the application
characteristics
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These issues determine the performance of the applica-
tions and are only available at run-time. Finally, the dif-
ferent analytic models proposed so far are not able to
represent the behavior of the application at run-time.
Moreover, analytic models try to characterize the appli-
cation when it is individually executed, not in a shared
environment. Most of the previous approaches are based
on analytic models.

On the other hand, the typical way to execute a parallel
application in production systems is through a long-term
scheduler, i.e. a queueing system [Feitelson95]. The
queueing system manages the number of applications
that are executed simultaneously, usually known as the

multiprogramming level1. In this execution environ-
ment, jobs are queued until the queueing system decides
to execute it. This work is based on execution environ-
ments where the applications arrival is controlled by a
long-term scheduler.

This work relies on the utilization of the characteristics
of the applications calculated at run-time and on using
this information for processor scheduling. In particular,
we propose to use the speedup and the execution time
with P processors. This work is focused on demonstrat-
ing the importance of: the accuracy of the measurements
of the application characteristics, the criteria used to
perform the processor scheduling, and the coordination
with the queueing system, in the performance that may
be achieved by parallel applications. With this aim, we
present: (1) a new approach to measure the speedup and
the execution time of the parallel applications, theSelfA-
nalyzer, (2) a new scheduling policy that uses the
speedup and the execution time to distribute processors,
the Performance-Driven Processor Allocation (PDPA)
policy, (3) and a new approach to coordinating the
(medium-term) scheduler with the queueing system
(long-term scheduler).

Our approach has been implemented in an Origin2000
with 64 processors. Applications from the SPECFp95
benchmark suite and from the NAS benchmarks have
been used to evaluate the performance of our proposal.
All the benchmarks used in the evaluation are parallel-
ized with OpenMP [OpenMP2000] directives. Finally,
in the current implementation we assume that applica-
tions are malleable [Feitelson97], applications that can
adjust to changing allocations at runtime.

Results show that the combination of theSelfAna-
lyzer+PDPA with the medium/long-term scheduling
interaction outperforms the rest of the scheduling po
cies evaluated. The evaluation shows that, in workloa
where a simple equipartition performs well, thePDPA
also performs well, and in extreme workloads where a
the applications have a bad performance, our propo
can achieve a speedup of 3.9 with respect to an equip
tition and 11.8 with respect to the native IRIX schedu
ing.

The remainder of this paper is organized as follow
Section 2 presents the related work. Section 3 prese
the execution environment in which we have develope
this work. Section 4 presents thePDPAscheduling pol-
icy. Section 5 presents the evaluation of thePDPAcom-
pared to some scheduling policies proposed so far a
the IRIX scheduling policy. Finally, section 6 present
the conclusions of this work.

2  Related Work
Many researchers have studied the use of characteris
of the applications calculated at run time to perform pro
cessor scheduling. Majumdaret al [Majumdar91], Par-
sons et al [Parsons96], Sevcik [Sevcik94][Sevcik89]
Chiang et al [Chiang94] and Leuteneggeret al
[Leutenegger90] have studied the usefulness of usi
application characteristics in processor schedulin
They have demonstrated that parallel applications ha
very different characteristics such as the speedup or
average of parallelism that must be taken into accou
by the scheduler. All these works have been carried o
using simulations, not through the execution of re
applications, and assuminga priori information.

Some researchers propose that applications should m
itor themselves and tune their parallelism, based on th
performance. Vosset al [Voss99] propose to dynami-
cally detect parallel loops dominated by overheads a
to serialize them. Nguyen et al [Nguyen96]
[NguyenZV96] proposeSelfTuning, to dynamically
measure the efficiency achieved in iterative parall
regions and select the best number of processors to e
cute them considering the efficiency. These works have
demonstrated the effectiveness of using run-time info
mation.

Other authors propose to communicate these applicat
characteristics to the scheduler and let it to perform t
processor allocation using this information. Hamidza
deh [Hamidzadeh94] proposes to dynamically optimiz
the processor allocation by dedicating a processor1. In our environment, the multiprogramming level is nor-
search the optimal allocation. This proposal does notmally set to allow the simultaneous execution of a
small number of applications (two, three or four).
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consider characteristics of the applications, only the sys-
tem performance. Nguyen et al
[Nguyen96][NguyenZV96] also use the efficiency of the
applications, calculated at run-time, to achieve anequal-
efficiencyin all the processors. Brechtet al [Brecht96]
use parallel program characteristics in dynamic proces-
sor allocations policies, (assuminga priori informa-
tion). McCannet al [McCann93] propose a scheduler
that dynamically adjust the number of processors allo-
cated to the parallel applications to improve the proces-
sor utilization. Their approach considers the application-
provided idleness to allocate the processors, resulting in
a large number of re-allocations.

