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“I am not discouraged, because every failure is
another step forward.” – Thomas Edison

Abstract

FUSE is a lightweight failure notification service for
building distributed systems. Distributed systems built
with FUSE are guaranteed that failure notifications never
fail. Whenever a failure notification is triggered, all
live members of the FUSE group will hear a notifica-
tion within a bounded period of time, irrespective of node
or communication failures. In contrast to previous work
on failure detection, the responsibility for deciding that a
failure has occurred is shared between the FUSE service
and the distributed application. This allows applications
to implement their own definitions of failure. Our expe-
rience building a scalable distributed event delivery sys-
tem on an overlay network has convinced us of the use-
fulness of this service. Our results demonstrate that the
network costs of each FUSE group can be small; in par-
ticular, our overlay network implementation requires no
additional liveness-verifying ping traffic beyond that al-
ready needed to maintain the overlay, making the steady
state network load independent of the number of active
FUSE groups.

1 Introduction

This paper describes FUSE, a lightweight failure noti-
fication service. When building distributed systems, man-
aging failures is an important and often complex task.
Many different architectures, abstractions, and services
have been proposed to address this [5, 10, 13, 28, 30, 38,
42, 43, 44]. FUSE provides a new programming model
for failure management that simplifies the task of agree-
ing when failures have occurred in a distributed system,
thereby reducing the complexity faced by application de-
velopers. The most closely related prior work on coping
with failures has centered around failure detection ser-
vices. FUSE takes a somewhat different approach, where
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detecting failures is a shared responsibility between FUSE
and the application. Applications create a FUSE group
with an immutable list of participants. FUSE monitors
this group until either FUSE or the application decides to
terminate the group, at which point all live participants are
guaranteed to learn of a “group failure” within a bounded
period of time. This focus on delivering failure notifica-
tions leads us to refer to FUSE as a failure notification
service. This is a very different approach than prior sys-
tems have adopted, and we will argue that it is a good
approach for wide-area Internet applications.

Applications make use of the FUSE abstraction as fol-
lows: the application asks FUSE to create a new group,
specifying the other participating nodes. When FUSE fin-
ishes constructing the group, it returns a unique identifier
for this group to the creator. The application then passes
this FUSE ID to the applications on all the other nodes
in this group, each of which registers a callback associ-
ated with the given FUSE ID. FUSE guarantees that every
group member will be reliably notified via this callback
whenever a failure condition affects the group. This fail-
ure notification may be triggered either explicitly, by the
application, or implicitly, when FUSE detects that com-
munication among group members is impaired.

Applications can create multiple FUSE groups for dif-
ferent purposes, even if those FUSE groups span the same
set of nodes. In the event that FUSE detects a low-level
communication failure, failure will be signalled on all the
FUSE groups using that path. However, on any individual
FUSE group the application may signal a failure without
affecting any of the other groups.

FUSE provides the guarantee that notifications will be
delivered within a bounded period of time, even in the
face of node crashes and arbitrary network failures. We
refer to these semantics as “distributed one-way agree-
ment”. One-way refers to the fact that there is only one
transition any group member can see: from “live” to
“failed”. After failure notification on a group, detecting
future failures requires creating a new group.

By providing these semantics, FUSE ensures that fail-
ure notifications never fail. This greatly simplifies failure
handling among nodes that have state that they want to
handle in a coordinated fashion. FUSE efficiently handles
all the corner cases of guaranteeing that all members will
be notified of any failure condition affecting the group.
Applications built on top of FUSE do not need to worry
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that a failure message did not get through or that orphaned
state remains in the system.

The primary target for FUSE is wide-area Internet ap-
plications, such as content delivery networks, peer-to-peer
applications, web services, and grid computing. FUSE
is not targeted at applications that require strong consis-
tency on replicated data, such as stock exchanges and
missile control systems. Techniques such as virtual syn-
chrony [6], Paxos [29], and BFT [10] have already proven
to be effective in such environments. However, these tech-
niques incur significant overhead and therefore have lim-
ited scalability. Furthermore, FUSE does not provide re-
silience to malicious participants, though it also does not
preclude solving this problem at a higher layer.

Previous work on failure detection services uses
“membership” as the fundamental abstraction: these ser-
vices typically provide a list of each component in the
system, and whether it is currently up or down. Member-
ship services have seen widespread success as a building
block for implementing higher level distributed services,
such as consensus, and have even been deployed in such
commercially important systems as the New York Stock
Exchange [5]. However, one disadvantage of the mem-
bership abstraction is that it does not allow application
components to have failed with respect to one action, but
not with respect to another. For example, suppose a node
is engaged in an operation with a peer and at some point
fails to receive a timely response. The failure manage-
ment service should support declaring that this operation
has failed without requiring that a node or process be de-
clared to have failed. The FUSE abstraction provides this
flexibility: FUSE tracks whether individual application
communication paths are currently working in a manner
that is acceptable to the application.

The scenario described above is more likely to oc-
cur with wide-area Internet applications, which face a
demanding operating environment: network congestion
leads to variations in network loss rate and delay; intran-
sitive connectivity failures (sometimes called partial con-
nectivity failures) occur due to router or firewall miscon-
figuration [27, 31]; and individuals network components
such as links and routers can also fail. Under these con-
ditions, it is difficult for applications to make good deci-
sions based solely on the information provided by a mem-
bership service. A particular scenario illustrating why
applications need to participate in deciding when failure
has occurred is delivery of streaming content over the In-
ternet: failure to achieve a certain threshold bandwidth
may be unacceptable to such an application even though
other applications are perfectly happy with the connectiv-
ity provided by that same network path.

Our FUSE implementation is scalable, where scaling
is with respect to the number of groups: multiple failure
notification groups can share liveness checking messages.
Other implementations of the FUSE abstraction may sac-
rifice scalability in favor of increased security. Our FUSE
implementation is designed to support large numbers of

small to moderate size groups. We do not attempt to effi-
ciently support very large groups because we believe very
large groups will tend to suffer from too-frequent failure
notification, making them less useful.

Our FUSE implementation is particularly well-suited
to applications using scalable overlay networks. Scalable
overlay networks already do liveness checking to main-
tain their routing tables and FUSE can re-use this live-
ness checking traffic. In such a deployment, the network
traffic required to implement FUSE is independent of the
number of groups until a failure occurs; only creation
and teardown of a group introduce a per-group overhead.
FUSE can be implemented in the absence of a pre-existing
overlay network – the implementation can construct its
own overlay, or it can use an alternative liveness checking
topology.

We have implemented FUSE on top of the Skip-
Net [25] scalable overlay network, and we have built a
scalable event delivery application using FUSE. We eval-
uated our implementation using two main techniques: a
discrete event simulator to evaluate its scalability, and a
live system with 400 overlay participants (each running
in its own process) running on a cluster of 40 worksta-
tions to evaluate correctness and performance. Both the
simulator and the live system use an identical code base
except for the base messaging layer. Our live system eval-
uation shows that our FUSE implementation is indeed
lightweight; the latency of FUSE group creation is the la-
tency of an RPC call to the furthest group member; the la-
tency of explicit failure notification is similarly dominated
by network latency; and we show that our implementation
is robust to false positives caused by network packet loss.

In summary, the key contributions of this paper are:

• We present a novel abstraction, the FUSE failure notifi-
cation group, that provides the semantics of distributed
one-way agreement. These are desirable semantics in
our chosen setting of wide-area Internet applications.

• We used FUSE in building a scalable event delivery ser-
vice and we describe how it significantly reduced the
complexity of this task.

• We implemented FUSE on top of a scalable overlay net-
work. This allowed us to support FUSE without adding
additional liveness checking. We experimentally eval-
uated the performance of our implementation on a live
system with 400 virtual nodes.