To obtain application characteristics, previous systems
have taken approaches such as the use of the hardware
counters provided by the architecture, or monitoring the
execution time of the different phases of the applica-
tions. Weissman [Weissman98] uses the performance
counters provided by modern architectures to improve
the thread locality. McCannet al [McCann93] monitor
the idle time consumed by the processors. Nguyenet al
[Nguyen96][NguyenZV96] combined both, the use of
hardware counters and the measurement of the idle peri-
ods of the applications.

The most studied characteristic of parallel applications
has been the speedup. Several theoretical studies have
analyzed the relation between the speedup and other
characteristics such as the efficiency. Eager, Zahorjan
and Lazowska define in [Eager89] the speedup and the
efficiency. Speedup is defined for each number of pro-
cessorsP as the ratio between the execution time with
one processor and withP processors. Efficiency is
defined as the average utilization of theP allocated pro-
cessors. The relationship between efficiency and
speedup is shown in Figure 1

Helmboldet al analyze in [Helmbold90] the causes of
loss of speedup and demonstrate that the super-linear
speedup exists basically due to memory cache effects.

Our work has several characteristics that differ from the
previously mentioned proposals. First of all, with
respect the parameters used by the scheduling policy,
our proposal considers two characteristics of the appli-
cations: the speedup and the execution time. We also

cated processors. Second, we differ in the way the app
cation characteristics are acquired. We believe th
parameters such as the speedup can only be accura
calculated as the relation between two measurements
opposed to [Nguyen96]. Furthermore, since the exec
tion time of the applications is used by the scheduler, w
propose a new approach to estimate the execution ti
of the whole application. Our measurements are bas
on the time, not on the hardware performance counte
In this way our method is independent from the arch
tecture. Third, we have implemented and evaluated o
proposal using real applications and a real architectu
the Origin2000. Simulations do not consider importan
issues of the architecture such as the data locality. A
finally, we consider the benefit provided by the interac
tion of the (medium-term) scheduler with the long-term
scheduler (queueing system).

3 Performance-Driven Processor Allocation
This section presents the three components of this wo
Figure 2 shows the general overview of our executio
environment. (1) Parallel applications calculate the
performance through theSelfAnalyzerwhich informs
the scheduler about the achieved speedup with the c
rent number of processors, the estimation of the exec
tion time of the whole application, and the requeste
number of processors. (2) Periodically (at eachquan-

tum1 expiration) the scheduler wakes up and applies t
scheduling policy, thePDPA. ThePDPA distributes the
processors among the parallel applications consider
their characteristics, global system status, such as
number of processors allocated in the previousquantum,
and the requested number of processors of each appl
tion. Once the processor allocation has been decid
the scheduler enforces it by suspending or resuming
application’s processes. The scheduler informs t
applications about the number of processors assigned
each one and applications are in charge of adapting th
parallelism to their current allocation. In our work, the
scheduler is a user-level application, and it must enfor
the processor allocation through the native operati
system calls such as suspend, or resume. Finally,
scheduler interacts with the queueing system to dynam
cally modify the multiprogramming level (3). The resul
is a multiprogramming level adapted to the particula
characteristics of the running applications.

S P( ) T 1( )
T P( )
------------= E P( ) S P( )

P
-----------=

Figure 1: Speedup and efficiency definitions
propose to consider the variation in these characteristics
proportionally to the variation in the number of allo- 1. A typical quantum value is 100 ms
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3.1  Dynamic Performance Analysis:SelfA-
nalyzer
TheSelfAnalyzer[Corbalan99] is a run-time library that
dynamically calculates the speedup achieved by the par-
allel regions, and estimates the execution time of the
whole application. TheSelfAnalyzerexploits the itera-
tive structure of a significant number of scientific appli-
cations. The main time-consuming code of these
applications is composed of a set of parallel loops inside
a sequential loop. Iterations of the sequential loop have
a similar behavior among them. Then, measurements for
a particular iteration can be considered to predict the
behavior of the next iterations, also exploited in
[Nguyen96].

We believe that the speedup should be calculated as the
relationship between two measurements: the sequential
or reference execution time and the parallel execution
time. In [Corbalan99] we demonstrated that the speedup
calculated as a function of only one measurement can
not detect significant issues such as the super-linear
speedups. Figure 3 shows the formulation used by the
SelfAnalyzerto calculate the speedup and to estimate the
execution time.

To calculate the speedup, theSelfAnalyzermeasures the
execution time of each outer sequential iteration and
also monitors the sequential and parallel regions inside
the outer loop. It executes some initial iterations of the
sequential loop with a predefined number of processors,
(baseline), to be used as reference for the speedup com-

putation. Once T(baseline) is computed, (1) in Figure
the application goes on measuring the execution tim
but with the number of processors allocated by th
scheduler. Ifbaselineis one processor, the calculated
speedup will correspond with the traditional speedu
measurement. Since the execution of some initial iter
tions with one processor could consume a lot of tim
we propose to set thebaselinegreater than one proces-
sor. In [Corbalan99] we demonstrate that settingbase-
line to four processors is a good trade-off between th
information provided by the measurement and th
amount of overhead introduced because of executing
first iterations with a small number of processors. How
ever, this approach has the drawback that it does n
allow us to directly compare speedups among applic
tions. Settingbaselineto four processors, the speedu
with four processors of an application that scales we
will be one and the speedup with four processors of
application that scales poorly will be also one.

We use Amdahl’s law [Amdahl67] to normalize the
speedups inside an application. Amdahl’s law boun
the speedup that an application can achieve with P p
cessors based on the fraction of sequential code.

We call this function the Amdahl’s Factor (AF), see (2
in Figure 3. In this way, we calculate the AF of thebase-
line and use this value to normalize the speedups calc
lated by theSelfAnalyzer.

Considering the characteristics of these parallel applic
tions, and taking into account their iterative structur

Scheduler

parallel
applications

-Measure
-Adapt to
assignment

Queueing
System
Manager

Assigned=p

Speedup[p]=x
ExecTime[p]=y

...

- PDPA allocation policy
- Allocation enforcement

Waiting
applications

Shared-Memory
Multiprocessor
Architecture

Operating
System

enforcement

Start Appl.

application
characteristics

processor
allocation

NewAppl?

Figure 2: General overview

(1)

(2)

(3)

- Request

Request = N

request and
characteristics

current
allocation

S p( ) T baseline( )
T p( )

----------------------------- AF Baseline( )×=

ExTime p( ) ConsumedTime
AF Baseline( ) T baseline( )×

S p( )
----------------------------------------------------------------------- ItersRemaining× 

 +=

(2)(1)

(3)

AF Baseline( ) 1

f
1 f–( )

Baseline
-----------------------+ 

 
--------------------------------------=, where
Figure 3: Calculation of the speedup and execution time estimation
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we are able to estimate the complete execution time of
the application by using the calculated speedup and the
number of iterations that the application executes, (3) in
Figure 3. This estimation is calculated by adding the
consumed execution time until the moment with the
estimation of the remaining execution time. The remain-
ing execution time is calculated as a function of the
number of iterations not yet executed and the speedup
that the application is achieving on each iteration.

To calculate the speedup and the execution time, theSel-
fAnalyzerneeds to detect the following instrumentation
points in the code: the starting of the application, the
iterative structure, and the start and end of each parallel
loop. In the current implementation, the invocation of
theSelfAnalyzerat these points can be done in two dif-
ferent ways: (1) if the source code is available, the appli-
cation can be re-compiled and theSelfAnalyzercalls can
be inserted by the compiler. (2) If the source code is not
available, both the iterative structure and the parallel
loops are dynamically detected.

When the source code is not available, we detect the
instrumentation points using dynamic interposition
[Serra2000]. Calls to parallel loops are identified by the
address of the function that encapsulates the loop. This
sequence of values (addresses) is passed to another
mechanism that dynamically detects periodic patterns. It
receives as input a dynamic sequence of values and it is
able to determine whether they follow a periodic pat-
tern. Once we detect the iterative parallel region, the
performance analysis is started.

In this case the number of times that the iterative struc-
ture executes is not available. In that case, theSelfAna-
lyzer is not able to estimate the execution time of the
application and it assumes that the most useful charac-
teristic to the scheduler is the execution time of one
outer iteration.

As far as the status of the performance calculation is

ent states: eitherPerformance Not yet Calculated
(PNC), or Performance Calculated(PC). The applica-
tion is in thePNCstate when the speedup with the cur
rent number of assigned processors has not been
calculated, and in thePC when the speedup has bee
calculated. At the start of the application and each tim
the processor allocation is changed, the application is
the PNC state. If the processor allocation is modifie
when the application is in thePNCstate, the current cal-
culations (speedup and execution time) are discard
and a new calculation with the current number of pro
cessors is started.