2 Related Work

Failure detection has been the subject of more than two
decades of research. This work can be broadly classified
into unreliable failure detectors, weakly consistent mem-
bership services, and strongly consistent membership ser-
vices. Unreliable failure detectors provide the weakest
semantics directly, but they are a standard building block
in constructing membership services with stronger se-
mantics. Both weakly-consistent and strongly-consistent
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membership services are based on the abstraction of a
list of available or unavailable components (typically pro-
cesses or machines). In contrast, a FUSE group ID is not
bound to a process or machine and hence can be used in
many contexts. For example, it can correspond to a set
of several processes, or to related data stored on several
different machines. This abstraction allows FUSE to pro-
vide novel semantics for distributed agreement, a subject
we will elaborate on in our discussion of weakly consis-
tent membership services.

Chandra et al. formalized the concept of unreliable
failure detectors, and showed that one such detector was
the weakest failure detector for solving consensus [11,
12]. Such detectors typically provide periodic heartbeat-
ing and callbacks saying whether the component is “re-
sponding” or “not responding.” These callbacks may be
aggregate judgments based on sets of pings. Unreliable
failure detectors provide the following semantic guaran-
tee: fail-stop crashes will be identified as such within a
bounded amount of time. There has been extensive work
on such detectors, focusing on such aspects as interface
design, scalability, rapidity of failure detection, and mini-
mizing network load [1, 17, 21, 23, 38].

FUSE uses a similar lightweight mechanism (periodic
heartbeats) to unreliable failure detectors, but provides
stronger distributed agreement semantics. Unreliable fail-
ure detectors are typically used as a component in a mem-
bership service, and the membership service is responsi-
ble for implementing distributed agreement semantics.

Weakly consistent membership services have also been
the subject of an extensive body of work [2, 19, 42, 44].
This work can be broadly classified as differing in speed
of failure detection, accuracy (low rate of false positives),
message load, and completeness (failed nodes are agreed
to have failed by everyone in the system). Epidemic and
gossip-style algorithms have been used to build highly
scalable implementations of this service [19, 42]. Pre-
vious application areas that have been proposed for such
membership services are distributed collaborative appli-
cations, online games, large-scale publish-subscribe sys-
tems, and multiple varieties of Web Services [5, 19].
These are the same application domains targeted by
FUSE, and FUSE has similar overhead to a weakly con-
sistent membership service in these settings. Typical char-
acteristics of such applications are that many operations
are idempotent or can be straightforwardly undone, oper-
ations can be re-attempted with a different set of partici-
pants, or the decision to retry can be deferred to the user
(as in an instant messaging service).

One novel aspect of the FUSE abstraction is the ability
to handle arbitrary network failures. In contrast, weakly
consistent membership services provide semantic guaran-
tees assuming only a fail-stop model. One kind of net-
work failure where the FUSE abstraction is useful is an
intransitive connectivity failure: A can reach B, B can
reach C, but A cannot reach C. This class of network fail-
ures is hard for a weakly consistent membership service to

handle because the abstraction of a membership list lim-
its the service to one of three choices, each of which has
drawbacks:

• Declare one of the nodes experiencing the intransitive
connectivity failure to have failed. This prevents the
use of that node by any node that can reach it.

• Declare all of the nodes experiencing the intransitive
failure to be alive because other nodes in the system can
reach them. This may cause the application to block for
the duration of the connectivity failure.

• Allow a persistent inconsistency among different
nodes’ views of the membership list. This forces the
application to deal with inconsistency explicitly, and
therefore the membership service is no longer reducing
the complexity burden on the application developer.

FUSE appropriately handles intransitive connectivity
failures by allowing the application on a node experienc-
ing a failure to declare the corresponding FUSE group
to have failed. Other FUSE groups involving the same
node but not utilizing a failed communication path can
continue to operate. Application participation is required
to achieve this because FUSE may not have detected the
failure itself; like most weakly consistent membership
services, FUSE typically monitors only a subset of all
application-level communication paths.

FUSE would require application involvement in failure
detection even if it monitored all communication paths.
Consider a multi-tier service composed of a front-end,
middle-tier, and back-end. Suppose the middle-tier com-
ponent is available but misconfigured. FUSE allows the
front-end to declare a failure, and to then perform appro-
priate failure recovery, such as finding another middle-tier
from some pool of available machines. This difference in
usage between membership services and FUSE reflects
a difference in philosophy. Membership services try to
proactively decide at a system level whether or not nodes
and processes are available. FUSE provides a mecha-
nism that applications can use to declare failures when
application-level constraints (such as configuration) are
violated.

Another contrast between the two approaches is that
the FUSE abstraction enables “fate-sharing” among dis-
tributed data items. By associating these items with a sin-
gle FUSE group, application developers can enforce that
invalidating any one item will cause all the remaining data
items to be invalidated. Weakly consistent membership
services do not explicitly provide this tying together of
distributed data.

Strongly consistent membership services share the ab-
straction of a membership list, but they also guarantee that
all nodes in the system always see a consistent list through
the use of atomic updates. Such membership services are
an important component in building highly available and
reliable systems using virtual synchrony. Notable exam-
ples of systems built using this approach are the New York

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 153



and Swiss Stock Exchanges, the French Air Traffic Con-
trol System, and the AEGIS Warship [2, 5, 6]. However,
a limitation of virtual synchrony is that it has only been
shown to perform well at small scales, such as five node
systems [6].

Some network routing protocols, such as IS-IS [8],
OSPF [33], and AutoNet [35], use mechanisms simi-
lar to FUSE. One similar aspect of AutoNet is its use
of teardown and recreate to manage failures. Any link-
state change causes all AutoNet switches to discard their
link-state databases and rebuild the global routing table.
OSPF and IS-IS take local link observations and prop-
agate them throughout the network using link-state an-
nouncements. They tolerate arbitrary network failures
using timers and explicit refreshes to maintain the link-
state databases. FUSE also uses timers and keep-alives to
tolerate arbitrary network failures. However, FUSE uses
them to tie together sets of links that provide end-to-end
connectivity between group members, and to provide an
overall yes/no decision for whether connectivity is satis-
factory.

A more distantly related area of prior work is black-
box techniques for diagnosing failures. Such techniques
use statistics or machine learning to distinguish successful
and failed requests [9, 13, 14, 15, 16]. In contrast, FUSE
assumes application developer participation and provides
semantic guarantees to the developer. Another significant
distinction is that black-box techniques typically require
data aggregation in a central location for analysis; FUSE
has no such requirement.

Distributed transactions are a well-known abstrac-
tion for simplifying distributed systems. Because FUSE
provides weaker semantics than distributed transactions,
FUSE can maintain its semantic guarantees under net-
work failures that cause distributed transactions to block.
Theoretical results on consensus show that the possibility
of blocking is fundamental to any protocol for distributed
transactions [22, 24].

Two of the design choices we made in building FUSE
were also recommended by recent works dealing with the
architectural design of network protocols. Ji et al. [26]
surveyed hard-state and soft-state signaling mechanisms
across a broad class of network protocols, and recom-
mended a soft state approach combining timers with ex-
plicit revocation: FUSE does this. Mogul et al. [32] ar-
gued that state maintained by network protocol imple-
mentations should be exposed to clients of those proto-
cols. As described in Section 6, we modified our overlay
routing layer to expose a mechanism for FUSE to piggy-
back content on overlay maintenance traffic.

3 FUSE Semantics and API

We begin by describing one simple approach to im-
plementing the FUSE abstraction. Suppose every group
member periodically pings every other group member
with an “are you okay?” message. A group member that

is not okay for any reason, either because of node failure,
network disconnect, network partition, or transient over-
load, will fail to respond to some ping. The member that
initiated this missed ping will ensure that a failure noti-
fication propagates to the rest of the group by ceasing to
respond itself to all pings for that FUSE group. Any in-
dividual observation of a failure is thus converted into a
group failure notification. This mechanism allows failure
notifications to be delivered despite any pattern of discon-
nections, partitions, or node failures. This specific FUSE
implementation guarantees that failure notifications are
propagated to every party within twice the periodic ping-
ing interval. Our implementation uses a different liveness
checking topology, discussed in Section 5. It also uses a
different ping retry policy; the retry policy and the guar-
antees on failure notification latency are discussed in Sec-
tion 3.3.

The name FUSE is derived from the analogy to “laying
a fuse” between the group members. Whenever any group
member wishes to signal failure it can light the fuse, and
this failure notification will propagate to all other group
members as the fuse burns. A connectivity failure or
node crash at any intermediate location along the fuse
will cause the fuse to be lit there as well, and the fuse
will then start burning in every direction away from the
failure. This ensures that communication failures will not
stop the progress of the failure notification. Also, once
the fuse has burnt, it cannot be relit, analogous to how the
FUSE facility only notifies the application once per FUSE
group.

Many different FUSE implementations are possible.
All implementations of the FUSE abstraction must pro-
vide distributed one-way agreement: failure notifica-
tions are delivered to all live group members under node
crashes and arbitrary network failures. Different FUSE
implementations may use different strategies for group
creation, liveness checking topology, retry, programming
interface, and persistence, with consequent variations in
performance. In this section, we describe the choices that
we made in our FUSE implementation, the resulting se-
mantics that application developers will need to under-
stand, and some of the alternative strategies that other
FUSE implementations could use.

3.1 Programming Interface

We now present the FUSE API for our implementation.
FUSE groups are created by calling CreateGroup with a
desired set of member nodes. This generates a FUSE ID
unique to this group, communicates it to the FUSE layers
on all the specified members, and then returns the ID to
the caller. Applications are subsequently expected to ex-
plicitly communicate the FUSE ID from the creator to the
other group members. Applications learning about this
FUSE ID register a handler for FUSE notifications us-
ing the RegisterFailureHandler function. In this design,
the FUSE layer is not responsible for communicating the
FUSE ID to applications on nodes other than the creator.
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// Creates a FUSE notification group containing
// the nodes in the set
FuseId CreateGroup(NodeId[] set)

// Registers a callback function to be invoked
// when a notification occurs for the FUSE group
void RegisterFailureHandler

(Callback handler, FuseId id)

// Allows the application to explicitly cause
// FUSE failure notification
void SignalFailure(FuseId id)

Figure 1. The FUSE API

We believe the most likely use of FUSE is to allow
fate-sharing of distributed application state. Applications
should learn about FUSE IDs with sufficient context to
know what application state to associate with the FUSE
ID. Though failure handlers can simply perform garbage
collection of the associated application state, a handler is
also free to attempt to re-establish the application state
using a new FUSE group, or to execute arbitrary code. For
brevity, we refer to all of these permissible application-
level actions using the short-hand “garbage collection.”

The application handler is invoked whenever the FUSE
layer believes a failure has occurred, either because of
a node or communication failure or because the appli-
cation explicitly signalled a failure event at one of the
group members. If RegisterFailureHandler is called with
a FUSE ID parameter that does not exist, perhaps because
it has already been signalled, the handler callback is in-
voked immediately. Applications that wish to explicitly
signal failure do so by calling the SignalFailure function.

3.2 Group Creation

Group creation can be implemented in one of two
ways: it can return immediately, or it can block until
all nodes in the group have been contacted. Returning
immediately reduces latency, but because FUSE has not
checked that all group members are alive, the application
may perform expensive operations, only to have FUSE
signal failure a short time later. In contrast, blocking until
all members have been contacted increases creation la-
tency, but decreases the likelihood that the FUSE group
will immediately fail. We chose to implement blocking
create; this provides application developers the seman-
tic guarantee that if group creation returns successfully,
all the group members were alive and reachable. A high
enough rate of churn amongst group members could re-
peatedly prevent FUSE group creation from succeeding.
However, based on the low latency of FUSE group cre-
ation (Section 7), such a high churn rate is likely to cause
the system to fail in other ways before FUSE becomes a
bottleneck.

When CreateGroup is called, FUSE generates a glob-
ally unique FUSE ID for the group. Each node is then
contacted and asked to join the new FUSE group. If
any group member is unreachable, all nodes that already
learned of the new FUSE group are then notified of the
failure. Group members that learned of the group but sub-

sequently become unreachable similarly detect the group
failure through their inability to communicate with other
group members. If the FUSE layer is successfully con-
tacted on all members, the FUSE ID is returned to the
CreateGroup caller.

FUSE state is never orphaned by failures, even when
those failures occur just after group creation. An applica-
tion may receive a FUSE ID from the group creator, and
then attempt to associate a failure handler with this FUSE
group, only to find out that the group no longer exists be-
cause a failure has already been signalled. This causes the
failure handler to be invoked, just as if the notification had
arrived after the failure handler was registered.

3.3 Liveness Monitoring and Failure Notifica-
tion

Once setup is complete, our FUSE implementation
monitors the liveness of the group members using a span-
ning tree whose individual branches follow the overlay
routes between the group creator and the group members.
Each link in the tree is monitored from both sides; if either
side decides a link has failed, it ceases to acknowledge
pings for the given FUSE group along all its links. When
this occurs, one could immediately signal group failure,
but our implementation instead attempts repair, as will be
explained in more detail in Section 6.

This mechanism allows FUSE to guarantee that any
member of the group can cause a failure notification to
be received by every other live group member. FUSE in-
vokes the failure notification handler exactly once on a
node before tearing down the state for that FUSE group.
A node hearing the notification does not know whether it
was due to crash, network disconnect or partition, or if the
notification was explicitly triggered by some group mem-
ber. Explicit triggering is a necessary component of FUSE
because FUSE does not guarantee that it will notice all
persistent communication problems between group mem-
bers automatically; it only guarantees that a communica-
tion failure noticed by any group member will soon be
detected by all group members.

FUSE only guarantees delivery of failure notifications,
and only to nodes that have already been contacted during
group creation. Note that FUSE clients cannot use this
mechanism to implement general-purpose reliable com-
munication. Therefore, well-known impossibility results
for consensus do not apply to FUSE [22, 24]. A concrete
example illustrating this limitation is a network partition.
FUSE members on both sides of the partition will receive
failure notifications, but it is not possible to communicate
additional information, such as the cause of the failure,
across the partition.

FUSE will sometimes generate a notification to the en-
tire group even though all nodes are alive and the next at-
tempted communication would succeed. We refer to such
a notification as a false positive. It is easy to see how
false positives can occur – transient communication fail-
ures can trigger group notification. The possibility of false
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positives is inherent in building distributed systems on top
of unreliable infrastructure. One can tune the timeout and
retry policy used by the liveness checking mechanism, but
there is a fundamental tradeoff between the latency of fail-
ure detection and the probability that timeouts generate
false positives. We do not provide an API mechanism for
applications to modify the FUSE timeout and retry pol-
icy. Providing such a mechanism would add complexity
to our implementation, while providing little benefit: ap-
plications already need to implement their own timeouts,
as dictated by their choice of transport layer. FUSE re-
quires this participation from applications because FUSE
does not necessarily monitor every link.

Because we implement liveness checking using over-
lay routes, the maximum notification latency is propor-
tional to the diameter of the overlay: successive failures
at adversarially chosen times could cause each link to fail
exactly one failure timeout after the previous link. How-
ever, we expect notification after a failure to rarely require
more than a single failure timeout interval because our
FUSE implementation always attempts to aggressively
propagate failure notifications. Also, application develop-
ers do not need to know the maximum latency in order to
specify their timeouts. As mentioned above, sends should
be monitored using whatever timeout is appropriate to the
transport layer used by the application. If the sender times
out, it can signal the FUSE layer explicitly. If a node is
waiting to receive a message, specifying a timeout is diffi-
cult because only the sender knows when the transmission
is initiated. In this case, if the sender has crashed, devel-
opers should rely on the FUSE layer timeout to guarantee
the failure handler will be called.