3.2  The Performance-Driven Processor
Allocation: PDPA
The PDPA allocates processors among the applicatio
considering issues such as the number of process
used in the system, the speedup achieved by each ap
cation, and the estimation of the execution time of th
whole application. The goal of thePDPA is to minimize
the response time, while guaranteeing that the alloca
processors are achieving a good efficiency.

ThePDPAconsiders each application to be in one of th
states shown in Figure 4. These states correspond w
trends of the performance of the application. Thes
states and the transitions among them are determin
both by the performance achieved by the application a
by some policy parameters. ThePDPA parameters are
the target efficiency (high_eff), the minimum efficiency
considered acceptable (low_eff), and the number of pro-
cessors that will increment/decrement the applicatio
allocation (step). In Section 3.2.2 we will present the
solution adopted in the current approach to define the
parameters.

3.2.1  Application state diagram
The PDPA can assign four different states to applica
tions: NO_REF(initial state), DEC, INC, and STABLE
(see Figure 4). Each quantum thePDPA processes the

state=NO_REF

Start Appl

Efficiency(current)<low_eff

alloc=Initial_

state=DECalloc=alloc-step state=INC alloc=alloc+stepstate=STABLE

alloc=alloc

Figure 4: PDPA: Application state diagram

Efficiency(current)>high_eff

System Changes

allocation

 LessProcessors?=TRUE
 MoreProcessors?=TRUE

LessProcessors?=FALSE MoreProcessors?=FALSE

Efficiency(current)<high_eff

Efficiency(current)>low_eff
&&

System Changes

Not System Changes

alloc=alloc+step

alloc=alloc

alloc=alloc-step

alloc=alloc-step

alloc=alloc alloc=alloc-step

alloc=alloc+step
concerned, applications can be internally in two differ- performance information provided by the applications,
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compared with the performance achieved in the previ-
ous quantum, and with the policy parameters, and
decides the application state for next quantum. The state
transitions determine the processor allocation for this
application in the next quantum, even if the next state is
the same.

All the applications start in theNO_REFstate. This state
means that thePDPA has no performance knowledge
about this application (at the starting point). The proces-
sor allocation associated with the starting of a new
application is the same as an equipartition (approxi-
mately total_processors_machine/total_applications), if
there are enough free processors, otherwise it assigns
the available free processors. Once thePDPA is
informed about the achieved speedup with the previous

allocation, it compares the efficiency1 with high_effand
low_eff. If the efficiency is greater thanhigh_eff, the
PDPA considers that the application performs well and
sets the next state asINC. If it is lower thanlow_eff, the
PDPA considers that the application performs poorly
and sets the next state asDEC. Finally, thePDPA may
consider that the application has an acceptable perfor-
mance that does not justify a change and the PDPA sets
the next state asSTABLE.

If the next state isINC, the application will receive in
the next quantum the current number of allocated pro-
cessor plusstep. If the next state isDEC the application
will receive in the next quantum the current number of
allocated processor minusstep. If the next state isSTA-
BLE the processor allocation will be maintained.

The INC state means that the application has performed
well until the currentquantum. In this state thePDPA
uses both the speedup and the estimation of the execu-

tion time to decide the next state. The MoreProcessor
algorithm presented in Figure 5 is executed to determi
the next state. MoreProcessors() returning TRUE mea
that the additional processors associated to the transit
to this state has provided a “real benefit” to this applic
tion. In that case the next state is set toINC. MorePro-
cessors() returning FALSE means that the addition
processors were not useful to the applications. In th
case the next state is set toSTABLE. If the next state is
INC, the application will receivestepadditional proces-
sors in the next quantum. If the next state isSTABLE,
the application will loose thestepadditional processors
received in the last transition.

TheDECstate means that the application has perform
badly until the currentquantum. The LessProcessors()
algorithm presented in Figure 5 is executed to determi
the next state. LessProcessors() returning TRUE mea
that the application has not yet achieved an accepta
performance. In that case the next state will beDEC.
LessProcessors() returning FALSE means that the p
formance is currently acceptable and the next state m
beSTABLE. If the next state isDEC, the application will
loosestepmore processors in the nextquantum. If the
next state isSTABLEthe application will retain the cur-
rent allocation.