FUSE failure notifications do not necessarily eliminate
all the race conditions that an application developer must
handle. For example, one group member might signal a
failure notification, and then initiate failure recovery by
sending a message to another group member. This failure
recovery message might arrive at the other group member
before it receives the FUSE failure notification. In our
experience, version-stamping the data associated with a
FUSE group was a simple and effective means of handling
these races.

3.4 Fail-on-Send

FUSE does not guarantee that all communication fail-
ures between group members will be proactively detected.
For example, in wireless networks sometimes link condi-
tions will allow only small messages – such as liveness
ping messages – to get through while larger messages
cannot. In this case, the application will detect that the
communication path is not working, and explicitly signal
FUSE. We call this reason for explicitly signalling FUSE
fail-on-send.

There are two categories of failures that require fail-on-
send. The first is a communication path that successfully
transmits FUSE liveness checking messages but which
does not meet the needs of the application. The second

is a failed communication path the application is using,
but which FUSE is not monitoring.

An example from this second category is an intransi-
tive connectivity failure. If two applications cannot com-
municate directly, but are both responding to FUSE mes-
sages from a third party, they may only experience a fail-
ure upon attempting to exchange a message. FUSE still
guarantees that if either party triggers a notification at this
point, all live group members will hear a notification.

Some applications may generate mixed acknowledged
and un-acknowledged traffic. For example, an application
might send streaming video over UDP alongside a control
stream over TCP. In this case, it is up to the application to
decide which delivery failures warrant a notification. Fail-
on-send allows this failure case to be handled in the same
manner as the previous cases.

3.5 Failure Model and Security

FUSE is designed to handle node crashes and arbitrary
network failures, but not malicious behavior. The appli-
cation we built using FUSE handles malicious behavior
through redundancy above the FUSE layer by using mul-
tiple content distribution trees (see Section 4).

FUSE assumes a network failure model consisting of
any pattern of packet loss, duplication or re-ordering. This
includes simultaneous network partitions and even an ad-
versary dropping packets based on their content. For any
network failure, FUSE guarantees that all parties agree
whether or not a failure has occurred. Our FUSE im-
plementation routes all FUSE and overlay messages over
TCP connections. Our implementation handles arbitrary
packet loss and re-ordering, but only handles duplication
to the extent that TCP does. It would be straightforward
to extend our implementation to handle arbitrary duplica-
tion by incorporating digital signatures and timestamps,
though we have not yet done so. This extension would
also prevent tampering with message contents. FUSE’s
ability to handle packet loss is not dependent on using a
reliable transport layer, such as TCP. Alternative FUSE
implementations could use unreliable transport layers,
such as UDP. Using a different transport would present
different performance characteristics that many applica-
tion developers would want to be aware of.

Our model for node failures is fail-stop. Software fail-
ures that are recognized by the application (e.g., miscon-
figuration is detected) can be handled by explicitly sig-
nalling the FUSE group. FUSE also handles software
failures that result in a process exit, such as unhandled
exceptions. FUSE does not handle nodes that behave ma-
liciously, either due to explicit compromise or due to soft-
ware faults that are not appropriately contained.

Malicious nodes can attack FUSE in one of two ways:
by dropping legitimate failure notifications or by unneces-
sarily generating failure notifications. Dropping a failure
notification, and then continuing to generate ping mes-
sages for the failed group, can delay the notification indef-
initely for certain group members. This violates the FUSE
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notification semantics. Generating unnecessary failure
notifications can prevent the use of otherwise functional
FUSE groups, thus leading to a Denial-of-Service (DoS)
attack. Of course, if the application response to failure
notification is to re-attempt the failed operation with a dif-
ferent set of nodes, sustaining a DoS attack may be quite
difficult.

3.6 Crash Recovery

Our implementation of FUSE does not use stable stor-
age, and so crash recovery is trivial. The implementation
performs the same actions during crash recovery as during
any other initialization.

A recovering node does not know whether a failure no-
tification was propagated to other group members. FUSE
handles this case and several other corner cases by having
nodes actively compare their lists of live FUSE groups
as part of liveness checking. We will discuss the details
of our implementation more in Section 6, but the effect
is that disagreements about the current set of live FUSE
groups are detected within one failure timeout interval.
Disagreements are resolved by triggering a notification
on any groups already considered to have failed by some
group member.

An alternative FUSE implementation could use stable
storage to attempt to mask brief node crashes. A node
recovering from a crash could assume that all the FUSE
groups in which it participates are still alive; the active
comparison of FUSE IDs would suffice to reliably rec-
oncile this node with the rest of the world. Furthermore,
there is no compatibility issue: Nodes employing stable
storage could co-exist with nodes not employing stable
storage without any change to the FUSE semantics. It
is still the case that a persistent communication failure
on the node recovering from crash would cause all the
FUSE groups it participates in to be notified. Applications
can also make use of volatile-state FUSE groups to guard
state stored in stable storage, but this requires additional
application-level complexity.

4 Applications

As part of the Herald [7] project to build a scalable
event notification service, we have been exploring the
construction of scalable, reliable application-level multi-
cast groups using a scalable peer-to-peer overlay network.
Grappling with the complexities of implementing failure
handling and automatic re-configuration led us to invent a
new abstraction for failure notification.

The deciding factor for inventing FUSE was our de-
sign of multicast groups. A well-known technique for im-
plementing application-level multicast on an overlay is to
construct the multicast trees using reverse path forward-
ing (e.g., Scribe [37]). One major drawback of this ap-
proach is that nodes on an overlay routing path between
a subscriber and the root node must forward a potentially
large amount of traffic for the multicast group, even if they

have no interest in it. To remove this potential obstacle
to deployment, we designed Subscriber/Volunteer (SV)
trees [20]. SV trees route content around non-interested
parties by establishing separate content-forwarding links
among subscribers and volunteers. This leads to two inter-
related data structures: a content forwarding tree overlaid
on a reverse path forwarding (RPF) tree.

The content-forwarding tree is straightforward to con-
struct in the absence of failure. However, repairing the
tree without introducing distributed routing cycles proved
difficult in the face of arbitrary and possibly simultane-
ous node failures, link failures, message loss, and routing
changes in the overlay. To manage this complexity, we
adopted a simple design pattern: garbage collect out-of-
date state using FUSE and retry by establishing a new
FUSE group and installing new application-level state.
FUSE allowed us to tie together all the distributed state
that needed to be garbage collected.

This design pattern drastically reduced the state space
that we had to consider and was instrumental in achiev-
ing a working SV tree implementation. For example,
a single FUSE group ties together the endpoints of a
content-forwarding link and all the RPF tree nodes by-
passed by that link. Failure notification on this group
garbage collects all the relevant state. After failure notifi-
cation, the subscriber that requested creation of the now-
failed content-forwarding link is responsible for creating
a replacement FUSE group and forwarding link. If this
subscriber is dead, then no replacement is needed. Indeed,
there was a natural choice for the FUSE group creator ev-
erywhere we used FUSE, obviating the need for a voting
mechanism to manage group creation or re-creation.

As mentioned in Section 3.3, FUSE did not eliminate
all race conditions in SV trees, but the remaining ones
were trivial to handle. For example, subscribers add ver-
sion stamps to each subscription request to prevent late-
arriving FUSE notifications from acting on new content-
forwarding links.

FUSE also reduced the amount of code required to im-
plement SV trees. Without FUSE, we would have had to
include a large amount of additional context in each mes-
sage to allow the recipient to garbage-collect now-invalid
state and we found it difficult to reason about the correct-
ness of this non-FUSE alternative design. We also used
FUSE in one important non-failure case: when a multicast
group participant voluntarily leaves the tree, we explicitly
signal the FUSE group that would have been signaled if
the node had failed. This causes the appropriate repairs
to occur, removing the node from the content-forwarding
tree.