The STABLEstate means that the application has th
maximum number of processors that thePDPA consid-
ers acceptable. Typically, once an application becom
STABLEit remainsSTABLEuntil it finishes. The alloca-
tion in this state is maintained. Only if the policy param
eters are defined dynamically might thePDPA change
the state of an application fromSTABLEto eitherINC or
DEC. If low_eff has been increased and the efficienc
achieved with the current allocation is not acceptabl
the next state will beDECand the application will loose
step processors. In a symmetric way, ifhigh_eff has1. Calculated as the ratio between the speedup withP pro-

cessors andP.
MoreProcessors()
{

RelativeSpeedup=ExTime(LastAllocation)/ExTime(current)
IncrementProcessors=current/LastAllocation
if ( Efficiency(current)>=high_eff) &&

Speedup(current)>Speedup(LastAllocation) &&
RelativeSpeedup>=(IncrementProcessors*high_eff)) returnTRUE

else returnFALSE
}
LessProcessors()
{

if (Efficiency(current)<low_eff) returnTRUE
else returnFALSE

}

Figure 5: Algorithms to determine if the application achieves a good or bad performance
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been decreased the next state will beINC and the appli-
cation will receivestep additional processors.

3.2.2 PDPA parameters
As we have commented before, there are three parame-
ters which determine the “aggressiveness” of thePDPA.
These parameters can be either statically or dynamically
defined. Statically defined, for instance by the system
administrator, or dynamically defined, for instance as a
function of the number of running applications.

In the current PDPA implementation high_eff and
low_eff are dynamically defined andstep is statically
defined. ThePDPAcalculates the values ofhigh_effand
low_effat the start of each quantum, before processing
the applications. The value ofhigh_effis calculated as a
function of the ratio between the total number of proces-
sors allocated in the lastquantumand the number of
processors in the system. We have adopted this solution
because this ratio is a good hint about the level of scal-
ability that thePDPA must require of parallel applica-
tions to allocate them more processors. The higher this
ratio is, the higher thehigh_effvalue will be. Experi-
mentally, thehigh_effvalues ranges from 1.0 (ratio>0.9)
to 0.7 (ratio<0.75). The value oflow_eff is defined as a
function of high_eff. In the current implementation it
has been set to the value ofhigh_eff minus 0.2.

Step is a parameter that sets the increments or decre-
ments in the allocation of an application. This parameter
is used to limit the number of re-allocations that are suf-
fered by the applications. Settingstepto a small value
we achieve more accuracy in the number of allocated
processors but the overhead introduced by the re-alloca-
tions can be significant. In the current implementation,
this parameter has been tuned empirically and set to four
processors.

3.2.3  Implementation issues
ThePDPAchecks the internal status of the application
and maintains the processor allocation to those applic
tions that are in thePNC state. Transitions in the state
diagram are only allowed either when all the applica
tions are in thePC state or if there are unallocated pro
cessors. The aim of this decision is to maintain th
allocation of those applications that are calculating the
speedup. If we modify the speedup of an application
PNCstate as a consequence of the processing of anot
application, it could result in inaccurate allocations.

To those applications that are inPC state, thePDPA
allocates a minimum of one processor. This decision h
been taken considering that the efficiency of an applic
tion with one processor is 1.0. This assumption is al
done in scheduling policies such as the equipartition a
the equal_eff. Moreover, it simplifies theSelfAnalyzer
and thePDPA implementation.

Applications in PC state are sorted by speedup. Thi
arrangement is done to give a certain priority to thos
applications that perform better, and assuring that the
applications will receive processors. Finally, thePDPA
maintains the history of the applications states, and do
not allow that applications change fromSTABLE to
eitherDEC or INC more than three times. The numbe
of transitions is limited to avoid an excessive number
reallocations that will generate a loss of performance.
has been tuned empirically considering the particul
characteristics of the workloads used. Further resea
with different workloads and applications will allow us
to tune this parameter.

3.2.4  Interface
Table 1 shows the main primitives of the interfac
between the parallel library and the scheduler, an
between theSelfAnalyzerand the scheduler. The first
four rows are used by the parallel library to interact wit
the scheduler: requesting for cpus, checking the numb

Table 1: Interface

Function Description

int cpus_request(int P) Request for P cpus to the scheduler

int cpus_current() Returns the number of cpus allocated to the application

int cpus_preempted_work() Returns the number of preempted threads

work_t get_preempted_work() Returns the pointer to the first preempted thread

int cpus_speedup(int P, double speedup) Sets the speedup achieved when P cpus are allocated to the application
int cpus_predicted_time(int P,double time) Sets the execution time estimated when P cpus are allocated to the application
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of allocated cpus, checking whether there are preempted
threads and recovering them. These are the main func-
tions to implement the dynamic processor allocation
mechanism. The last two primitives are used by theself-
Analyzerto inform the scheduler about the calculated
speedup and the estimation of the execution time of the
application.