Our desire to support large multicast trees does not re-
quire that we support individual FUSE groups with a large
number of members. We designed SV trees to use a large
number of small to medium size FUSE groups, and this
determined the scalability requirements for FUSE. For ex-
ample, simulating a 2000 subscriber tree on a 16,000 node
overlay required an average of 2.9 members per FUSE
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group with a maximum size of 13. We also verified that
the maximum and mean FUSE group sizes depend very
little on the size of the multicast tree, and increase slowly
with the size of the overlay.

4.1 Other Applications

From our experience implementing an event delivery
service with FUSE, we believe that many applications
built on top of scalable overlay networks can benefit from
the use of FUSE. Many of these applications construct a
large number of trees, and then monitor parent-child links
in these trees using application-level heartbeats. Using
FUSE for these application-level heartbeats would allow
liveness checking traffic to be shared across all the trees.

Another type of application where FUSE would be
useful is a Content Delivery Network (CDN) that repli-
cates a large number of documents and pushes updates to
them. If the replication topology varies on a per-document
basis, this will entail a large number of replication mul-
ticast trees. A common strategy for reliability on these
trees mirrors the approach discussed above for peer-to-
peer applications: heartbeats ensure that each replica site
for a given object can track whether it is receiving all up-
dates correctly, or is instead somehow disconnected from
the tree. FUSE can replace the per-tree heartbeat mes-
sages with a more efficient and scalable means of detect-
ing when the trees need to be reconfigured due to node or
network failures.

Peer-to-peer storage systems such as TotalRecall [4]
and Om [45] could also benefit from the efficiencies of us-
ing FUSE to implement liveness checking. For example,
TotalRecall relies on the overlay for liveness-checking of
eager replicas, but must separately implement liveness-
checking of lazy replicas. The substitution of FUSE
groups would be straightforward. Om implements its own
failure detection and timeout scheme using leases; these
leases could be replaced by FUSE groups. FUSE would
also be a good fit for Om because every replica in Om
can regenerate the entire replica set, and therefore should
monitor the liveness of all other replicas. This symmet-
ric responsibility exactly corresponds to the semantics
of FUSE group notifications. Lastly, the potential for
false positives using FUSE does not compromise Om’s
consistency guarantees; Om’s failure-induced reconfigu-
ration protocol is already designed to be robust to failure-
detection false positives.

In addition, FUSE may also be useful in some of the
application areas targeted by weakly consistent member-
ship services. For example, Vogels and Re [44] argue
that weakly consistent membership services would ben-
efit many Web Services, ranging from scientific comput-
ing to federated business activities. FUSE may be a more
suitable choice for some of these emerging applications.

A C D

E

B

x: Group(A, D)

y: Group(E, A, D)

yy

x

Figure 2. Two FUSE groups being monitored by overlay
pings. The black lines denote end-to-end checking, while
dashed gray lines denote active overlay pings.

5 Liveness Checking Topologies

Many different liveness checking topologies can be
used to implement FUSE. In this Section, we describe in
detail the topology we chose: per-group spanning trees on
an overlay network. We then discuss other topologies and
their security/scalability tradeoffs.

Our overlay design requires a content-addressable
overlay (e.g., DHTs such as CAN, Chord, Pastry, Skip-
Net, or Tapestry [25, 34, 36, 39, 46]). Figure 2 depicts
an overlay topology with two live FUSE groups, x and y.
The spanning tree for FUSE group y contains the group
members A, D, and E, and two additional nodes, B and
C, that we refer to as delegates. Delegates arise because
the FUSE liveness checks are routed along overlay paths
between members, and these paths may contain nodes that
are not members. If overlay routes change or delegates
fail, delegates may be added to or deleted from the live-
ness checking tree; this repair process is explained in de-
tail in Section 6.

Building liveness checking trees on top of an overlay
lets us reuse the liveness checks that the overlay uses to
maintain its routing tables. The liveness checking tree for
a given FUSE group is the union of the overlay routes be-
tween the group creator (the root) and the group members.
When multiple FUSE groups have overlapping trees, each
overlay ping message monitors all FUSE groups whose
liveness checking trees include that overlay link. Figure 2
illustrates this sharing for the FUSE groups x and y.

In the absence of failures, our FUSE implementation
requires no additional messages beyond the overlay pings
to monitor FUSE groups. Only group setup, teardown,
and repair incur per-group costs. This allows one to build
systems that require very large numbers of FUSE groups.

5.1 Alternative Topologies

In this section, we present three alternative topologies
for FUSE liveness monitoring that provide better security
guarantees at the cost of worse scalability. Certain imple-
mentations of these topologies can be simpler and provide
stronger guarantees for worst-case failure notification la-
tency.

As mentioned in Section 3.5, malicious nodes can
mount two kinds of attacks against FUSE: the dropped
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notification attack and the unnecessary notification attack.
In the overlay topology used by our FUSE implementa-
tion, these attacks can be mounted by malicious group
members or delegates. The SV tree application han-
dles the dropped notification attack above the FUSE layer
by using redundant content-distribution trees. It handles
the unnecessary notification attack by re-creating FUSE
groups with different sets of members.

The first alternative topology we consider is per-group
spanning trees without an overlay. By routing liveness
checking traffic directly between members, this topology
eliminates the threat of delegates launching attacks on
FUSE. The scalability tradeoff for this additional secu-
rity is that the overhead of liveness checking traffic may
be additive in the number of FUSE groups – the opportu-
nities to share liveness checking traffic will depend on the
degree of overlap in FUSE group membership.

The second alternative topology we consider is per-
group all-to-all pinging (again, without an overlay). This
improves security even further; all-to-all pinging is robust
to dropped notification attacks from members because no
member relies on any other node to forward failure notifi-
cations. However, this topology requires n2 messages for
a group of size n – significantly more than the per-group
spanning tree topology. An added benefit of the all-to-all
topology is that worst-case failure notification latency is
reduced to twice the pinging interval.

The final topology we consider is using a central server
to ping all nodes. This may be an appropriate topology for
using FUSE within a data center environment. From a se-
curity standpoint, this server represents a single point of
trust, which may be easier to secure than a larger collec-
tion of machines. If the server is compromised, attacks
can be launched against any FUSE group in the system.
If not, the security guarantees are the same as in the all-
to-all pinging topology. For settings than span multiple
administrative domains, the use of a single trusted server
may not be appropriate. The scalability of this topology is
limited: all FUSE traffic passes through the server, which
can be a bottleneck for a large number of FUSE partici-
pants. However, the load on each group member is min-
imal: each group member only pings the central server
during each ping interval.

6 Implementation

The key architectural choice we faced in implement-
ing FUSE was whether to route all FUSE messages using
the overlay paths, or to route certain messages directly
between the group members. In the topology we used,
spanning trees along overlay routes, path failures involv-
ing delegates can be dealt with in one of two ways. One
option is to signal a failure on all FUSE groups using that
path. This has the advantage of implementation simplic-
ity, but can be a significant source of false positives. In-
stead, we chose the second option: to attempt to repair the
liveness monitoring topology for the group.

Repair will succeed if the members of the group can
still communicate with each other directly, and therefore
repair routes around all failures involving delegates. We
chose to implement repair by routing repair messages di-
rectly from the root to the group members. The over-
riding factor for this choice was rapidity of failure de-
tection: relying solely on overlay routes would require
waiting for the overlay to attempt to repair itself before
signaling a failure. Using direct root to member com-
munication allows failures involving group members to
be detected more rapidly. This direct communication
also results in better latencies for group creation and
application-signalled failure notifications. When overlay
routing paths are working, we still get the scalability ben-
efits of shared spanning trees using the overlay. In the
remainder of this section, we first describe the functional-
ity exposed by the SkipNet overlay, and we then discuss
the details of implementing each FUSE operation.