3.3  Queueing system coordination:
Dynamic multiprogramming level
As we have commented before, the multiprogramming
level defines the number of applications running concur-
rently in the system. Non-clairvoyant scheduling poli-
cies typically allocate as many processors as possible to
the running applications, since they are not able to deter-
mine how they will perform. They assign the minimum
between the total requested number of processors and
the number of processors of the machine.

But, even when the total requested number of processors
is greater than the total number of processors in the
machine, thePDPA may decide to leave some proces-
sors unallocated. In that case, the logical approach is to
allow the queueing system to start a queued application.
We propose to check after each re-allocation the sce-
nario conditions and to decide whether a new applica-
tion can be started. The conditions that must be met are
the following:

• Are there free processors?
• Are all the running applications in the statesSTA-

BLE, orDEC?
• Even if there are some application in theINC phase,

does the number of unused processors reach a cer-
tain percentage? (currently defined by the adminis-
trator in a 20%)

These conditions are checked in theNewAppl()function
call implemented by the scheduler and consulted by the
queueing system.

4  Execution environment and implementa-
tion
The work done in this paper has been developed using
the NANOS execution environment: The NanosCom-
piler, NthLib, and the CpuManager (the medium-term
scheduler).

Applications are parallelized through OpenMP direc-
tives. They are compiled with the NanosCompiler
[NANOS99], which generates code to NthLib
[Martorell95][Martorell96]. NthLib constructs the struc-

the number of available processors. Moreover, it inte
acts with the CpuManager through a kernel interface
the following way: NthLib informs the scheduler abou
the number of requested processors and the sched
informs NthLib about the number of processors ava
able to this application.

The CpuManager [CorbalanML99] is a user-level pro
cessor scheduler. It implements thePDPA scheduling
policy. It follows the approach proposed in [Tucker89
that assumes that applications perform better when
number of running threads is the same as the number
processors.

For the following experiments, the CpuManager imple
ments the queueing system. Then, in this particul
implementation it communicates with thePDPAby call-
ing it directly. The queueing system launches a ne
application each time a running application finishes, an
every quantum it asks to thePDPAwhether a new appli-
cation can be started.

5  Evaluation
In order to evaluate the practicality and the benefits
the PDPA we have executed several parallel workload
under different scenarios:

Equip: Applications are compiled with the NanosCom
piler and linked with NthLib. The CpuManager is exe
cuted and it applies the equipartition policy proposed
[McCann93]. Equipartition is a space sharing polic
that, to the extent possible, maintains an equal allocati
of processors to all jobs. The initial allocation is set t
zero. Then, the allocation number of each job
increased by one in turn, and any job whose allocatio

has reached the number of requested1 processors drops
out. This process continues until either there are n
remaining jobs or until allP processors have been allo
cated. The only information provided by the applicatio
is its current processor requirements.

PDPA: Applications are compiled with the NanosCom
piler and linked with NthLib. The CpuManager applie
the PDPA scheduling policy. Three different variations
have been executed to demonstrate the usefulness of
different components of our approach. (1)PDPA, as
proposed in Section 3. (2)PDPA(S), the PDPA only
considers the speedup. The benefit in the execution ti
provided by the extra processor allocation is not consi
ered. (3)PDPA(idleness), the speedup is calculated as
ture of parallelism specified in the OpenMP directives
and it is able to adapt the structure of the application to

1. Specified as a command line parameter of the applica-
tion or setting an environment variable
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function of efficiency. In this case, we have tried to
implement the approach proposed in [NguyenZV96],
which calculates the efficiency measuring the sources of
overhead: idleness, processor stall time, and system
overhead. In our applications, we found the system
overhead to be negligible, and in current architectures,
like the Origin2000, the hardware does not provide the
performance counters to calculate the processor stall
time. Due to the difficulties of implementing their com-
plete approach, we have implemented a similar
approach only considering the idleness as source of
overhead.