6.1 Overlay Functionality

Our implementation of FUSE on top of the SkipNet
overlay required two features that SkipNet provides to
client applications: messages routed through the overlay
result in a client upcall on every intermediate overlay hop,
and the overlay routing table is visible to the client. This
functionality is standard for many overlays [18].

Our FUSE implementation re-uses the overlay routing
table maintenance traffic by piggybacking a SHA1 hash
(20 bytes) on ping requests. This hash encodes all the
FUSE groups that use this overlay link. FUSE could have
sent its own messages across these same links, but the pig-
gybacking approach amortizes the messaging costs. Skip-
Net pings cause a client upcall at their destination, so
the destination FUSE layer can examine the piggybacked
contents. Because all SkipNet links are monitored from
both sides, we did not need to add additional pinging at
the FUSE layer to ensure this. Implementing FUSE on an
overlay that does not have these properties would require
FUSE to perform additional pinging itself.

All FUSE and overlay messages in our system are de-
livered over TCP, and therefore inherit TCP’s retry and
congestion control behaviors. When a TCP connection
breaks, or a liveness checking message fails to get through
before the timeout, we interpret that to mean that the node
at the other end is unavailable.

6.2 Group Creation

We implement group creation as follows: Group cre-
ation does not finish until every member node has a timer
installed that will signal failure in the event of future com-
munication failures. These timers are only reset by the
receipt of liveness checking messages. Thus, any future
communication failures will be converted into failure no-
tifications.

To achieve low creation latencies, the creating node
directly contacts every other member node in parallel,
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2. GroupCreateReply

Figure 3. Group Creation Example. Root node E sends
GroupCreateRequest messages directly to group members
A and D. Nodes A and D reply directly with GroupCre-
ateReply messages, and also route InstallChecking mes-
sages though the overlay towards E.

declaring creation to have succeeded when all of them
have replied. When CreateGroup is called on a node, that
node (referred to as the root) generates a unique ID for
the group. The root also creates an entry in its list of
groups being created, and associates a timeout with this
group creation attempt. The entry contains the FUSE ID,
the list of group members, and which members the root
has received a reply from. The root then sends GroupCre-
ateRequest messages to the other member nodes. An ex-
ample message sequence that could result from group cre-
ation is shown in Figure 3.

On receiving a GroupCreateRequest, a member node
installs FUSE member state for the group: the unique ID,
a sequence number that is initially 0 (and which is incre-
mented by group repair), and the identity of the root. Con-
currently to sending the GroupCreateReply directly to the
root, the member node routes an InstallChecking message
towards the root using overlay routing. The InstallCheck-
ing message will set a timer on every node it encounters
to ensure that liveness checks are heard.

If the root receives a GroupCreateReply from every
member within the group creation attempt timeout, it in-
stalls the FUSE root state for the group: the unique ID,
the sequence number, the identities of all the other group
members, and a timer for checking that InstallChecking
messages have arrived from every member. The root then
removes this group from its list of groups being created
and returns the unique ID to the FUSE client application.

If the GroupCreateReply is not received from every
node within the group creation attempt timeout, the group
creation fails and the root returns failure to the FUSE
client application. The root also attempts to send a failure
notification for this FUSE group to each group member.
This notification is a HardNotification – we elaborate on
the different types of notifications in Section 6.4. Finally,
the root removes this group from its list of groups being
created. This prevents GroupCreateReply messages re-
ceived later from causing installation of state for the failed
group creation.

When an InstallChecking message arrives at a delegate

node, it installs the FUSE delegate state for the group: the
FUSE ID, sequence number, and current time are associ-
ated with both the previous hop and the next hop of the
InstallChecking message, and timers are associated with
both hops as well. The node then forwards the message
towards the root. If the timer for receiving all the In-
stallChecking messages fires on the root, the root attempts
a repair.

6.3 Steady-State Operation

Whenever an overlay node initiates a ping to a routing
table neighbor, it piggybacks a hash of the list of FUSE
IDs that this node believes it is jointly monitoring with
its neighbor. When the neighbor receives this message, if
the hash matches, the neighbor resets the timers for all the
(FUSE ID, neighbor) pairs represented by the hash. There
can be more than one timer per FUSE ID because a node
may have more than one neighbor in the liveness checking
tree. If one of these timers ever fires, the node sends a
SoftNotification message to every neighbor in the liveness
checking tree for this FUSE group, and then it cleans up
the FUSE delegate state for the group. Additionally, if the
timer is firing on a member, a repair is initiated.

If a node receives a non-matching hash of FUSE IDs
from a neighbor, both nodes attempt to reconcile the dif-
ference by exchanging their lists of live FUSE IDs. If they
can communicate, they only remove the liveness check-
ing trees on which they disagree, and the timers are reset
on the others. If they cannot communicate, the relevant
checking state is removed, and SoftNotification messages
are sent.

During group creation, a race condition exists that can
cause hash mismatches: a node that has just received an
InstallChecking message may receive a ping from the next
hop of the InstallChecking message. We resolve this race
condition using a brief grace period. A node only removes
a liveness checking tree that its neighbor does not believe
exists if that tree has existed for longer than the grace pe-
riod; in our implementation, this period is 5 seconds.

6.4 Notifications

To achieve the simultaneous goals of low notification
latency and resilience to delegate failures, our FUSE im-
plementation distinguishes between different classes of
failures. Failures of the steady-state liveness checking
trigger a SoftNotification. This message is distributed
throughout the liveness checking tree, which alerts the
root that a repair is needed and prevents a storm of Soft-
Notifications from being sent to the root by the rest of the
tree. Members receiving a SoftNotification also initiate
repair directly with the root as described in Section 6.5.

Failures of group creation or group repair trigger a
HardNotification. Because both create and repair use di-
rect root-to-member communication, delegate failures do
not incur false positives. Note that SoftNotifications do
not cause failure notifications at the application layer. In-
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Figure 4. Explicitly Signalled Notification Example. Sig-
nalFailure() is called on node A. Node A sends a HardNo-
tification to the root, E. E forwards the HardNotifcation to
the remaining group member, D. E also generates a Soft-
Notification to clean up the liveness checking tree.

stead, they trigger repair actions. The failure of these re-
pair actions will lead to a HardNotification, which is re-
flected at the application layer. To achieve low latency for
explicitly signalled notifications, HardNotifications are
also used to convey them.

A member generating a HardNotification sends it to
the root, which in turn forwards it to all other group mem-
bers. A node receiving a HardNotification immediately
invokes the application-installed failure handler. The root
node additionally sends SoftNotifications to proactively
clean up the liveness checking tree. An example of such
a message sequence is shown in Figure 4.

A node receiving a SoftNotification message first
checks to see that the sequence number is greater than
or equal to its recorded sequence number for the speci-
fied group; recall that the sequence number is incremented
during the repair process. If not, the message is discarded.
If the sequence number is current, the node forwards the
message on to all neighbors in the liveness checking tree
other than the message originator, and removes its dele-
gate state for the group. If the node is a member or the
root, it also initiates repair.

6.5 Group Repair

When a member initiates a repair, it sends the root a
NeedRepair message, and installs a timer for hearing back
from the root. If the timer fires, it signals a failure notifica-
tion to the FUSE client application, sends a HardNotifica-
tion message to the root, and cleans up the state associated
with this group.

The root can be signalled that a repair is needed
through either of two paths: a NeedRepair directly from a
member or a SoftNotification spreading through the live-
ness checking tree. The NeedRepair message is needed
to remove a potential source of variability in the latency
of repair. When a member receives a SoftNotification,
it does not have a good estimate for how soon the root
will similarly receive a SoftNotification; these notifica-
tions are routed through the overlay, and breaks in over-
lay routing require a timeout on the other side to continue
the progress of the SoftNotification. An example of a se-
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1. Failed 

Ping

Figure 5. Messages Triggering Group Repair Example.
Delegate B sends a ping to delegate C, and the ping is not
acknowledged. B then sends a SoftNotification to mem-
ber A. A then sends a NeedRepair to root E. Once E has
been alerted, E coordinates repair just as it coordinated
creation.

quence of messages leading to a NeedRepair is shown in
Figure 5.