Equal_eff: Applications are compiled with the
NanosCompiler and linked with the NthLib. The Cpu-
Manager applies the equal_eff proposed in
[NguyenZV96]. The goal of the equal_eff is to maxi-
mize the system efficiency. It uses the dynamically cal-
culated efficiency of the applications, obtained through
the SelfAnalyzer, to extrapolate [Dowdy88] the com-
plete efficiency curve. Once extrapolated, the equal_eff
works in the following way: it initially assigns a single
processor to each application, and then it assigns the
remaining processors one by one to the application with
the currently highest (extrapolated) efficiency.

SGI-MP: Applications are compiled with the MIPSpro
F77 compiler and linked with the MP-library. The com-
mercial IRIX scheduling policy has been used. In this
case, the NANOS execution environment is not involved
at all. The queueing system has been used to control the
multiprogramming level. In this scenario, the environ-
ment variables that define the application adaptability

have been set to the following values1:
MP_BLOCKTIME=200000 and
OMP_DYNAMIC=TRUE.

5.1  Architecture, applications and work-
loads
All the workloads have been executed in an Origin2000
[Laudon97][SGI98] with 64 processors. Each processor
is a MIPS R10000 [Yeager96] at 250 MHZ, with two

separated instruction and data L1 cache (32 Kbyte
and a secondary unified instruction/data cache
Mbytes).

To evaluate our proposal we have selected four differe
applications: swim, hydro2d, apsi, and BT (class=A
The swim, hydro2d and apsi are applications from th
SPECFp95, the BT is from the NASPB [Jin99]. Eac
one of them has different behavior considering th
speedup. Table 2 presents the characteristics of th
applications, from higher to lower speedup. Swim
achieves a super-linear speedup, BT has a modera
high speedup, hydro2d has low speedup and apsi
very bad speedup. In all the applications, except in ap
the maximum speedup is achieved with 32 processo
The complete performance analysis of these applic
tions and their speedup curves can be found
[Corbalan99].

Compilation of benchmarks from the SPECFp has be
done using the following command line options for th
native MIPSpro f77 compiler: -64 -mips4 -r10000
Ofast=ip27 -LNO:prefetch_ahead=1. Compilation o
the BT has been done using the Makefile provided wi
the NASPB distribution.

Table 3 describes the four different workloads design
to evaluate the performance of thePDPA. The column
instances is the number of times that the application
executed and the request column is the number
requested processors.

Workload 1 is designed to evaluate the performance
thePDPAwhen applications perform well, and the allo
cation of the equipartition policy directly achieves
good performance. Workload 2 has been designed
evaluate thePDPAperformance when some of the appli
cations perform well and some perform badly. Workloa
3 evaluates the performance when applications have
medium and bad speedup and, finally, workload 4 eva
ates thePDPA when all the applications have very bad
performance. Since we are not assuminga priori knowl-
edge of the applications, we have set the requested nu
ber of processors to 32 in all the applications.

1. These values have been tuned empirically to perform
well under all the applications used in this work

Table 2: Parallel applications

Characteristic/Application(input) swim(ref) BT.A hydro2d(train) apsi(ref)

Exec.Time. in Sequential 212.2 sec. 1066.21 sec. 223.7 sec. 99 sec.

Speedup with 8/16/32 processors. 21.6/36.5/44.2 6.1/12.4/20.85 4.6/5.4/6.3 0.93/0.93/0.92
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The multiprogramming level has been set to four in all
the executions. The queueing system applies aFirst
Come First Servedpolicy, and we assume that all the

applications have been queued at the same time1.

The dynamic page migration mechanism of IRIX has
been activated and we have checked that results are
slightly better than without this mechanism.

5.2  Results
Figure 6 presents the average execution time per appli-
cation in the different scenarios for the four workloads.
We also show the total execution time of the workloads
under the different scheduling policies. Results from
workload 1 show that thePDPA-based scheduling poli-
cies (PDPAandPDPA(S)) perform well, compared with
equipartition. ThePDPA(idleness) does not perform
well, demonstrating the importance of an accurate esti-
mation of the performance. In this workload, the

equal_eff performs well since the applications can ef
ciently use a large number of processors. We can a
appreciate the importance of considering the bene
provided by the additional processors to the applic
tions. If we observe the average execution time of swim
we see how thePDPA outperforms thePDPA(S). The
reason is that thePDPA(S) allocates more processors t
some instances of swim, allocating less processors to
rest of running applications. With thePDPA(S) the stan-
dard deviation in the execution time of the differen
instances is greater than inPDPA. The execution time
range is (6.5,14.6) inPDPA(S) and (6.5,8.5) inPDPA.
The importance of considering the benefit provided b
the additional processors is more significant when t
load of the system is high. In that case, without consi
ering this parameter the processor allocation c
become unfair. In the rest of workloads the differenc
betweenPDPA and PDPA(S) is less significant, since
the load of the system is low.