When the root attempts a repair, it sends out GroupRe-
pairRequest messages to every member. Members an-
swer these with GroupRepairReply messages, and they
send InstallChecking messages just as in group creation.
State management at the root during repair is similar to
creation, involving a repair attempt table where open re-
pairs are recorded. State management at member nodes
is different: if a repair message ever encounters a mem-
ber that no longer has knowledge of the group, it fails and
signals a HardNotification. This guarantees that repairs
will not suppress any HardNotification that has already
reached some members. Such notifications garbage col-
lect all group state at the node.

Nodes receiving a GroupRepairRequest increment the
group sequence number so that late-arriving SoftNotifica-
tion messages will not trigger a redundant repair. If the
root decides that repair has failed (using the same criterion
as for create failing), the root sends HardNotifications to
all members, and signals the application.

As we discussed in Section 5, using overlay paths al-
lows us to achieve low steady-state message overheads.
We believe a repair scheme that better localizes repair
traffic is possible, but we did not consider this a case
worth optimizing. During transient overlay routing fail-
ures, repairs may be quite frequent; a node consulting its
routing table may learn that there is no next hop for an
InstallChecking message. To reduce the message volume
under such circumstances, we implement per-group expo-
nential backoffs (capped at 40 seconds) for the frequency
of repairs. Although repair generates additional network
traffic shortly after a failure has been detected, our use of
TCP serves to regulate this additional network load.

7 Experimental Evaluation

We evaluate FUSE running on top of the SkipNet [25]
overlay network using two main techniques: a scalable
discrete event simulator and a live implementation with up
to 400 virtual nodes running on a cluster of 40 worksta-
tions. Our SkipNet and FUSE implementations running
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on the live system and in the simulator use an identical
code base, except for the base messaging layer.

7.1 Methodology

We configured the SkipNet overlay to employ a 60 sec-
ond ping period, a base of size 8, and a leaf set of size 16.
For a 400 node overlay, this yielded an average of 32.3
distinct neighbors per node.

For the cluster evaluation our router uses Model-
Net [41] to emulate wide-area Internet-like network char-
acteristics. We ran 10 processes on each of the 40 physical
nodes, for a total of 400 virtual nodes. In order to emu-
late nodes running on physically separate machines, there
is no explicit state sharing between these processes, and
all communication between processes is forced to pass
through ModelNet.

The motivating scenario for our choice of router topol-
ogy and our assignment of link latencies and bandwidths
was small and large corporations on multiple continents
with direct Internet connections. Both our live and simu-
lator experiments were run on a Mercator topology [40]
with 102,639 nodes and 142,303 links. Each node is
assigned to one of 2,662 Autonomous Systems (ASs).
There are 4,851 links between ASs in the topology. We
assigned 97% of links to be OC3 and 3% to be T3. For
each OC3 link, we assigned the link latency uniformly
between 10 and 40 milliseconds, and we assigned a band-
width of 155 Mbps. For each T3 link, we assigned the
link latency uniformly between 300 and 500 milliseconds,
and we assigned a bandwidth of 45 Mbps. This led to
round-trip latencies with a median value of 130 millisec-
onds, and a significant heavy-tail. In Figure 6, the curve
labeled Simulator shows a CDF of end-to-end latencies;
paths crossing one or more T3 links are in the heavy-tail.

We also used this topology in our simulator, where
we ran experiments with both 400 and 16,000 nodes, to
model how our system would scale to a much larger de-
ployment. The simulator used the same latency values,
but did not model bandwidth constraints.

Our event notification service workload (Section 4)
creates a large number of groups with an average group
size of less than 3. Even scaling up to a 16,000 node
overlay in our simulator, the maximum group size we ob-
served was 13. Just as these results informed our FUSE
design, they also determined our choice of evaluation pa-
rameters: we evaluated FUSE on a workload of groups
ranging from 2 to 32 members.

7.2 Calibration of Simulator and ModelNet

We used an experiment that performed RPC message
exchanges between randomly chosen nodes on a 400-
node overlay network to calibrate the wide-area network
topology model used in our experiments and to make sure
that results obtained through simulation were comparable
to those obtained through running on the live cluster with
ModelNet.
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Figure 6. RPC Latencies

Towards that end, we measured 2400 RPCs on both our
cluster and our simulator. Figure 6 shows a Cumulative
Distribution Function (CDF) of the RPC times measured
for three sets of RPCs: those obtained in the simulator,
and two kinds of RPC times obtained on the cluster. Be-
cause the cluster code caches TCP connections between
pairs of nodes, the first communication between a pair of
nodes takes longer than subsequent communications, due
to the additional time required for connection establish-
ment. Our experiment performs two back-to-back RPCs
between pairs of nodes on the cluster and reports the du-
rations of both the first RPC, which is likely to incur con-
nection setup overhead, and the second one, which will
not.

As can be seen in Figure 6, the values for the second
RPC on the cluster closely track those for the simulator.
This gives us confidence that both the simulator and Mod-
elNet are faithfully modeling the chosen Mercator topol-
ogy.

7.3 FUSE Group Creation Latencies

We measured the time on the cluster required to cre-
ate a FUSE group as a function of group size when group
members are uniformly distributed throughout the system.
We used group sizes 2, 4, 8, 16, and 32 and created 20
groups of each size. Figure 7 shows the results. While
group members were contacted in parallel, the more mem-
bers there are, the greater the chance of including nodes
at a significant network distance from the root node of the
group. Note, for instance, that for groups of size 8, the
75th percentile time was significantly larger than the me-
dian, whereas for groups of size 32, the 25th percentile,
median, and 75th percentile are all relatively close, as
with this many members the chance of encountering one
or more slow communication paths is quite high.

In the simulator, we evaluated both a 400 node and a
16,000 node system. The simulated creation times fol-
lowed the same pattern as those on the cluster, except that
they tended to be about half as long, for the same reasons
that the simulated and actual RPC times in Figure 6 for
new connections also differed by about a factor of two.
The group creation times for the simulated 16,000 node
system were essentially identical to those for the 400 node
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Figure 7. Latency of Group Creation

simulated system. This is to be expected, since creation
messages are routed directly between the root and mem-
bers, and therefore are not affected by the length of over-
lay routes.

7.4 Failure Notification Latencies

The latency of failure notification for an actual failure
is comprised of two parts: the time for a node in the sys-
tem to decide that a failure has occurred, and the time for
FUSE to propagate that information to all group mem-
bers. The time to detect a failure depends on the type of
failure, and on how node and link failures are monitored.
We perform two experiments to characterize these costs:
our first experiment investigates the latency of explicitly
signaled failures, and our second investigates the latency
of failure notification when nodes crash.

To measure the notification latency of explicitly sig-
naled failures, we chose a group member at random from
the same set of groups used for the group creation ex-
periments, and had it explicitly signal failure. Figure 8
shows the notification times over 20 such create/notify
cycles. As expected, the notification latencies are sig-
nificantly lower than the group creation latencies. This
improvement is a result of three factors. First, our mes-
saging layer maintains a cache of recently used TCP con-
nections rather than opening a new TCP connection each
time a message is sent. During this experiment, the failure
notifications travel over cached TCP connections because
these connections were recently used to perform group
creation. Second, failure notifications only require a one-
way message, not a round-trip. Third, creation blocks at
the root until all members have been contacted, and thus
a single node in the group that is far away in the network
will delay the entire create operation. In contrast, notifica-
tion takes effect at each member as soon as the notification
has arrived. The maximum notification time observed for
any FUSE group was 1165 ms. Our simulation results at
400 nodes matched the results obtained on the cluster. We
also investigated scaling behavior in the simulator, and we
found the expected result that notification times did not
increase in a 16,000 node overlay.