In the workload 2, thePDPA-based scheduling policies
outperform the rest of scheduling policies. In this cas
the workload execution time has been significant

1. Instances from different applications have been merged
in the queue

Table 3: Workload description

swim BT hydro2d apsi

instances request instances request instances request instances request

w1 6 32 6 32

w2 6 32 6 32

w3 6 32 6 32

w4 12 32

swim BT.A  Total 
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Figure 6: Per application(avg) and total execution time of the parallel workloads.
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reduced because of the communication with the long-
medium term scheduler. The speedup with respect to
both thePDPA(idleness) and the SGI-MP is 3.2.

Workload 3 does not show large differences in the indi-
vidual performance, although the number of processors
allocated to applications by thePDPA-based scheduling
policies is very small, allowing the long-term scheduler
to start a new application, resulting in a better system
utilization. This better utilization can be observed in the
execution time of the workload. ThePDPA-based
scheduling policies achieve speedups from 2 (with
respect to the equip.) to 6.2 (with respect to the SGI-
MP).

Finally, in workload 4, thePDPA-based scheduling poli-
cies outperform the rest, mainly in the execution time of
the workload, and also in the individual performance.
Allocating a small, but sufficient, number of processors
to the apsi avoids undesirable memory interferences.
Considering the workload execution time, thePDPA-
based scheduling policies achieve speedups from 2.0
with respect to the equip. to 6.76 with respect to the
SGI-MP.

We want to comment on the performance achieved in
the case of the SGI-MP environment. The problem is the
large number of unnecessary context-switches. These
context-switches generate a loss of performance because
they imply the reload of the data cache, remote memory
accesses, and increase the system time consumed by the
application. For instance, consider one apsi execution in

the workload 4 in thePDPAand in the SGI-MP environ-
ments. In thePDPAthe apsi has consumed a 0.1% of th
execution time in system mode (0.23sec. in system
mode and 204sec. in user-mode). In the SGI-MP ca
the apsi has spent a 27% in system mode (152sec
system mode and 562.7sec. in user-mode).

Figure 7 shows the processor allocation made by the d
ferent scheduling policies when executing the parall
workloads. Each column shows the average of proce
sors allocated to each different application. In thes
graphs, we can observe how the scheduling policies th
take into account the application characteristics distri
ute the processors accordingly with the application pe
formance. Since there are a minimum of two instanc
of each application running concurrently the highest
the columns should normally not exceed thirty-two pro
cessors (in the case of workload 4 sixteen).

We can observe howPDPAandPDPA(S) distribute the
processors proportionally to the application perfo
mance.PDPA(S) is less restrictive and it assigns mor
processors. On the other hand, equal_eff does not hav
rule to stop the processor allocation to the application
This is the reason why the equal_eff allocates a high
number of processors to applications that perform bad
like apsi.PDPA(idleness) is not able to detect the goo
or bad behavior of the applications. The idleness
shown as a bad hint of the real efficiency achieved b
the parallel applications. We can also observe in the ca
of the SGI-MP, how applications have adapted their pa
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Figure 7: Processor allocation (avg) of each application under the different scheduling policies



-
”,

c
al
-

,
al

.
-
-

r-

a.
E
h

-
n
g,
7-

-
rt

-
”,
,

c-
6,

s

allelism to the available processors, in a similar way to
the equip.

6  Conclusions
In this work, we have presentedPerformance-Driven
Processor Allocation, a new scheduling policy that uses
both global system information and the application
characteristics provided by theSelfAnalyzer, a dynamic
performance analyzer.PDPA allocates processors to
applications that will take advantage of them, avoiding
unfair allocations, allocating processors to applications
that do not benefit from them, or even prejudicial alloca-
tions, resulting in an increase in the execution time.

This work has been implemented and evaluated on an
SGI Origin2000. We have demonstrated that it is impor-
tant for the scheduler to receive accurate information
about the application characteristics. Our evaluation
shows thatPDPA outperforms the considered schedul-
ing policies.

Finally, in this work we have considered the usefulness
of the interaction between the medium and the long-
term scheduler. Our experience has shown that it is con-
venient to allow this kind of communication to improve
the performance of the global system. This conclusion is
valid for PDPA and also to any scheduling policy that
allocates processors to applications based upon their
performance.
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