Even though failure notifications take effect at each
member upon arrival, in Figure 8 we see that the me-
dian notification latency shows a dependence on the group
size. The rise in the curve at group sizes 2, 4, and 8 is due
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Figure 8. Latency of Signaled Notification

to the extra forwarding hop needed when notifications are
generated by a non-root node. At size 2, these notifica-
tions just travel from the member to the root, whereas at
sizes 4 and 8 notifications travel from the member to the
root and then to all other members. The additional in-
crease in notification latency for groups of size 16 and 32
reflects the latency added by our messaging layer at the
root. Our implementation uses an XML-based messaging
system with high message serialization overhead: reduc-
ing this overhead would be straightforward but this was
not the focus of our work. We ran micro-benchmarks and
determined that running 10 virtual nodes on each physical
machine adds approximately 1.1 ms of overhead per mes-
sage, and the base overhead of a message send including
XML serialization is 2.8 ms.

To measure the latency of failure notification when
nodes crash, we performed the following experiment: we
created 400 FUSE groups of size 5 and then disconnected
the network on one of the 40 physical machines, discon-
necting 10 of the 400 virtual nodes. Of the 400 FUSE
groups, 42 contained one or more disconnected virtual
nodes as members. All remaining members of these
groups received failure notifications – a total of 163 no-
tifications.

Figure 9 shows the distribution of these notification
times. These times have several components: the time
until a ping of the failed node is attempted, the timeout
for this ping, the time for a member to learn of the failed
ping, the time for the subsequent repair attempt to fail,
and the actual notification time after repair has failed. We
used a ping interval of one minute, and a ping timeout
of 20 seconds, so the total ping timeout latency should
be uniformly distributed between 20 and 80 seconds. If
a member has failed, the root times out after 2 minutes
with no repair response. If a root has failed, the members
time out after 1 minute with no repair response, leading to
shorter overall failure notification times. Figure 8 shows
that the notification times are less than a second. We de-
duce from this that the ping and repair timeouts dominate
the failure notification times in the event of a node crash.

7.5 Steady State Load and Churn

One set of experiments we performed measured the
amount of background network traffic present due to the
overlay network and due to FUSE groups that are using
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Figure 10. Costs of Overlay Churn

the overlay network for liveness checking. On the clus-
ter, we observed background network traffic loads of 337
messages per second over a 10 minute interval when no
FUSE groups were present and 338 messages per sec-
ond over a subsequent 10 minute interval when 400 FUSE
groups of 10 members each were present. These experi-
ments verified that, in the absence of node failures, FUSE
groups imposed no additional messages beyond that al-
ready imposed by the overlay itself; the only additional
cost was a 20 byte hash piggybacked on each ping.

When nodes are entering and leaving the overlay net-
work (often referred to as “churn”), the overlay paths used
for liveness checking between nodes in a FUSE group
may change, causing the liveness checking state to have to
be reconstructed. Overlay churn does not cause false pos-
itives in FUSE, but it does cause FUSE to generate higher
network load. We experimentally quantified the network
load imposed by a high churn rate with FUSE groups.

We designed our churn experiment to use a very ag-
gressive rate of arrivals and departures. We used 200 sta-
ble nodes that remained alive for the duration of the exper-
iment and 200 nodes that were killed and restarted such
that an average of 100 of the churning nodes were alive
at any given time. The rate of churn resulted in a system-
wide average half-life of 30 minutes. This is more than
a factor of 7 higher rate of churn than was observed in a
2003 study of the OverNet peer-to-peer system [3]. We
created a total of 100 FUSE groups of size 10 on the 200
stable nodes, so that on average each stable node was a
member of five FUSE groups.

We measured both CPU loads and network message
traffic. CPU loads did not show noticeable increases dur-

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

Route Loss Rate

F
ra

ct
io

n 
of

R
ou

te
s

5.8% Median Loss

11.4% Median Loss
21.5% Median Loss
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Figure 12. Group Failures Due to Packet Loss. No fail-
ures occurred for 0% and 5.8% loss rates.

ing overlay churn. As a basis of comparison, a stable 300-
node overlay with no FUSE groups generates a load of
238 messages per second. A 400-node overlay network
with churn as described above (which results in an aver-
age of 300 live nodes at any given time) generates a load
of 270 messages per second – a 13% increase due to the
costs of repairing the overlay. Adding the 100 10-member
FUSE groups to the churning overlay results in a total of
523 messages per second – a 94% increase over the cost
of the churning overlay without FUSE groups. These re-
sults are displayed in Figure 10. This additional load is
caused by the group repair traffic described in Section 6,
and is proportional to the number of groups times the av-
erage group size. While the overlay routes are in flux, new
liveness checking paths cannot be installed and thus the
repair mechanism will be triggered repeatedly. One could
reduce the FUSE overhead during churn by employing a
more proactive repair strategy at the overlay level.

A high enough rate of churn may cause overlay routing
to fail entirely. In this case, the FUSE liveness checking
traffic will still be proportional to the number of groups
times the average group size. After reaching steady state,
each root node will periodically ping each group member
directly with a GroupRepairRequest message.

7.6 False Positives

We studied the robustness of our implementation to
false positives stemming from two different sources, del-
egate failures and unreliable communication links. In the
previously described churn and node crash experiments,
many groups experienced delegate failures and had to
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perform repairs. In both these experiments, notifications
were only delivered for groups where a member crashed:
delegate failures never led to a false positive.

To understand the impact of potentially unreliable
links on FUSE, we ran a set of experiments with Model-
Net configured to probabilistically drop packets on a per-
link basis. Routes in our topology ranged from 2 to 43
hops with a median of 15. Figure 11 shows the CDFs of
per-route loss rates for three different experiments where
we varied the per-link loss rates over 0.4%, 0.8%, and
1.6%. The CDFs are labeled by their median end-to-end
loss rates. We created 20 FUSE groups each of sizes 2,
4, 8, 16, and 32. We then enabled losses, and allowed the
system to run for an additional 30 minutes.

Figure 12 shows the number of FUSE group failures
we observed at each loss rate. No false positives occur
at the 0% or 5.8% per-route median loss rates because
TCP masks drops at the lower loss rates through retrans-
missions. At higher loss rates some groups did fail; TCP
sockets will break under such adverse network conditions.
If one desired a FUSE implementation that continued to
monitor links under these conditions, an alternative mes-
saging layer should be employed.

8 Conclusions

This paper has presented FUSE – a lightweight dis-
tributed failure notification facility. FUSE provides a
novel abstraction, the FUSE group, that is targeted at
wide-area Internet applications. The FUSE group abstrac-
tion provides distributed application developers with a
simple programming paradigm for handling failure: fail-
ure notifications never fail, and failures are with respect
to groups, not individual members. One significant ad-
vantage of the FUSE abstraction is that detecting failures
is a shared responsibility between FUSE and the appli-
cation. This allows applications to implement their own
definitions of failure, extending the applicability of failure
management services.

We implemented FUSE using a peer-to-peer overlay
network and evaluated its behavior on a cluster of work-
stations under a variety of conditions, including node
failures, packet loss, and overlay churn. Our evaluation
showed that our FUSE implementation is lightweight and
can scale to large numbers of moderate size FUSE groups.
Our implementation scales by reusing overlay mainte-
nance traffic to also perform liveness checking of FUSE
groups, thereby imposing no additional traffic in the ab-
sence of node failures. Because the FUSE abstraction can
be implemented efficiently, it may find application in do-
mains where consensus-style protocols have proven to be
too heavyweight.

FUSE simplifies the complex task of handling fail-
ures in distributed applications. We described our expe-
riences building scalable, reliable application-level multi-
cast groups using FUSE, and how FUSE made this task

easier. We believe that the use of FUSE will likewise sim-
plify the construction of other distributed systems.
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